CN112940416A - 一种用于高频高速环境的微波复合介质基板及其制备方法 - Google Patents

一种用于高频高速环境的微波复合介质基板及其制备方法 Download PDF

Info

Publication number
CN112940416A
CN112940416A CN202110172435.4A CN202110172435A CN112940416A CN 112940416 A CN112940416 A CN 112940416A CN 202110172435 A CN202110172435 A CN 202110172435A CN 112940416 A CN112940416 A CN 112940416A
Authority
CN
China
Prior art keywords
silicon dioxide
preparation
dielectric
dielectric substrate
nanospheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110172435.4A
Other languages
English (en)
Other versions
CN112940416B (zh
Inventor
陈文�
周静
余媛颖
沈杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanya Science and Education Innovation Park of Wuhan University of Technology
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202110172435.4A priority Critical patent/CN112940416B/zh
Publication of CN112940416A publication Critical patent/CN112940416A/zh
Application granted granted Critical
Publication of CN112940416B publication Critical patent/CN112940416B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1018Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using only vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及一种用于高频高速环境的微波复合介质基板及其制备方法,属于微波介电领域。本发明用纳米实心二氧化硅陶瓷粉和正硅酸四乙酯通过水热法构筑成多孔结构的二氧化硅陶瓷粉,相较于直接用正硅酸四乙酯作为单一硅源生成的介孔二氧化硅产率更高,且反应条件相对简易,有望批量生产;本发明将多孔二氧化硅陶瓷纳米球用偶联剂改性后与聚四氟乙烯混合,通过压延成型和真空热压法使改性后的二氧化硅陶瓷纳米球与聚合物基体混合均匀,使板材致密,具有良好的介电性能与机械强度,制备得到低介电常数、低热膨胀系数的微波复合介质基板。

