WO2022193572A1 - 氮化硼散热膜及其制备方法和应用 - Google Patents

氮化硼散热膜及其制备方法和应用 Download PDF

Info

Publication number
WO2022193572A1
WO2022193572A1 PCT/CN2021/116972 CN2021116972W WO2022193572A1 WO 2022193572 A1 WO2022193572 A1 WO 2022193572A1 CN 2021116972 W CN2021116972 W CN 2021116972W WO 2022193572 A1 WO2022193572 A1 WO 2022193572A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
heat dissipation
film
slurry
dispersion slurry
Prior art date
Application number
PCT/CN2021/116972
Other languages
English (en)
French (fr)
Inventor
丘陵
刘闽苏
成会明
范维仁
丁斯远
Original Assignee
佛山市晟鹏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市晟鹏科技有限公司 filed Critical 佛山市晟鹏科技有限公司
Publication of WO2022193572A1 publication Critical patent/WO2022193572A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2401/00Presence of cellulose
    • C09J2401/006Presence of cellulose in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2427/00Presence of halogenated polymer
    • C09J2427/006Presence of halogenated polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/02Presence of polyamine or polyimide polyamine
    • C09J2479/026Presence of polyamine or polyimide polyamine in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide
    • C09J2479/086Presence of polyamine or polyimide polyimide in the substrate

Definitions

  • the present application relates to the technical field of thermally conductive materials, and in particular, to a boron nitride heat dissipation film and a preparation method and application thereof.
  • Vaporizing film also known as heat dissipation film, is a commonly used heat dissipation material in high-power communication equipment. Vaporizing films are generally made of materials with lower thermal conductivity in a single axis than in other dimensions. Such films generally have higher planar thermal conductivity and lower vertical thermal conductivity. This special heat conduction structure allows the heat flow to spread quickly along the plane, but it is difficult to penetrate the vertical direction of its heat dissipation film.
  • General soaking materials are prepared based on materials with two-dimensional layered structures, among which graphite is one of the most widely used materials. Graphite has excellent properties such as extremely high planar thermal conductivity, low density, and low thermal expansion coefficient.
  • Graphite heat dissipation films are widely used in various electronic devices with high heat dissipation requirements.
  • graphite has excellent electrical conductivity and can only be used in insulating and encapsulated components in electronic devices.
  • it may cause some other problems in electronic devices.
  • the die-cut graphite heat dissipation film may generate a small amount of debris, which may potentially cause short circuits in electronic devices.
  • the graphite heat dissipation film may generate static electricity. Thereby destroying some of the more fragile electronic components.
  • graphite heat dissipation films also have many problems.
  • graphite will hinder the transmission of communication signals, so it can only be used in the part of communication equipment that does not affect the radio frequency antenna. Furthermore, graphite has a high dielectric coefficient, and a high dielectric coefficient will lead to a higher signal delay, which is not conducive to the future 5G demand for ultra-low delay. In view of the problems of graphite heat dissipation film in the 5G field, a heat dissipation material with strong thermal conductivity, insulation, low dielectric coefficient and low dielectric loss is urgently needed.
  • hexagonal boron nitride As a two-dimensional layered material, hexagonal boron nitride has a similar crystal structure to graphite, and is also known as white graphite.
  • the two-dimensional structure of hexagonal boron nitride, also known as boron nitride nanosheets, has excellent thermal conductivity, mechanical strength and other properties, and has excellent insulation, low dielectric coefficient and low dielectric loss. But the thermal conductivity of boron nitride is about 300Wm -1 K -1 , which is still at a lower level compared to the thermal conductivity of graphite 2000Wm -1 K -1 .
  • the thermal conductivity of the artificial graphite heat dissipation film can reach more than 1600Wm -1 K -1 , which is smaller than the theoretical thermal conductivity of graphite, while the development of the preparation process of the boron nitride heat dissipation film is still in the primary stage, and There is still a large gap in the theoretical thermal conductivity. Therefore, it is necessary to provide a boron nitride heat dissipation film with higher thermal conductivity.
  • the present application aims to solve at least one of the technical problems existing in the prior art. To this end, the present application proposes a boron nitride heat dissipation film with higher thermal conductivity and a preparation method and application thereof.
  • a first aspect of the present application provides a method for preparing a boron nitride heat dissipation film, comprising the following steps:
  • the dispersion slurry adopts a simple composition system, including boron nitride powder, polymer and solvent, and the cost and processing difficulty are relatively low.
  • the hexagonal boron nitride of the boron nitride powder can be well protected by the polymer and the solvent, and the hexagonal boron nitride is broken, and part of the impact force on the two-dimensional material is converted into a shear force, so that the two-dimensional sheet slips. .
  • two-dimensional boron nitride nanosheets with high relative quality, that is, large size and small thickness, are obtained.
