CN113105226B - 一种微波陶瓷介质材料及其制备方法 - Google Patents

一种微波陶瓷介质材料及其制备方法 Download PDF

Info

Publication number
CN113105226B
CN113105226B CN202110433692.9A CN202110433692A CN113105226B CN 113105226 B CN113105226 B CN 113105226B CN 202110433692 A CN202110433692 A CN 202110433692A CN 113105226 B CN113105226 B CN 113105226B
Authority
CN
China
Prior art keywords
percent
ball milling
sio
dielectric material
ceramic dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110433692.9A
Other languages
English (en)
Other versions
CN113105226A (zh
Inventor
吴坚强
童宁
金强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Woxin Communication Technology Co ltd
Original Assignee
Anhui Woxin Communication Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Woxin Communication Technology Co ltd filed Critical Anhui Woxin Communication Technology Co ltd
Priority to CN202110433692.9A priority Critical patent/CN113105226B/zh
Publication of CN113105226A publication Critical patent/CN113105226A/zh
Application granted granted Critical
Publication of CN113105226B publication Critical patent/CN113105226B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种微波陶瓷介质材料及其制备方法,所述微波陶瓷介质材料的主晶相结构为xMg2SiO4‑(1‑x)[yZrTi2O6‑(1‑y)ZnNb2O6],其中0.5≤x≤0.7,0.78≤y≤0.82;其Qf值为68000~78000GHz,相对介电常数εr为10.6~16.6,谐振频率温度系数在±7ppm/℃以内。本发明不仅有效地降低了Mg2SiO4晶相合成温度,还抑制了MgSiO3第二相的形成,同时制得的材料性能优良、制备工艺易控、成本低廉等优点,因此具有广阔的市场前景。

Description

一种微波陶瓷介质材料及其制备方法
技术领域
本发明属于无机非金属材料领域,具体是一种微波陶瓷介质材料及其制备方法。
背景技术
微波介质陶瓷是指应用于微波频段(300MHz-300GHz频段)电路中作为介质材料并完成一种或多种功能的陶瓷,在现代通信中被广泛用作谐振器、滤波器、介质基片、介质天线、介质导波回路等。微波介质谐振器与金属空腔谐振器相比,具有体积小、质量轻、温度稳定性好、价格便宜等优点。
随着微波通信的快速发展,微波通信系统迫切需要高性能的微波介质器件。目前移动通信的频率范围在800~5500MHz,相应的微波介质器件趋于成熟,但当频率向高端发展时,如华为在2021年4月提出的5~5.5G无线通信,面向2025共同启动5.5G创新和标准化;又如卫星通信的频率位于K波段(12~40GHz),已开发的微波介质材料的εr较大(εr≥20)、Q·f值较小,无法制造出低损耗、合适尺寸的微波介质器件,因此有必要开发低介电常数、低频率温度系数、高Q·f值的微波介质材料。