Description

一种用于高频高速环境的微波复合介质基板及其制备方法
技术领域
本发明涉及微波介电领域,具体涉及微波复合介质基板制备技术,特别涉及一种用于高频高速环境的微波复合介质基板的制备方法,应用于电路板尤其是5G高频电路板的制造。
背景技术
随着互联网5G时代的来临,人们对信息处理和通信的需求与日俱增,设备的小型化、高集成度和高频的发展对功能信息材料提出了更高的要求。根据应用环境需求,高频高速基板材料需要具有优异的介电性能,即低介电常数和低介电损耗。同时,为避免工作环境下温度过高引起的尺寸变化和热失效作用,高频高速基板材料同时需要较低的热膨胀系数和良好的热稳定性。
聚四氟乙烯(PTFE)因其具有较低的介电常数和介电损耗、频率温度稳定性高等优势被作为高频介质板中最重要的材料,但其较低的导热率和较高的热膨胀系数严重限制了它的实际应用。
CN102260378B提供一种复合材料、用其制作的高频电路基板及其制作方法,所述复合材料,其组成物包括:(1)具有低介电损耗的氟聚合物分散乳液;(2)多孔隙的膨胀聚四氟乙烯薄膜(ePTFE薄膜);及(3)粉末填料。通过采用多孔隙的ePTFE薄膜为载体材料,提供预浸料及高频电路基板介电常数在X、Y方向各向同性,能够降低高频电路基板的介电常数和介质损耗角正切。但是并没有对热膨胀系数进行改进。
CN106604536B公开了一种聚四氟乙烯复合微波介质材料,由聚四氟乙烯、微波介质陶瓷粉填料、玻璃纤维粉作为原料制得,其介电常数较高,为4.6~7.3。
虽然陶瓷材料的引入,使基板具有了低热膨胀系数,但介电常数仍然偏高。为了进一步降低介电常数,也有研究者通过在二氧化硅纳米球中引入空气的方式,由于空气的介电常数最小为1,所以采用空心和介孔二氧化硅微球可以适当的引入一定量的空气有效的降低介电常数。
CN103086745B公开了一种复合陶瓷基板及其制备方法,其通过将正硅酸四乙酯作为硅源,在造孔剂的作用下制备所需介电常数的多孔复合陶瓷聚四氟乙烯基板。
然而,用正硅酸四乙酯作为硅源采用
Figure BDA0002939204730000021
法制备空心/介孔二氧化硅微球的产率较低,反应条件较为苛刻,不适合复合介质基板的生产;而直接购买空心/介孔二氧化硅微球存在成本过高难以批量生产的问题。
发明内容
鉴于现有技术存在的问题,本发明的目的之一在于提供一种用于高频高速环境的微波复合介质基板,所述基板包括多孔二氧化硅陶瓷和聚四氟乙烯,具备低热膨胀系数、低介电常数的特点。
本发明的目的之二在于提供一种用于高频高速环境的微波复合介质基板的制备方法,所述方法制备条件简单、成本较低、产率较高,适用于所述基板的批量生产。
本发明采用纳米实心二氧化硅粉作为核心进行适当的结构设计,构筑出多孔形貌的二氧化硅壳层;采用偶联剂改性低介多孔二氧化硅陶瓷纳米球表面的羟基,使其能与PTFE混合的更加均匀,不团聚,不沉积,可实现本体系中PTFE树脂、二氧化硅陶瓷纳米球均匀混合;采用压延混炼的方式,均匀性好,可操作性强。
一种用于高频高速环境的微波复合介质基板制备方法,包括如下步骤:
(1)结构设计:制备实心硅球分散液,采用水热法,在碱性环境中,通过调控正硅酸四乙酯的水解程度,以表面活性剂作为介孔模板剂,以实心纳米二氧化硅纳米球为核,正硅酸四乙酯在其表面形成多孔壳层,制备成低介多孔二氧化硅陶瓷纳米球。
(2)表面改性:按照比例将偶联剂加入到甲苯溶液中,混合均匀后待用;再将一定量的低介多孔二氧化硅陶瓷纳米球分散在甲苯中,油浴加热到一定温度,缓慢往里面滴加偶联剂混合溶液,继续搅拌一定时间,离心洗涤后,70℃干燥得到改性二氧化硅陶瓷纳米球。
(3)有机无机混合:称取改性二氧化硅陶瓷纳米球,加入到一定比例的PTFE树脂中,用混料机将改性二氧化硅陶瓷纳米球与PTFE树脂充分搅拌至混合均匀。
(4)压延成型:采用压延混炼的方式成型,经过两次压延得到一定厚度的复合材料预压片。
(5)热压烧结:采用叠层的方式进行真空热压烧结,叠层是将几片复合材料预压片叠好后上下两面分别加上两层铜箔,叠好的基片板材放置于两块钢板之间,置于热压机中,先抽真空随后进行热压烧结,冷却至室温后即可得到微波复合介质基板。
优选地,步骤(1)所述水热法中碱性环境优选为氨水,调节pH至10~12,更优选为11~12。
优选地,步骤(1)所述水热法中正硅酸四乙酯的加入方式优选为分两次逐滴加入实心硅球分散液,更优选为正硅酸四乙酯分散在乙醇中;所述水热法中表面活性剂优选为十六烷基三甲基溴化铵;所述高温处理的温度优选为500~600℃,时间优选为1~4h。
优选地,步骤(1)所述低介多孔二氧化硅陶瓷纳米球的平均粒径为50~200nm。
优选地,步骤(2)所述偶联剂选自3-(2,3-环氧丙氧)丙基三甲氧基硅烷、倍半硅氧烷、十二氟庚基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷中的至少一种。
优选地,步骤(2)所述偶联剂的用量为1~10wt%。
优选地,步骤(3)中所述混合时间为1~5min。
优选地,步骤(3)所述有机无机共混物中改性二氧化硅陶瓷纳米球的含量为10~60vol%,PTFE的固含量为50~80wt%。