  • the two-dimensional material in the film is effectively arranged through the interaction between the polymer and the two-dimensional boron nitride nanosheets, thereby obtaining a highly ordered microstructure. Not only can the propagation of heat flow in the film have a high degree of directionality, thus showing a higher planar thermal conductivity; but also can promote its high-density packing, thereby reducing the phonon scattering inside the heat dissipation film, thereby promoting its thermal conductivity.
  • the highly ordered thin film structure can realize the effective stacking of two-dimensional materials, forming a pearl-like structure, and under the interlayer interaction force of two-dimensional boron nitride nanosheets, the heat dissipation film has a certain mechanical strength and flexible.
  • the boron nitride powder is preferably hexagonal boron nitride powder, the powder is in the form of flakes, and the size is preferably 0.5-100 microns, more preferably 5-50 microns.
  • a polymer refers to a polymer or a mixture thereof that can be dissolved or dispersed by a polar solvent and/or a non-polar solvent, non-limiting examples of which include polyvinyl alcohol, polyamide, polyimide, epoxy resin, polyamide Imine, polysulfone, polyester, polyether, polyethylene glycol, polyvinylpyrrolidone, polyethylene oxide, polymethacrylate, polyvinylidene fluoride, polyaramide, phenolic resin, polycarbonate, polyethylene sulfoxide At least one of amine, etc., nanocellulose, sodium carboxymethyl cellulose, silicone rubber precursor, etc.
  • Solvent refers to any solvent that can dissolve or disperse the aforementioned polymers, non-limiting examples of which include water, ethylene glycol, methanol, ethanol, isopropanol, n-butanol, tetrahydrofuran, dimethylformamide, dimethylmethylene At least one of sulfone, dimethylacetamide, N-methylpyrrolidone, benzene, toluene, xylene and the like.
  • Applying a mechanical force refers to providing a mechanical force to laterally slip between adjacent sheets of boron nitride powder to exfoliate, non-limiting examples of which include ball milling, sanding, grinding, sanding, rolling, mechanical agitation, high speed At least one of shearing, ultrasonic treatment, high-pressure homogenization, micro-jet, etc.
  • the substrate refers to a material that provides a corresponding environmental background for dispersing the slurry to form a boron nitride film, and non-limiting examples thereof include glass, polymer film, silicon wafer, paper, etc., preferably a polymer film.
  • the material source of the polymer film includes polyimide, polyethylene terephthalate, polycarbonate, polyacrylate, silicone rubber, polytetrafluoroethylene, etc., preferably polyethylene terephthalate alcohol ester.
  • the selection of the substrate needs to consider the wettability and stability of the solvent, and it is required to have a good affinity for the second dispersion slurry to promote the formation of a highly oriented liquid film on the surface of the substrate, and it will not be caused by chemical production. Corrosion will affect the quality of the film, and it also needs to have a certain thermal stability to withstand the temperature of the film curing environment.
  • the substrate can also undergo a certain surface pretreatment (such as surface plasma etching, corona or coating a corresponding compound layer) before the coating treatment to improve the surface properties of the substrate.
  • Coating refers to the formation of a corresponding liquid layer on the substrate by the second dispersed slurry in a certain manner, non-limiting examples of which include casting, blade coating, roll coating, roll-to-roll coating, spraying, screen printing, Pull-up coating and other methods well known in the art.
  • Compression treatment refers to applying a certain pressure to the formed film, so that the two-dimensional boron nitride nanosheets in the film layer are further aligned and stacked, thereby obtaining higher thermal conductivity and mechanical properties.
  • compression treatments include ambient temperature rolling, heated rolling, flat pressing, flat plate hot pressing, and the like, treatments well known in the art.
  • the pressure of the compression treatment is 1-1000MPa, and the treatment time is 10s-24h.
  • the magnitude of the pressure and the treatment time during the compression treatment affect the arrangement effect of the two-dimensional boron nitride nanosheets.
  • the compression is controlled within the above range, the compression effect is better, and the thermal conductivity of the final heat dissipation film is relatively low. Excellent.
  • the pressure of the compression treatment is 5-60MPa, and the treatment time is 10s-2h.
  • the temperature of the compression process is 20-400°C.
  • the temperature of the compression process is 20-300°C.
  • S4 is: compressing the thin film to obtain a boron nitride thin film layer supported on the substrate, and transferring the boron nitride thin film layer to obtain a boron nitride heat dissipation film.
  • the transfer method is to contact the double-sided tape with the release film with the boron nitride thin film layer, transfer the boron nitride thin film layer to the double-sided tape, and place the boron nitride thin film layer away from the double-sided tape.
  • One side of the double-sided tape is covered with single-sided tape to obtain a boron nitride heat dissipation film.