镁橄榄石(Mg2SiO4)具有低的介电常数、较高的Q·f值,比A12O3陶瓷烧结温度低,适合作为低介电常数介质谐振器或基板的一种微波介质材料。Mg2SiO4陶瓷作为介质谐振器材料存在着以下缺陷。其一,Mg2SiO4陶瓷具有较大的负谐振频率温度系数(-67ppm/℃);其二,Mg2SiO4晶相合成温度高(1260℃),Mg2SiO4陶瓷在合成和烧结过程中容易出现MgSiO3第二相,这个第二相有较高的介电损耗,它的出现降低了Mg2SiO4陶瓷的微波介电性能。在对Mg2SiO4陶瓷研究工作中人们发现,SiO2过量10%至20%的情况下,在1160~1240℃烧结均获得较纯的Mg2SiO4相,但过量SiO2同样增大了材料的微波损耗。0vchar在2007年报道了MgO和SiO2按摩尔比为2:1合成Mg2SiO4过程中,1200℃以下会产生MgSiO3和MgO,在1300℃以上烧结可以获得纯的Mg2SiO4相。国内专利CN102659396A采用Mg2SiO4-BaTiO3添加烧结助剂和掺杂剂,在1320~1380℃烧结,制备了εr从3~8之间可调、Q·f值大于60000、温度系数控制在±20ppm/℃的微波介质材料。国内专利CN103319166A采用MgTiO3-Mg2SiO4-CaTiO3添加掺杂剂,制备了εr从10~22之间,温度系数控制在±10ppm/℃,在1320~1350℃烧结的微波介质材料。
目前,报道能够做到介电常数εr从9-17之间可调,温度系数控制在±7ppm/℃内,同时Q·f在68000-78000GHz之间的材料体系非常少,当前迫切需要开发一种工艺简单、原材料成本低同时满足低损耗特征、介电常数系列可调的微波介质陶瓷,以满足微波通信行业的应用需求。
发明内容
本发明的目的在于克服现有技术的不足,提供一种性能优良、工艺易控、成本低廉的微波陶瓷介质材料及其制备方法。
本发明通过以下技术方案予以实现:一种微波陶瓷介质材料,其特征在于:所述微波陶瓷介质材料的主晶相结构为xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6],其中0.5≤x≤0.7,0.78≤y≤0.82;其Qf值为68000~78000GHz,相对介电常数εr为10.6~16.6,谐振频率温度系数在±7ppm/℃以内。
上述微波陶瓷介质材料的制备方法,其特征在于包括以下步骤:
步骤1:Mg2SiO4主晶相粉料合成:
以粒径D50和纯度分别为2um、99%的氧化镁,1.5um、99.5%的二氧化硅,1.8um、99.5%的氧化锌为起始原料,按摩尔比Mg:Si=2:l进行氧化镁和二氧化硅的配料,按微波陶瓷介质材料总质量的1%添加ZnO;原料经球磨混合均匀后在1120~1200℃下保温3~4小时,随炉冷却得到含有ZnO的Mg2SiO4 主晶相粉料;
步骤 2: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6]预烧料混合:
将步骤1所得的Mg2SiO4主晶相粉料,与粒径D50和纯度分别为1.5um、99.9%的氧化锆,2.0um、99.5%二氧化钛,1.8um、99%的氧化锌,1.5um、99.9%的五氧化二铌混合,混合时控制配比: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6],其中0.5≤x≤0.7,0.78≤y≤0.82;按微波陶瓷介质材料总质量比的0.2%掺入MnO2、0.5~1.3%掺入La2O3、0.5~1.3%掺入BaCO3为添加剂,然后将混合粉料进行第二次球磨,球磨浆料在100℃下烘干并过40目筛,最后混合粉料在1020~1080℃温度下保温2~4小时,得到预烧料,并进行第三次球磨,球磨浆料在100℃下烘干并过40目筛;
步骤3:造粒、成型:
按微波陶瓷介质材料总质量的15~18%向步骤2所得预烧料中添加质量浓度为8%的聚乙烯醇水溶液造粒,造粒尺寸控制在60~250目,并在10~15MPa下压制成生坯;
步骤4 :烧结:
将步骤3所得生坯,在1260~1320℃温度和还原气氛下保温3~4小时,得到最终的微波陶瓷介质材料。
所述步骤1和步骤2中球磨工序的工艺为:以二氧化锆球为球磨介质、蒸馏水/去离子水作为溶剂,按照料:球:水=1:4:2~5重量比,球磨4~6小时。