优选地,步骤(4)所述的有机无机混合物成型优选为压延混炼的工艺,所述压延成型优选为两次压延;更优选为用三辊压延机反复压延得到一定厚度的复合材料预压片。
优选地,步骤(5)真空热压烧结中,所述热压温度优选为370~390℃,优选为385℃;所述热压压力优选为45~55MPa;所述热压时间为~8.5h,优选为8h。
进一步地,本发明还提供了根据上述制备方法制得的用于高频高速环境的低介微波复合介质基板,本发明所述微波复合介质基板的热膨胀系数小于60ppm/℃、低介电常数为2~2.3),其包括多孔二氧化硅陶瓷和聚四氟乙烯,多孔二氧化硅陶瓷包含一定量的空气,且能在不增加介电损耗的前提下有效的降低介电常数,是一种很有潜力的低介复合介质基板材料。
本发明的有益效果:
(1)本发明采用实心二氧化硅陶瓷纳米球与正硅酸四乙酯采用水热法,在碱性环境中,通过调控正硅酸四乙酯的水解程度,以纳米二氧化硅陶瓷纳米球为核,正硅酸四乙酯在其表面形成多孔壳层,由此制备的低介多孔二氧化硅陶瓷纳米球由于空气的引入能在不增加介电损耗的前提下有效的降低介电常数;
(2)本发明采用改性二氧化硅陶瓷纳米球与PTFE混合,不仅保持了较低的介电常数,且多孔层与PTFE的良好界面结合使得复合材料兼具了较低的热膨胀系数;
(3)本发明采用偶联剂改性低介多孔二氧化硅陶瓷纳米球表面的羟基,使其能与PTFE混合的更加均匀,不团聚,不沉积,可实现本体系中PTFE树脂、二氧化硅陶瓷纳米球均匀混合;
(4)本发明采用混炼压延的方式,均匀性好,可满足连续化生产要求;
(5)本发明提供一种用于高频高速环境的微波复合介质基板的制备方法,所述方法制备条件简单、成本较低、产率较高,适用于所述基板的批量生产。
附图说明
图1是实施例1中正硅酸四乙酯表面处理后的纳米二氧化硅粉体透射图。图2是对比例1中的纳米二氧化硅粉体透射图。
图3是实施例1中纳米二氧化硅粉体粒径分布图,(a)、(b)分别是正硅酸四乙酯处理前、后的粒径分布图。
图4是实施例1中微波复合介质基板断面SEM图。
图5是对比例1中微波复合介质基板断面SEM图。
具体实施方式
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
实施例1
一种用于高频高速环境的微波复合介质基板,其制备方法如下:
(1)将纳米二氧化硅粉分散在去离子水中,使用氨水调节pH至11并搅拌,在搅拌过程中加入表面活性剂,表面活性剂为十六烷基三甲基溴化铵,室温下搅拌1h,此时将正硅酸四乙酯充分分散在乙醇中,分两次逐滴加入到上述的溶液中,边搅拌边滴加,待正硅酸四乙酯滴加完成后继续反应5h,去离子水和乙醇离心洗涤数次,白色沉淀于70℃烘8h后研磨待用;
(2)将上述白色粉末于坩埚中,用马弗炉进行高温处理去除模板剂,高温处理的反应温度为550℃,时间为3h,即可得到低介多孔二氧化硅陶瓷纳米球,平均粒径为100nm;
(3)将偶联剂加入到甲苯中混合均匀得到5wt%偶联剂混合液待用,然后将上述低介多孔二氧化硅陶瓷纳米球分散在甲苯中,油浴加热到一定温度,缓慢往里面滴加偶联剂混合溶液,继续搅拌6h,离心洗涤后,70℃干燥得到改性二氧化硅陶瓷纳米球;
(4)将上述改性二氧化硅陶瓷纳米球与少量去离子水成比例混合,并加入到球磨罐中,在300r/min的转速下球磨5h,将混合浆料取出待用;
(5)将上述混合好的浆料加入到固含量为60wt%的PTFE树脂中,用双中心混料机将混合浆料与PTFE树脂充分搅拌至混合均匀,混合时间为2min,得到二氧化硅含量为30vol%的有机无机共混物;
(6)将上述有机无机共混物采用混炼压延的方式成型,使用三辊压延机经过两次压延得到一定厚度的复合材料预压片;
(7)将上述复合材料预压片采用叠层的方式进行真空热压烧结,叠层是将几片复合材料预压片叠好后上下两面分别加上两层铜箔,叠好的基片板材放置于两块钢板之间,置于热压机中,先抽真空随后进行热压烧结,冷却至室温后得到微波复合介质基板,所述真空热压的压强为50MPa,时间为8h,温度为380℃。
对比例1
一种用于高频高速环境的微波复合介质基板,其制备方法如下:
(1)将纳米二氧化硅粉作为原料,以甲苯为分散液,二氧化硅粉均匀的分散在甲苯溶液中;
(2)将偶联剂加入到甲苯中混合均匀得到5wt%偶联剂混合液待用,然后将上述二氧化硅陶瓷微球分散液移于三口圆底烧瓶中并置于油浴锅内,油浴加热到一定温度,缓慢往里面滴加偶联剂混合溶液,继续搅拌6h,离心洗涤后,70℃干燥得到改性后的二氧化硅陶瓷微球;
(3)将上述改性后的二氧化硅陶瓷粉与少量去离子水成比例混合,并加入到球磨罐中,在300r/min的转速下球磨5h,将混合浆料取出待用;
(4)将上述混合好的浆料加入到固含量为60wt%的PTFE树脂中,用混料机将混合浆料与PTFE树脂充分搅拌至混合均匀,混合时间为2min,得到二氧化硅含量为30vol%的有机无机共混物;
(5)将上述有机无机共混物采用压延混炼的方式成型,使用三辊压延机经过两次压延得到一定厚度的复合材料预压片;