  • the boron nitride film is transferred on the double-sided tape to prepare a corresponding low-cost boron nitride composite heat dissipation film. According to different application scenarios, different heat dissipation film configurations can be developed.
  • the multi-layer heat dissipation film can well adhere the boron nitride thin film layer to the electronic components that have heat dissipation requirements, thereby realizing efficient heat dissipation of the electronic components.
  • the surface or overall structure of the film is easily damaged during transportation, and the release film on both sides can protect the film well, and in some extreme environments, such as high humidity environments, ensure the effectiveness of the heat dissipation film sex.
  • the mechanical properties of the boron nitride heat dissipation film also show corresponding ceramic properties, that is, the strength is high but the toughness is poor, and it is prone to failure during the mounting process, thereby reducing the heat dissipation of the material performance.
  • the total thickness of the double-sided adhesive tape and the release film is 2-100 microns, preferably 5-15 microns.
  • the thickness of the double-sided adhesive tape is 1-40 microns, preferably 2-10 microns; the thickness of the release film is 5-500 microns, preferably 10-100 microns.
  • the transfer process also includes a step of removing the substrate, and the method of removing the substrate may specifically be rolling after the composite double-sided adhesive tape.
  • the rolling process can be selected at room temperature, and the rolling pressure is 1-1000MPa, preferably 5-60MPa; rolling speed is 0.2-100 m/min, preferably 0.2-50 m/min.
  • the single-sided adhesive further has a release layer with a total thickness of 2-100 microns, preferably 5-15 microns.
  • the single-sided adhesive further has a release layer
  • the thickness of the single-sided adhesive layer is 1-40 microns, preferably 2-10 microns
  • the thickness of the release layer is 5-500 microns, preferably 10 to 100 microns.
  • the mass ratio of the boron nitride powder in the first dispersion slurry is 1-50%, preferably 2-35%; the mass ratio of the polymer is 1-50%, preferably 1- 30%.
  • the mass of boron nitride in the boron nitride thin film layer is 50-99 wt %.
  • the manner in which the boron nitride powder, the polymer and the solvent are mixed to obtain the first dispersed slurry is blending and stirring.
  • the speed of blending and stirring is 50-30000 rpm, preferably 100-4000 rpm; the time of blending and stirring is 5 minutes to 72 hours, preferably 10 minutes to 36 hours; the temperature of blending and stirring The temperature ranges from 20°C to the boiling point of the solvent, and the specific preferred temperature depends on the dissolution or dispersion of the specific polymer compound in the specific solvent.
  • the time for applying the mechanical force is 1-144 hours, preferably 2-48 hours.
  • the viscosity of the second dispersion slurry is adjusted to be 200-10000 mPa ⁇ s before coating.
  • the solvent used to adjust the viscosity is the solvent in S1, which needs to be fully stirred after dilution, and the stirring speed is 100-1000 rpm. Preferably, it is 200 to 800 rpm; the stirring time is 10 minutes to 24 hours, preferably 20 minutes to 2 hours.
  • the viscosity of the second dispersion slurry is adjusted to be 500 ⁇ 5000 mPa ⁇ s before coating.
  • the method of applying the mechanical force in S2 is ball milling.
  • the preparation method of the present application is simplified compared to the traditional process, and a high-quality two-dimensional hexagonal boron nitride dispersion can be obtained by one-step processing of the first dispersion slurry for two-dimensional boron nitride.
  • Preparation of composite heat dissipation film The traditional process needs to involve a series of complex processes when screening and cleaning 2D boron nitride nanosheets, which increases the cost and also leads to the generation of waste water, waste gas and dust, which has certain impacts on environmental protection and production safety. influences.
  • the simple ball milling process used in this application can promote the interaction force between the polymer and the two-dimensional hexagonal boron nitride, and at the same time promote the peeling efficiency of the two-dimensional boron nitride, it can achieve the effect of similar gelation of the dispersed slurry, And the two-dimensional boron nitride nanosheets can be riveted through the molecular chain of the polymer. This mutual riveting and cross-linking can promote the strong interaction force of 2D hexagonal boron nitride during coating, and further improve its ordering effect.
  • sieving treatment is performed after exfoliation in S2 to remove unexfoliated boron nitride powder, thereby obtaining a second dispersed slurry containing the boron nitride nanosheets.
  • the manner of performing the screening treatment after stripping in S2 includes, but is not limited to, natural sedimentation, centrifugal screening, etc., preferably natural sedimentation.
  • the natural sedimentation time is 12 to 144 hours, preferably 12 to 48 hours.
  • the unstripped hexagonal boron nitride can be recycled in the next production to improve the utilization efficiency of raw materials.
  • the stripped boron nitride and the unstripped boron nitride are distinguished.
  • the lower layer obtained by sedimentation mainly contains the unstripped boron nitride slurry, which can be returned to S2 and re-applied mechanical force to strip it, and it can be recycled for use.