所述步骤2中添加剂MnO2的粒径D50为1.2um、La2O3的粒径D50为0.9um、BaCO3的粒径D50为1.1um。
本发明制备的微波陶瓷介质材料,其主晶相结构为xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6],其中0.5≤x≤0.7,0.78≤y≤0.82;其Qf值为68000~78000GHz,相对介电常数εr为10.6~16.6,谐振频率温度系数在±7ppm/℃以内。本发明不仅有效地降低了Mg2SiO4晶相合成温度,还抑制了MgSiO3第二相的形成,同时制得的材料性能优良、制备工艺易控、成本低廉等优点,因此具有广阔的市场前景。
附图说明
图1 为实施例1中合成Mg2SiO4的XRD检测图。
具体实施方式
实施例1
一种微波陶瓷介质材料的制备方法,包括以下步骤:
步骤1:Mg2SiO4主晶相粉料合成:
以粒径D50和纯度分别为2um、99%的氧化镁,1.5um、99.5%的二氧化硅,1.8um、99.5%的氧化锌为起始原料,按摩尔比Mg:Si=2:l进行氧化镁和二氧化硅的配料,按微波陶瓷介质材料总质量的1%添加ZnO;原料经球磨混合均匀后在1120℃下保温3小时,随炉冷却得到含有ZnO的Mg2SiO4 主晶相粉料;
步骤 2: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6]预烧料混合:
将步骤1所得的Mg2SiO4主晶相粉料,与粒径D50和纯度分别为1.5um、99.9%的氧化锆,2.0um、99.5%二氧化钛,1.8um、99%的氧化锌,1.5um、99.9%的五氧化二铌混合,混合时控制配比: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6],其中x=0.5,y=0.79;按微波陶瓷介质材料总质量比的0.2%掺入MnO2、0.5%掺入La2O3、1.3%掺入BaCO3为添加剂,然后将混合粉料进行第二次球磨,球磨浆料在100℃下烘干并过40目筛,最后混合粉料在1020℃温度下保温2小时,得到预烧料,并进行第三次球磨,球磨浆料在100℃下烘干并过40目筛;
步骤3:造粒、成型:
按微波陶瓷介质材料总质量的15%向步骤2所得预烧料中添加质量浓度为8%的聚乙烯醇水溶液造粒,造粒尺寸控制在60~250目,并在10MPa下压制成生坯;
步骤4 :烧结:
将步骤3所得生坯,在1260℃温度和还原气氛下保温3小时,得到最终的微波陶瓷介质材料。
所述步骤1和步骤2中球磨工序的工艺为:以二氧化锆球为球磨介质、蒸馏水/去离子水作为溶剂,按照料:球:水=1:4:2重量比,球磨4小时。
所述步骤2中添加剂MnO2的粒径D50为1.2um、La2O3的粒径D50为0.9um、BaCO3的粒径D50为1.1um。
材料的Qf值为68000GHz,相对介电常数εr为10.6,-40~25℃范围内谐振频率温度系数为+1.0ppm/℃,25~85℃范围内谐振频率温度系数为-1.0ppm/℃。
实施例2
一种微波陶瓷介质材料的制备方法,包括以下步骤:
步骤1:Mg2SiO4主晶相粉料合成:
以粒径D50和纯度分别为2um、99%的氧化镁,1.5um、99.5%的二氧化硅,1.8um、99.5%的氧化锌为起始原料,按摩尔比Mg:Si=2:l进行氧化镁和二氧化硅的配料,按微波陶瓷介质材料总质量的1%添加ZnO;原料经球磨混合均匀后在1140℃下保温4小时,随炉冷却得到含有ZnO的Mg2SiO4 主晶相粉料;
步骤 2: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6]预烧料混合:
将步骤1所得的Mg2SiO4主晶相粉料,与粒径D50和纯度分别为1.5um、99.9%的氧化锆,2.0um、99.5%二氧化钛,1.8um、99%的氧化锌,1.5um、99.9%的五氧化二铌混合,混合时控制配比: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6],其中x=0.55,y=0.79;按微波陶瓷介质材料总质量比的0.2%掺入MnO2、0.8%掺入La2O3、0.8%掺入BaCO3为添加剂,然后将混合粉料进行第二次球磨,球磨浆料在100℃下烘干并过40目筛,最后混合粉料在1040℃温度下保温3小时,得到预烧料,并进行第三次球磨,球磨浆料在100℃下烘干并过40目筛;