(6)将上述复合材料预压片采用叠层的方式进行真空热压烧结,叠层是将几片复合材料预压片叠好后上下两面分别加上两层铜箔,叠好的基片板材放置于两块钢板之间,置于热压机中,先抽真空随后进行热压烧结,冷却至室温后得到微波复合介质基板,所述真空热压的压强为50MPa,时间为8.5h,温度为380℃。
(一)透射电镜测试
将实施例1的正硅酸四乙酯表面处理后的纳米二氧化硅粉体、对比例1的纳米二氧化硅粉体分别进行透射电镜测试,分别得到图1、图2。
对比图1、图2可知,正硅酸四乙酯表面处理后的纳米二氧化硅粉体呈核壳结构,且外壳为多孔结构。
(二)粒径分布测试
将实施例1中正硅酸四乙酯表面处理前、后的纳米二氧化硅粉体分别进行粒径分布测试,分别得到图3(a)、图3(b)。
对比图3(a)、图3(b)可知,正硅酸四乙酯表面处理后的纳米二氧化硅粉体粒径分布范围更小。
(三)扫描电镜测试
将实施例1、对比例1所制得的微波复合介质基板的断面进行扫描电镜分析,分别得到图4、图5。
对比图4、图5可知,实施例1中多孔二氧化硅与PTFE之间的界面结合更好。
(四)介电常数、热膨胀系数测试
将实施例1、对比例1所制得的微波复合介质基板分别进行介电常数和热膨胀系数测试,得到下表数据:
测试项目 介电常数 热膨胀系数/(ppm/℃)
实施例1 2.2 59
对比例1 2.6 70
由上表可知,本发明所述微波微波复合介质基板具有低热膨胀系数、低介电常数的特点,热膨胀系数控制在60ppm/℃范围内,介电常数在2~2.3范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,但本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种用于高频高速环境的微波复合介质基板的制备方法,包括以下步骤:
(1)制备实心硅球分散液,向其中加入正硅酸四乙酯和表面活性剂,以正硅酸四乙酯为硅源,以表面活性剂作为介孔模板剂,通过水热法在碱性环境中于实心硅球外围形成介孔硅层,得到低介多孔二氧化硅陶瓷纳米球;
(2)将所述低介多孔二氧化硅陶瓷纳米球与偶联剂混合,得到改性二氧化硅陶瓷纳米球;
(3)将所述改性二氧化硅陶瓷纳米球与聚四氟乙烯乳液混合,得到有机无机共混物;
(4)将所述有机无机共混物采用压延混炼工艺压延成型,得到复合材料预压片;
(5)将所述复合材料预压片真空热压烧结,得到微波复合介质基板。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中所述碱性环境为使用氨水调节至pH为10~12;
所述表面活性剂为十六烷基三甲基溴化铵;
所述正硅酸四乙酯通过分散在乙醇中后分两次逐滴加入实心硅球分散液。
3.根据权利要求2所述的制备方法,其特征在于,所述步骤(1)中反应结束后,使用去离子水和乙醇离心洗涤,干燥研磨后于马弗炉中进行高温处理,温度为500~600℃,时间为1~4h。
4.根据权利要求3所述的制备方法,其特征在于,所述步骤(1)中所述低介多孔二氧化硅陶瓷纳米球的平均粒径为50~200nm。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中的偶联剂为3-(2,3-环氧丙氧)丙基三甲氧基硅烷、倍半硅氧烷、十二氟庚基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷中的至少一种。
6.根据权利要求5所述的制备方法,其特征在于,所述步骤(2)中所述偶联剂的用量为1~10wt%。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中所述混合时间为1~5min,所述有机无机共混物中改性二氧化硅陶瓷纳米球的含量为10~60vol%,所述聚四氟乙烯乳液的固含量为50~80wt%。
8.根据权利要求1所述的制备方法,其特征在于,所述步骤(5)中真空热压的压强为45~55MPa,热压时间不超过8.5h,热压温度为370~390℃。
9.一种用于高频高速环境的微波复合介质基板,其特征在于,所述微波复合介质基板是根据权利要求1~8中任一项所述方法制备获得。
10.根据权利要求9所述的微波复合介质基板,其特征在于,所述微波复合介质基板的热膨胀系数小于60ppm/℃,介电常数为2~2.3。
CN202110172435.4A 2021-02-08 2021-02-08 一种用于高频高速环境的微波复合介质基板及其制备方法 Active CN112940416B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110172435.4A CN112940416B (zh) 2021-02-08 2021-02-08 一种用于高频高速环境的微波复合介质基板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110172435.4A CN112940416B (zh) 2021-02-08 2021-02-08 一种用于高频高速环境的微波复合介质基板及其制备方法