  • the screening step is avoided, which simplifies the process and reduces the production cost.
  • the thickness of the film is 1-10000 microns, preferably 5-500 microns.
  • drying is required after the coating is completed, so that the coated wet film is converted into a dry film.
  • the drying temperature is 20 to 200°C, preferably 40 to 150°C.
  • the drying temperature also needs to consider the thermal stability of the polymer in the substrate and film, as well as the boiling point and evaporation rate of the solvent.
  • the drying time is 2 minutes to 24 hours, preferably 5 minutes to 2 hours.
  • a boron nitride heat dissipation film is provided, and the boron nitride heat dissipation film is prepared by the above-mentioned preparation method.
  • a third aspect of the present application provides an electronic device provided with the above-mentioned boron nitride heat dissipation film.
  • electronic devices include printed circuit boards, radio frequency devices, and the like.
  • the heat dissipation film uses boron nitride material to replace the traditional graphite heat dissipation film in some application scenarios.
  • the two-dimensional boron nitride material has high insulation, low dielectric loss, low dielectric Coefficient, wave transmission and white appearance can well solve many pain points of graphite heat dissipation film in practical applications, especially in heat dissipation scenarios of related electronic components such as 5G communication equipment, radio frequency devices, and high-speed communication devices.
  • the emergence of the two-dimensional boron nitride composite heat dissipation film can better change the design ideas of existing electronic devices and contribute to the miniaturization and compact development of electronic devices.
  • the heat dissipation film has potential development space and application value in the fields of flexible printed circuit boards, insulating films, flexible electronic packaging and the like.
  • an electronic device in a fourth aspect of the present application, includes the above-mentioned boron nitride heat dissipation film.
  • FIG. 1 is a scanning electron microscope image of two-dimensional boron nitride nanosheets in Experimental Example 1 of the present application.
  • FIG. 2 is a transmission electron microscope image of the two-dimensional boron nitride nanosheets in Experimental Example 1 of the present application.
  • FIG. 3 is a statistical diagram of the sheet size of the two-dimensional boron nitride nanosheets in Experimental Example 1 of the present application.
  • FIG. 4 is a schematic diagram of an atomic force microscope of the two-dimensional boron nitride nanosheets in Experimental Example 1 of the present application.
  • FIG. 5 is a schematic diagram of the sheet thickness statistics of the two-dimensional boron nitride nanosheets in Experimental Example 1 of the present application.
  • FIG. 6 is a digital photograph of the finished product of the boron nitride heat dissipation film in Experimental Example 1 of the present application.
  • FIG. 7 is a digital photograph of the finished product of the boron nitride heat dissipation film in Experimental Example 1 of the present application.
  • FIG. 10 is a scanning electron microscope image of the two-dimensional boron nitride nanosheets in Experimental Example 2 of the present application.
  • FIG. 11 is a transmission electron microscope image of the two-dimensional boron nitride nanosheets in Experimental Example 2 of the present application.
  • FIG. 12 is a digital photograph of the finished product of the boron nitride heat dissipation film in Experimental Example 2 of the present application.
  • FIG. 14 is a digital photograph of the finished product of the boron nitride heat dissipation film in Experimental Example 9 of the present application.
  • FIG. 15 is a schematic structural diagram of a boron nitride heat dissipation film in an embodiment of the present application.
  • FIG. 16 is another structural schematic diagram of the boron nitride heat dissipation film in the embodiment of the present application.
  • FIG. 17 is a schematic diagram for testing the heat dissipation capability of the finished boron nitride heat dissipation film in Experimental Example 10 of the present application.
  • FIG. 18 is a comparison of the use effect of the finished boron nitride heat dissipation film in the experimental example 10 of the present application and other traditional thermal interface materials in a simulated experimental environment.
  • first release film layer 151 double-sided adhesive film layer 152 , boron nitride thin film layer 153 , second release film layer 154 , single-sided adhesive layer 161 .
  • the meaning of several is more than one, the meaning of multiple is two or more, greater than, less than, exceeding, etc. are understood as not including this number, above, below, within, etc. are understood as including this number. If it is described that the first and the second are only for the purpose of distinguishing technical features, it cannot be understood as indicating or implying relative importance, or indicating the number of the indicated technical features or the order of the indicated technical features. relation.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiment,” “example,” “specific example,” or “some examples” and the like are meant to be used in conjunction with the embodiment or A particular feature, structure, material, or characteristic of the example description is included in at least one embodiment or example of the present application.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
  • This embodiment provides a heat dissipation film and a preparation method thereof.
  • the preparation method includes the following steps:
  • the dispersion slurry in the upper 90% part of the total height of the liquid surface was taken as the upper dispersion slurry, and the lower dispersion slurry in the lower 10% part was calibrated with an appropriate concentration. Add to the first dispersing slurry produced in the next batch and perform high-speed shear peeling treatment again.