步骤3:造粒、成型:
按微波陶瓷介质材料总质量的16%向步骤2所得预烧料中添加质量浓度为8%的聚乙烯醇水溶液造粒,造粒尺寸控制在60~250目,并在11MPa下压制成生坯;
步骤4 :烧结:
将步骤3所得生坯,在1270℃温度和还原气氛下保温4小时,得到最终的微波陶瓷介质材料。
所述步骤1和步骤2中球磨工序的工艺为:以二氧化锆球为球磨介质、蒸馏水/去离子水作为溶剂,按照料:球:水=1:4:3重量比,球磨5小时。
所述步骤2中添加剂MnO2的粒径D50为1.2um、La2O3的粒径D50为0.9um、BaCO3的粒径D50为1.1um。
材料的Qf值为70000GHz,相对介电常数εr为11,-40~25℃范围内谐振频率温度系数为+3.2ppm/℃,25~85℃范围内谐振频率温度系数为-3.5ppm/℃。
实施例3
一种微波陶瓷介质材料的制备方法,包括以下步骤:
步骤1:Mg2SiO4主晶相粉料合成:
以粒径D50和纯度分别为2um、99%的氧化镁,1.5um、99.5%的二氧化硅,1.8um、99.5%的氧化锌为起始原料,按摩尔比Mg:Si=2:l进行氧化镁和二氧化硅的配料,按微波陶瓷介质材料总质量的1%添加ZnO;原料经球磨混合均匀后在1160℃下保温3小时,随炉冷却得到含有ZnO的Mg2SiO4 主晶相粉料;
步骤 2: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6]预烧料混合:
将步骤1所得的Mg2SiO4主晶相粉料,与粒径D50和纯度分别为1.5um、99.9%的氧化锆,2.0um、99.5%二氧化钛,1.8um、99%的氧化锌,1.5um、99.9%的五氧化二铌混合,混合时控制配比: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6],其中x=0.6,y=0.8;按微波陶瓷介质材料总质量比的0.2%掺入MnO2、1.0%掺入La2O3、0.7%掺入BaCO3为添加剂,然后将混合粉料进行第二次球磨,球磨浆料在100℃下烘干并过40目筛,最后混合粉料在1060℃温度下保温4小时,得到预烧料,并进行第三次球磨,球磨浆料在100℃下烘干并过40目筛;
步骤3:造粒、成型:
按微波陶瓷介质材料总质量的17%向步骤2所得预烧料中添加质量浓度为8%的聚乙烯醇水溶液造粒,造粒尺寸控制在60~250目,并在12MPa下压制成生坯;
步骤4 :烧结:
将步骤3所得生坯,在1280℃温度和还原气氛下保温3小时,得到最终的微波陶瓷介质材料。
所述步骤1和步骤2中球磨工序的工艺为:以二氧化锆球为球磨介质、蒸馏水/去离子水作为溶剂,按照料:球:水=1:4:4重量比,球磨6小时。
所述步骤2中添加剂MnO2的粒径D50为1.2um、La2O3的粒径D50为0.9um、BaCO3的粒径D50为1.1um。
材料的Qf值为72000GHz,相对介电常数εr为12.5,-40~25℃范围内谐振频率温度系数为+5.2ppm/℃,25~85℃范围内谐振频率温度系数为-5.8ppm/℃。
实施例4
一种微波陶瓷介质材料的制备方法,包括以下步骤:
步骤1:Mg2SiO4主晶相粉料合成:
以粒径D50和纯度分别为2um、99%的氧化镁,1.5um、99.5%的二氧化硅,1.8um、99.5%的氧化锌为起始原料,按摩尔比Mg:Si=2:l进行氧化镁和二氧化硅的配料,按微波陶瓷介质材料总质量的1%添加ZnO;原料经球磨混合均匀后在1180℃下保温4小时,随炉冷却得到含有ZnO的Mg2SiO4 主晶相粉料;
步骤 2: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6]预烧料混合:
将步骤1所得的Mg2SiO4主晶相粉料,与粒径D50和纯度分别为1.5um、99.9%的氧化锆,2.0um、99.5%二氧化钛,1.8um、99%的氧化锌,1.5um、99.9%的五氧化二铌混合,混合时控制配比: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6],其中x=0.65,y=0.8;按微波陶瓷介质材料总质量比的0.2%掺入MnO2、1.2%掺入La2O3、0.6%掺入BaCO3为添加剂,然后将混合粉料进行第二次球磨,球磨浆料在100℃下烘干并过40目筛,最后混合粉料在1080℃温度下保温2小时,得到预烧料,并进行第三次球磨,球磨浆料在100℃下烘干并过40目筛;