Publications (2)

Publication Number Publication Date
CN112940416A true CN112940416A (zh) 2021-06-11
CN112940416B CN112940416B (zh) 2022-08-09

Family

ID=76244191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110172435.4A Active CN112940416B (zh) 2021-02-08 2021-02-08 一种用于高频高速环境的微波复合介质基板及其制备方法

Country Status (1)

Country Link
CN (1) CN112940416B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276635A (zh) * 2021-12-13 2022-04-05 西南科技大学 一种制备高致密度铝/聚四氟乙烯防撞复合材料的方法
CN114335500A (zh) * 2021-12-29 2022-04-12 湖北融通高科先进材料有限公司 一种纳米多孔结构SiO2包覆的三元正极材料及其制备方法和应用
CN114656804A (zh) * 2022-03-03 2022-06-24 江苏圣天新材料有限公司 一种覆铜板用软性复合硅微粉的制备方法
CN114835987A (zh) * 2022-04-12 2022-08-02 武汉理工大学 一种微米级表面多孔型SiO2基微波复合介质基板及其制备方法
CN115612315A (zh) * 2022-11-30 2023-01-17 江苏联瑞新材料股份有限公司 一种表面改性球形二氧化硅微粉的制备方法
CN115742523A (zh) * 2022-10-28 2023-03-07 山东森荣新材料股份有限公司 超低介电微波复合基板材料的制造工艺
CN116284914A (zh) * 2023-05-22 2023-06-23 山东森荣新材料股份有限公司 一种复合介质基片的制备方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272239A (zh) * 2008-11-26 2011-12-07 爱尔兰国家大学科克学院 制备二氧化硅微粒的方法
CN106700132A (zh) * 2016-12-20 2017-05-24 广东生益科技股份有限公司 一种二氧化硅浆料组合物及其制备方法和应用
CN107474312A (zh) * 2017-06-12 2017-12-15 电子科技大学 陶瓷填充聚四氟乙烯微波复合介质基板的制备方法
CN108017861A (zh) * 2017-10-09 2018-05-11 南通洪明电工科技有限公司 一种二氧化硅包覆钛酸铜钙纳米纤维的聚合物基介电复合材料及其制备方法
CN108134052A (zh) * 2016-12-01 2018-06-08 内蒙古欣源石墨烯科技有限公司 一种动力电池所用高容量硅碳负极材料及其制备方法
CN109370567A (zh) * 2018-12-07 2019-02-22 西南政法大学 一种硅球碳点粉末的制备方法及其在潜手印识别中的应用
CN111114069A (zh) * 2019-12-23 2020-05-08 武汉理工大学 一种陶瓷/聚四氟乙烯复合介质基板及制备方法
CN111546718A (zh) * 2020-04-15 2020-08-18 中国电子科技集团公司第三十八研究所 一种微波复合介质板的制备方法及制得的微波复合介质板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272239A (zh) * 2008-11-26 2011-12-07 爱尔兰国家大学科克学院 制备二氧化硅微粒的方法
CN108134052A (zh) * 2016-12-01 2018-06-08 内蒙古欣源石墨烯科技有限公司 一种动力电池所用高容量硅碳负极材料及其制备方法
CN106700132A (zh) * 2016-12-20 2017-05-24 广东生益科技股份有限公司 一种二氧化硅浆料组合物及其制备方法和应用
CN107474312A (zh) * 2017-06-12 2017-12-15 电子科技大学 陶瓷填充聚四氟乙烯微波复合介质基板的制备方法
CN108017861A (zh) * 2017-10-09 2018-05-11 南通洪明电工科技有限公司 一种二氧化硅包覆钛酸铜钙纳米纤维的聚合物基介电复合材料及其制备方法
CN109370567A (zh) * 2018-12-07 2019-02-22 西南政法大学 一种硅球碳点粉末的制备方法及其在潜手印识别中的应用
CN111114069A (zh) * 2019-12-23 2020-05-08 武汉理工大学 一种陶瓷/聚四氟乙烯复合介质基板及制备方法
CN111546718A (zh) * 2020-04-15 2020-08-18 中国电子科技集团公司第三十八研究所 一种微波复合介质板的制备方法及制得的微波复合介质板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU ZHENG ET AL.: ""TEOS surface modification of CLST ceramic particles for PTFE-based composites"", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276635A (zh) * 2021-12-13 2022-04-05 西南科技大学 一种制备高致密度铝/聚四氟乙烯防撞复合材料的方法
CN114335500A (zh) * 2021-12-29 2022-04-12 湖北融通高科先进材料有限公司 一种纳米多孔结构SiO2包覆的三元正极材料及其制备方法和应用
CN114656804A (zh) * 2022-03-03 2022-06-24 江苏圣天新材料有限公司 一种覆铜板用软性复合硅微粉的制备方法
CN114656804B (zh) * 2022-03-03 2022-12-09 江苏圣天新材料有限公司 一种覆铜板用软性复合硅微粉的制备方法
CN114835987A (zh) * 2022-04-12 2022-08-02 武汉理工大学 一种微米级表面多孔型SiO2基微波复合介质基板及其制备方法
CN115742523A (zh) * 2022-10-28 2023-03-07 山东森荣新材料股份有限公司 超低介电微波复合基板材料的制造工艺
CN115742523B (zh) * 2022-10-28 2023-07-07 山东森荣新材料股份有限公司 超低介电微波复合基板材料的制造工艺
CN115612315A (zh) * 2022-11-30 2023-01-17 江苏联瑞新材料股份有限公司 一种表面改性球形二氧化硅微粉的制备方法
CN116284914A (zh) * 2023-05-22 2023-06-23 山东森荣新材料股份有限公司 一种复合介质基片的制备方法及应用
CN116284914B (zh) * 2023-05-22 2023-08-15 山东森荣新材料股份有限公司 一种复合介质基片的制备方法及应用