  • the initial concentration of boron nitride is 18% of the total mass of the slurry, the concentration in the upper layer dispersed slurry after static precipitation is about 17.8%, and the concentration in the lower layer dispersed slurry is about 19.7%.
  • the mass of the two-dimensional boron nitride in the upper dispersion slurry accounts for 89.9% of the sum of the two-dimensional boron nitride and sodium carboxymethyl cellulose in the second dispersion slurry, and the specific gravity difference of 90% of the initial dispersion liquid is small.
  • the viscosity of the obtained upper layer dispersion slurry was characterized by using a rotational viscometer, and the viscosity was 4123 mPa ⁇ s.
  • 875 ml of deionized water was added to the upper dispersion slurry, and the mixture was stirred at a speed of 1000 rpm at a temperature of 80° C. for 30 minutes, after which the stirring was stopped and cooled to room temperature.
  • the viscosity test result of the diluted dispersion liquid was 1020 mPa ⁇ s, which was used as the second dispersion slurry.
  • S3 Take a 30-micron-thick polyimide film as the substrate, first confirm the cleanliness of the substrate surface, and clean the substrate by wiping the corresponding part with acetone; then, the substrate is subjected to UV-ozone treatment to further clean the substrate surface Cleans and improves the wettability of the substrate surface.
  • the second dispersed slurry is subjected to vacuum stirring and defoaming treatment, it is extruded into a precision roller coating system for coating treatment to obtain a wet film supported on the substrate. During roll coating, the wet film thickness is about 500 microns. After drying the wet film at a gradient of 60-80° C. for 20 minutes, a boron nitride thin film layer attached to the surface of the polyimide substrate was obtained.
  • Figure 1 is a scanning electron microscope image of the two-dimensional boron nitride nanosheets. It can be seen from the figure that the two-dimensional boron nitride nanosheets exfoliated by mechanical force show an obvious two-dimensional layered structure, and are effectively exfoliated. The thickness is small.
  • Figure 2 is a transmission electron microscope image of the two-dimensional boron nitride nanosheets.
  • FIG. 5 is an atomic force microscope image of the prepared two-dimensional boron nitride nanosheets. It can be seen from the figure that the thickness of the two-dimensional boron nitride nanosheets is in the range of 1-10 nanometers, and the average thickness is relatively low and relatively uniform .
  • the statistical analysis results of the atomic force microscope images are shown in Fig. 5.
  • the average thickness of the two-dimensional boron nitride nanosheets is about 5 nanometers, which is about less than 20 atomic layers.
  • the scheme of this experimental example can efficiently prepare high-quality, large-scale, thin-layer two-dimensional boron nitride materials with extremely high yields.
  • the final prepared boron nitride heat dissipation film is shown in Figure 6 and Figure 7 after the surface release film is removed. It can be seen from the figure that one side of the boron nitride heat dissipation film is attached with a double-sided adhesive layer, which can be very It is well attached to the surface of the corresponding electronic components to achieve close fit and has a certain flexibility. Moreover, the film has a certain strength, can be self-supporting, and presents a clear ceramic texture.
  • Figures 8 and 9 are scanning electron microscope images of the interface and surface of the boron nitride heat dissipation film, respectively. It can be seen that the interior of the film presents a highly ordered planar arrangement and is closely connected to each other, and the surface of the film also presents a highly dense appearance. , it is difficult to observe the original powder structure, avoiding the potential risk of short circuit of electronic components.
  • Each film layer of the boron nitride heat dissipation film was measured by a spiral micrometer, and the thickness of the boron nitride film layer was measured to be 55 microns, the total thickness of the two release films was 60 microns, and the thickness of the double-sided adhesive layer was 5 microns for a total thickness of 120 microns.
  • This embodiment provides a heat dissipation film and a preparation method thereof.
  • the preparation method includes the following steps:
  • the dispersion slurry in the upper 90% part of the total height of the liquid surface was taken as the upper dispersion slurry, and the lower dispersion slurry in the lower 10% part was calibrated with an appropriate concentration. Add to the first dispersing slurry produced in the next batch and perform high-speed shear peeling treatment again.
  • the initial concentration of boron nitride is 18% of the total mass of the slurry, the concentration in the upper layer dispersed slurry after static precipitation is about 17.7%, and the concentration in the lower layer dispersed slurry is about 20.5%.
  • the mass of the two-dimensional boron nitride in the upper dispersion slurry accounts for 89.8% of the sum of the two-dimensional boron nitride and sodium carboxymethyl cellulose in the second dispersion slurry, and the specific gravity difference of 90% of the initial dispersion liquid is small.
  • the viscosity of the obtained upper layer dispersion slurry was characterized by using a rotational viscometer, and the viscosity was 3220 mPa ⁇ s.