步骤3:造粒、成型:
按微波陶瓷介质材料总质量的18%向步骤2所得预烧料中添加质量浓度为8%的聚乙烯醇水溶液造粒,造粒尺寸控制在60~250目,并在13MPa下压制成生坯;
步骤4 :烧结:
将步骤3所得生坯,在1300℃温度和还原气氛下保温4小时,得到最终的微波陶瓷介质材料。
所述步骤1和步骤2中球磨工序的工艺为:以二氧化锆球为球磨介质、蒸馏水/去离子水作为溶剂,按照料:球:水=1:4:5重量比,球磨6小时。
所述步骤2中添加剂MnO2的粒径D50为1.2um、La2O3的粒径D50为0.9um、BaCO3的粒径D50为1.1um。
材料的Qf值为74000GHz,相对介电常数εr为14.6,-40~25℃范围内谐振频率温度系数为+6.2ppm/℃,25~85℃范围内谐振频率温度系数为-6.0ppm/℃。
实施例5
一种微波陶瓷介质材料的制备方法,包括以下步骤:
步骤1:Mg2SiO4主晶相粉料合成:
以粒径D50和纯度分别为2um、99%的氧化镁,1.5um、99.5%的二氧化硅,1.8um、99.5%的氧化锌为起始原料,按摩尔比Mg:Si=2:l进行氧化镁和二氧化硅的配料,按微波陶瓷介质材料总质量的1%添加ZnO;原料经球磨混合均匀后在1200℃下保温4小时,随炉冷却得到含有ZnO的Mg2SiO4 主晶相粉料;
步骤 2: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6]预烧料混合:
将步骤1所得的Mg2SiO4主晶相粉料,与粒径D50和纯度分别为1.5um、99.9%的氧化锆,2.0um、99.5%二氧化钛,1.8um、99%的氧化锌,1.5um、99.9%的五氧化二铌混合,混合时控制配比: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6],其中x=0.7,y=0.82;按微波陶瓷介质材料总质量比的0.2%掺入MnO2、0.8%掺入La2O3、0.5%掺入BaCO3为添加剂,然后将混合粉料进行第二次球磨,球磨浆料在100℃下烘干并过40目筛,最后混合粉料在1070℃温度下保温4小时,得到预烧料,并进行第三次球磨,球磨浆料在100℃下烘干并过40目筛;
步骤3:造粒、成型:
按微波陶瓷介质材料总质量的17%向步骤2所得预烧料中添加质量浓度为8%的聚乙烯醇水溶液造粒,造粒尺寸控制在60~250目,并在15MPa下压制成生坯;
步骤4 :烧结:
将步骤3所得生坯,在1320℃温度和还原气氛下保温4小时,得到最终的微波陶瓷介质材料。
所述步骤1和步骤2中球磨工序的工艺为:以二氧化锆球为球磨介质、蒸馏水/去离子水作为溶剂,按照料:球:水=1:4: 5重量比,球磨6小时。
所述步骤2中添加剂MnO2的粒径D50为1.2um、La2O3的粒径D50为0.9um、BaCO3的粒径D50为1.1um。
材料的Qf值为76000GHz,相对介电常数εr为15.9,-40~25℃范围内谐振频率温度系数为+6.8ppm/℃,25~85℃范围内谐振频率温度系数为-6.9ppm/℃。
上述谐振频率温度系数τƒ是根据Hakki-Coleman介质谐振法, 用网络分析仪(Aglient technologies E5071C)由(ft1-f0)/f0(t1-t0)计算所得,其中(25-85℃)t0=25℃、t1=85℃;(-40-25℃)t0=25℃、t1=-40℃覆盖全温度范围。

Claims (4)

1.一种微波陶瓷介质材料,其特征在于:所述微波陶瓷介质材料的主晶相结构为xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6],其中0.5≤x≤0.7,0.78≤y≤0.82;其Qf值为68000~78000GHz,相对介电常数εr为10.6~16.6,谐振频率温度系数在±7ppm/℃以内。
2.根据权利要求1所述微波陶瓷介质材料的制备方法,其特征在于包括以下步骤:
步骤1:Mg2SiO4主晶相粉料合成:
以粒径D50和纯度分别为2μm 、99%的氧化镁,1.5μm 、99.5%的二氧化硅,1.8μm 、99.5%的氧化锌为起始原料,按摩尔比Mg:Si=2:l进行氧化镁和二氧化硅的配料,按微波陶瓷介质材料总质量的1%添加ZnO;原料经球磨混合均匀后在1120~1200℃下保温3~4小时,随炉冷却得到含有ZnO的Mg2SiO4 主晶相粉料;
步骤 2: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6]预烧料混合:
将步骤1所得的Mg2SiO4主晶相粉料,与粒径D50和纯度分别为1.5μm 、99.9%的氧化锆,2.0μm 、99.5%二氧化钛,1.8μm 、99%的氧化锌,1.5μm 、99.9%的五氧化二铌混合,混合时控制配比: xMg2SiO4-(1-x)[yZrTi2O6-(1-y)ZnNb2O6],其中0.5≤x≤0.7,0.78≤y≤0.82;按微波陶瓷介质材料总质量比的0.2%掺入MnO2、0.5~1.3%掺入La2O3、0.5~1.3%掺入BaCO3为添加剂,然后将混合粉料进行第二次球磨,球磨浆料在100℃下烘干并过40目筛,最后混合粉料在1020~1080℃温度下保温2~4小时,得到预烧料,并进行第三次球磨,球磨浆料在100℃下烘干并过40目筛;
步骤3:造粒、成型:
按微波陶瓷介质材料总质量的15~18%向步骤2所得预烧料中添加质量浓度为8%的聚乙烯醇水溶液造粒,造粒尺寸控制在60~250目,并在10~15MPa下压制成生坯;
步骤4 :烧结:
将步骤3所得生坯,在1260~1320℃温度和还原气氛下保温3~4小时,得到最终的微波陶瓷介质材料。
3.根据权利要求2所述的制备方法,其特征在于:所述步骤1和步骤2中球磨工序的工艺为:以二氧化锆球为球磨介质、蒸馏水/去离子水作为溶剂,按照料:球:水=1:4:2~5重量比,球磨4~6小时。
4.根据权利要求2所述的制备方法,其特征在于:所述步骤2中添加剂MnO2的粒径D50为1.2μm 、La2O3的粒径D50为0.9μm 、BaCO3的粒径D50为1.1μm 。
CN202110433692.9A 2021-04-22 2021-04-22 一种微波陶瓷介质材料及其制备方法 Expired - Fee Related CN113105226B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110433692.9A CN113105226B (zh) 2021-04-22 2021-04-22 一种微波陶瓷介质材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110433692.9A CN113105226B (zh) 2021-04-22 2021-04-22 一种微波陶瓷介质材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113105226A CN113105226A (zh) 2021-07-13
CN113105226B true CN113105226B (zh) 2022-09-13

Family

ID=76719286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110433692.9A Expired - Fee Related CN113105226B (zh) 2021-04-22 2021-04-22 一种微波陶瓷介质材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113105226B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896531B (zh) * 2021-11-09 2023-02-28 济南大学 一种温度稳定的低损耗复合微波介质陶瓷及其制备方法
CN115141007A (zh) * 2022-07-26 2022-10-04 冷水江市汇鑫电子陶瓷有限公司 一种复合特种陶瓷材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254950A (ja) * 2007-04-03 2008-10-23 Yokowo Co Ltd 誘電体磁器組成物