Also Published As

Publication number Publication date
CN112940416B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN112940416B (zh) 一种用于高频高速环境的微波复合介质基板及其制备方法
CN106751254B (zh) 一种高介电常数覆铜箔微波介质板及其制备方法
CN104193340B (zh) 流延成型法制备用于多层布线基板的AlN生瓷片的方法及制得的AlN生瓷片
CN106113802A (zh) 一种降低z轴热膨胀系数的微波覆铜板的制备方法
WO2022193572A1 (zh) 氮化硼散热膜及其制备方法和应用
CN104098290B (zh) 一种球型陶瓷粉体为填料的微波复合介质基板制备工艺
CN111844951A (zh) 一种高频导热基板及其制备方法
CN108501488A (zh) 一种高频高速覆铜板及其制备方法
CN111546722A (zh) 一种加强型高导热云母带及其制备方法
CN110077088A (zh) 一种复合导热覆铜板的制备方法
CN111154206A (zh) 改性ptfe复合介质材料、制备方法及其用途
CN110606698B (zh) 高均匀性、低热膨胀系数的微波复合介质基板及制备工艺
CN115610044A (zh) 一种低损耗ptfe基微波复合介质基板及制备方法
CN113232383B (zh) 一种ptfe复合介质基板及其制备方法
CN116731456A (zh) 一种低介电常数低损耗的聚四氟乙烯覆铜板的制备方法
CN111799106B (zh) 平面电容的制作方法及制作装置
CN114437479B (zh) 一种高频半固化片、高频覆铜板及其制备方法
Lv et al. Modification of CaO–B2O3–La2O3 glass powder and its application in low-temperature co-fired ceramic substrate
CN112812476B (zh) 一种聚四氟乙烯复合材料及其制备方法与应用
CN115627040A (zh) 一种耐-50℃低温的密封用复合材料、制备方法及传感器
CN115413118A (zh) 一种hdi线路板基板材料及其制备方法
CN114479191A (zh) 一种ptfe基覆铜板用无机填料及其制备方法
CN114656804A (zh) 一种覆铜板用软性复合硅微粉的制备方法
CN114835987B (zh) 一种微米级表面多孔型SiO2基微波复合介质基板及其制备方法
CN113053651A (zh) 一种软磁复合材料的制备方法及软磁复合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240119

Address after: 572024 Building 9, UFIDA Industrial Park, yazhouwan science and Technology City, Yazhou District, Sanya City, Hainan Province

Patentee after: Sanya science and Education Innovation Park Wuhan University of Technology

Address before: 430070 Hubei Province, Wuhan city Hongshan District Luoshi Road No. 122

Patentee before: WUHAN University OF TECHNOLOGY

TR01 Transfer of patent right