  • 550 ml of deionized water was added to the upper dispersion slurry, and the mixture was stirred at a speed of 1000 rpm at a temperature of 80° C. for 30 minutes, after which the stirring was stopped and cooled to room temperature.
  • the viscosity test result of the diluted dispersion liquid was 1070 mPa ⁇ s, which was used as the second dispersion slurry.
  • S3 Take a 30-micron-thick polyimide film as the substrate, first confirm the cleanliness of the substrate surface, and clean the substrate by wiping the corresponding part with acetone; then, the substrate is subjected to UV-ozone treatment to further clean the substrate surface Cleans and improves the wettability of the substrate surface.
  • the second dispersed slurry is subjected to vacuum stirring and defoaming treatment, it is extruded into a precision roller coating system for coating treatment to obtain a wet film supported on the substrate. During roll coating, the wet film thickness is about 600 microns. After drying the wet film at a gradient of 60-80° C. for 20 minutes, a boron nitride thin film layer attached to the surface of the polyimide substrate was obtained.
  • the two-dimensional boron nitride nanosheets prepared in S2 were detected, and the scanning electron microscope image was shown in Figure 10. It can be seen from the figure that the two-dimensional boron nitride nanosheets showed obvious two-dimensional dimensional layered structure, and is efficiently exfoliated with a small thickness.
  • Figure 11 is the transmission electron microscope image of the two-dimensional boron nitride nanosheets. It can be seen from the figure that the thickness of the two-dimensional boron nitride nanosheets is small, and the average sheet size is about 1 micron, which is a high-quality large sheet two-dimensional materials.
  • the final prepared boron nitride heat dissipation film is shown in Figure 12 after the surface release film is removed. It can be seen from the figure that one side of the boron nitride heat dissipation film is attached with a double-sided adhesive layer, which can be well attached It can be closely attached to the surface of the corresponding electronic components and has a certain flexibility.
  • the spiral micrometer measured each film layer of the boron nitride heat dissipation film, and the thickness of the boron nitride film layer was measured to be 65 microns, the total thickness of the two release film layers was 60 microns, and the thickness of the double-sided adhesive layer was 5 microns for a total thickness of 130 microns.
  • This embodiment provides a heat dissipation film and a preparation method thereof.
  • the preparation method includes the following steps:
  • the dispersion slurry in the upper 90% part of the total height of the liquid surface was taken as the upper dispersion slurry, and the lower dispersion slurry in the lower 10% part was calibrated with an appropriate concentration. Add to the first dispersing slurry produced in the next batch and perform high-speed shear peeling treatment again.
  • the initial concentration of boron nitride is 18% of the total mass of the slurry, the concentration in the upper layer dispersed slurry after static precipitation is about 17.7%, and the concentration in the lower layer dispersed slurry is about 20.6%.
  • the mass of the two-dimensional boron nitride in the upper dispersion slurry accounts for 89.8% of the sum of the two-dimensional boron nitride and sodium carboxymethyl cellulose in the second dispersion slurry, and the specific gravity difference of 90% of the initial dispersion liquid is small.
  • the viscosity of the obtained upper layer dispersion slurry was characterized by using a rotational viscometer, and the viscosity was 2175 mPa ⁇ s.
  • 250 ml of dimethylacetamide was added to the upper dispersion slurry, and the mixture was stirred at a temperature of 130° C. at a speed of 1000 rpm for 30 minutes, and then the stirring was stopped and cooled to room temperature.
  • the viscosity test result of the diluted dispersion liquid was 978 mPa ⁇ s, which was used as the second dispersion slurry.
  • S3 Take a 30-micron-thick polyimide film as the substrate, first confirm the cleanliness of the substrate surface, and clean the substrate by wiping the corresponding part with acetone; then, the substrate is subjected to UV-ozone treatment to further clean the substrate surface Cleans and improves the wettability of the substrate surface.
  • the second dispersed slurry is subjected to vacuum stirring and defoaming treatment, it is extruded into a precision roller coating system for coating treatment to obtain a wet film supported on the substrate. During roll coating, the wet film thickness was approximately 375 microns. After drying the wet film at a gradient of 60-120° C. for 20 minutes, a boron nitride thin film layer attached to the surface of the polyimide substrate was obtained.
  • the prepared boron nitride heat dissipation film is shown in Figure 13, and it can be seen from the figure that it has excellent flexibility.
  • the spiral micrometer measured each film layer of the boron nitride heat dissipation film, and the thickness of the boron nitride film layer was measured to be 55 microns, the total thickness of the two release film layers was 60 microns, and the thickness of the double-sided adhesive layer was 5 microns for a total thickness of 120 microns.
  • This embodiment provides a heat dissipation film and a preparation method thereof.