CN101429015A (zh) * 2008-12-18 2009-05-13 杭州电子科技大学 一种Mg2SiO4低介电常数微波介质陶瓷及其制备方法
US8575052B2 (en) * 2010-06-30 2013-11-05 Tdk Corporation Dielectric ceramic, method for producing dielectric ceramic, and electronic component
CN102731092B (zh) * 2012-07-03 2013-09-25 电子科技大学 一种Zr-Ti基微波介质陶瓷材料及其制备方法
JP2014144893A (ja) * 2013-01-29 2014-08-14 Maruwa Co Ltd 誘電体磁器及びその製造方法
CN103435946A (zh) * 2013-08-27 2013-12-11 电子科技大学 一种聚四氟乙烯复合微波陶瓷基板的制备方法
CN107867836A (zh) * 2016-09-23 2018-04-03 卢路平 一种Mg2SiO4微波介质陶瓷的制备方法
CN112028621A (zh) * 2020-09-08 2020-12-04 中物院成都科学技术发展中心 一种中介电常数的滤波器用介质陶瓷及其制备方法

Also Published As

Publication number Publication date
CN113105226A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN113105226B (zh) 一种微波陶瓷介质材料及其制备方法
CN103232235B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN111302788B (zh) 一种具有高Qf值低介电常数的陶瓷材料及其制备方法
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN113149645B (zh) 一种低温烧结温度稳定型复合微波介质陶瓷及其制备方法
CN108147809B (zh) 中低温烧结钡-钛系微波介质材料及制备方法
CN108358633B (zh) 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN111470864B (zh) 一种硅基温度稳定型微波介质陶瓷材料及其制备方法
CN105254293A (zh) 一种微波介质陶瓷材料及其制备方法
CN113087525B (zh) 一种钼酸盐基复合微波介质陶瓷材料及其制备方法
CN105198423A (zh) Sr-La-Al基微波介质陶瓷材料及其制备方法
CN113336539A (zh) 微波介质陶瓷材料、制备方法及应用
CN108439968A (zh) 一种低介电常数和超低损耗的微波介质陶瓷及其制备方法
CN110734284A (zh) 一种中介高q微波介质陶瓷材料及其制备方法
CN113149628B (zh) 一种可提高抗还原能力的微波陶瓷介质材料及其制备方法
CN106587991B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN112851333B (zh) 一种高q值微波介质陶瓷材料及其制备方法
CN104692792A (zh) 低温烧结温度稳定型锡酸盐微波介质陶瓷材料
CN109650886B (zh) 一种Ba-Mg-Ta系LTCC材料及其制备方法
CN112939599A (zh) 铌钽锆镁微波介质陶瓷材料及其制备方法
CN112250441B (zh) 一种低烧结温度介电性能可调的微波介质陶瓷
CN113896531B (zh) 一种温度稳定的低损耗复合微波介质陶瓷及其制备方法
CN103482971B (zh) 一种微波介质陶瓷及制备方法
CN115872740B (zh) 一种超低温烧结的低介微波介质陶瓷及其制备方法
CN116789448B (zh) 一种中温烧结高q值微波介质材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220913