  • the preparation method includes the following steps:
  • the dispersion slurry in the upper 90% part of the total height of the liquid surface was taken as the upper dispersion slurry, and the lower dispersion slurry in the lower 10% part was calibrated with an appropriate concentration. Add to the first dispersing slurry produced in the next batch and perform high-speed shear peeling treatment again.
  • the initial concentration of boron nitride is 18% of the total mass of the slurry, the concentration in the upper layer dispersed slurry after static precipitation is about 17.7%, and the concentration in the lower layer dispersed slurry is about 20.7%.
  • the mass of the two-dimensional boron nitride in the upper dispersion slurry accounts for 89.8% of the sum of the two-dimensional boron nitride and sodium carboxymethyl cellulose in the second dispersion slurry, and the specific gravity difference of 90% of the initial dispersion liquid is small.
  • the viscosity of the obtained upper layer dispersion slurry was characterized by using a rotational viscometer, and the viscosity was 2340 mPa ⁇ s.
  • 280 ml of dimethylacetamide was added to the upper dispersion slurry, and the mixture was stirred at a temperature of 130° C. at a speed of 1000 rpm for 30 minutes, and then the stirring was stopped and cooled to room temperature.
  • the viscosity test result of the diluted dispersion liquid is 1025 mPa ⁇ s, which is used as the second dispersion slurry.
  • S3 Take a 30-micron-thick polyimide film as the substrate, first confirm the cleanliness of the substrate surface, and clean the substrate by wiping the corresponding part with acetone; then, the substrate is subjected to UV-ozone treatment to further clean the substrate surface Cleans and improves the wettability of the substrate surface.
  • the second dispersed slurry is subjected to vacuum stirring and defoaming treatment, it is extruded into a precision roller coating system for coating treatment to obtain a wet film supported on the substrate. During roll coating, the wet film thickness was approximately 375 microns. After drying the wet film at a gradient of 60-120° C. for 20 minutes, a boron nitride thin film layer attached to the surface of the polyimide substrate was obtained.
  • the spiral micrometer measured each film layer of the boron nitride heat dissipation film, and the thickness of the boron nitride film layer was measured to be 55 microns, the total thickness of the two release film layers was 60 microns, and the thickness of the double-sided adhesive layer was 5 microns for a total thickness of 120 microns.
  • This embodiment provides a heat dissipation film and a preparation method thereof.
  • the preparation method includes the following steps:
  • the dispersion slurry in the upper 90% part of the total height of the liquid surface was taken as the upper dispersion slurry, and the lower dispersion slurry in the lower 10% part was calibrated with an appropriate concentration. Add to the first dispersing slurry produced in the next batch and perform high-speed shear peeling treatment again.
  • the initial concentration of boron nitride is 18% of the total mass of the slurry, the concentration in the upper layer dispersed slurry after static precipitation is about 17.1%, and the concentration in the lower layer dispersed slurry is about 25.2%.
  • the mass of the two-dimensional boron nitride in the upper dispersion slurry accounts for 89.5% of the sum of the two-dimensional boron nitride and sodium carboxymethyl cellulose in the second dispersion slurry, and the specific gravity difference of 90% of the initial dispersion liquid is small.
  • the viscosity of the obtained upper layer dispersion slurry was characterized by using a rotational viscometer, and the viscosity was 1940 mPa ⁇ s.
  • 195 ml of dimethylacetamide was added to the upper dispersion slurry, and the mixture was stirred at a temperature of 130° C. at a speed of 1000 rpm for 30 minutes, after which the stirring was stopped and cooled to room temperature.
  • the viscosity test result of the diluted dispersion liquid was 925 mPa ⁇ s, which was used as the second dispersion slurry.
  • S3 Take a 30-micron-thick polyimide film as the substrate, first confirm the cleanliness of the substrate surface, and clean the substrate by wiping the corresponding part with acetone; then, the substrate is subjected to UV-ozone treatment to further clean the substrate surface Cleans and improves the wettability of the substrate surface.
  • the second dispersed slurry is subjected to vacuum stirring and defoaming treatment, it is extruded into a precision roller coating system for coating treatment to obtain a wet film supported on the substrate. During roll coating, the wet film thickness is about 300 microns. After drying the wet film at a gradient of 60-120° C. for 20 minutes, a boron nitride thin film layer attached to the surface of the polyimide substrate was obtained.
  • the spiral micrometer measured each film layer of the boron nitride heat dissipation film, and the thickness of the boron nitride film layer was measured to be 45 microns, the total thickness of the two release film layers was 60 microns, and the thickness of the double-sided adhesive layer was 5 microns for a total thickness of 110 microns.
  • This embodiment provides a heat dissipation film and a preparation method thereof.
  • the preparation method includes the following steps:
  • the dispersion slurry in the upper 90% part of the total height of the liquid surface was taken as the upper dispersion slurry, and the lower dispersion slurry in the lower 10% part was calibrated with an appropriate concentration. Add to the first dispersing slurry produced in the next batch and perform high-speed shear peeling treatment again.
  • the initial concentration of boron nitride is 18% of the total mass of the slurry, the concentration in the upper layer dispersed slurry after static precipitation is about 17.1%, and the concentration in the lower layer dispersed slurry is about 25.2%.
  • the mass of the two-dimensional boron nitride in the upper dispersion slurry accounts for 89.5% of the sum of the two-dimensional boron nitride and sodium carboxymethyl cellulose in the second dispersion slurry, and the specific gravity difference of 90% of the initial dispersion liquid is small.
  • the viscosity of the obtained upper layer dispersion slurry was characterized by using a rotational viscometer, and the viscosity was 1940 mPa ⁇ s.
  • 195 ml of dimethylacetamide was added to the upper dispersion slurry, and the mixture was stirred at a temperature of 130° C. at a speed of 1000 rpm for 30 minutes, after which the stirring was stopped and cooled to room temperature.
  • the viscosity test result of the diluted dispersion liquid was 925 mPa ⁇ s, which was used as the second dispersion slurry.
  • S3 Take a 30-micron-thick polyimide film as the substrate, first confirm the cleanliness of the substrate surface, and clean the substrate by wiping the corresponding part with acetone; then, the substrate is subjected to UV-ozone treatment to further clean the substrate surface Cleans and improves the wettability of the substrate surface.
  • the second dispersed slurry is subjected to vacuum stirring and defoaming treatment, it is extruded into a precision roller coating system for coating treatment to obtain a wet film supported on the substrate. During roll coating, the wet film thickness is about 200 microns. After drying the wet film at a gradient of 60-120° C. for 20 minutes, a boron nitride thin film layer attached to the surface of the polyimide substrate was obtained.
  • the spiral micrometer measured each film layer of the boron nitride heat dissipation film, and the thickness of the boron nitride film layer was measured to be 30 microns, the total thickness of the two release film layers was 60 microns, and the thickness of the double-sided adhesive layer was 5 microns for a total thickness of 95 microns.
  • This embodiment provides a heat dissipation film and a preparation method thereof.
  • the preparation method includes the following steps:
  • the initial concentration of boron nitride is 18% of the total mass of the slurry, the concentration in the upper layer dispersed slurry after static precipitation is about 17.8%, and the concentration in the lower layer dispersed slurry is about 29.7%.
  • the mass of the two-dimensional boron nitride in the upper dispersion slurry accounts for 89.8% of the sum of the two-dimensional boron nitride and sodium carboxymethyl cellulose in the second dispersion slurry, and the specific gravity difference of 90% of the initial dispersion liquid is small.
  • the viscosity of the obtained upper layer dispersion slurry was characterized by using a rotational viscometer, and the viscosity was 2050 mPa ⁇ s.
  • 200 ml of dimethylacetamide was added to the upper dispersion slurry, and the mixture was stirred at a temperature of 130° C. at a speed of 1000 rpm for 30 minutes, after which the stirring was stopped and cooled to room temperature.
  • the viscosity test result of the diluted dispersion liquid was 1000 mPa ⁇ s, which was used as the second dispersion slurry.
  • S3 Take a 30-micron-thick polyimide film as the substrate, first confirm the cleanliness of the substrate surface, and clean the substrate by wiping the corresponding part with acetone; then, the substrate is subjected to UV-ozone treatment to further clean the substrate surface Cleans and improves the wettability of the substrate surface.
  • the second dispersed slurry is subjected to vacuum stirring and defoaming treatment, it is extruded into a precision roller coating system for coating treatment to obtain a wet film supported on the substrate. During roll coating, the wet film thickness is approximately 750 microns. After drying the wet film at a gradient of 60-120° C. for 20 minutes, a boron nitride thin film layer attached to the surface of the polyimide substrate was obtained.
  • the spiral micrometer measured each film layer of the boron nitride heat dissipation film, and the thickness of the boron nitride film layer was measured to be 100 microns, the total thickness of the two release film layers was 60 microns, and the thickness of the double-sided adhesive layer was 5 microns for a total thickness of 165 microns.
  • This embodiment provides a heat dissipation film and a preparation method thereof.
  • the preparation method includes the following steps:
  • the initial concentration of boron nitride is 18% of the total mass of the slurry, the concentration in the upper layer dispersed slurry after static precipitation is about 17.8%, and the concentration in the lower layer dispersed slurry is about 29.7%.
  • the mass of the two-dimensional boron nitride in the upper dispersion slurry accounts for 89.8% of the sum of the two-dimensional boron nitride and sodium carboxymethyl cellulose in the second dispersion slurry, and the specific gravity difference of 90% of the initial dispersion liquid is small.
  • the viscosity of the obtained upper layer dispersion slurry was characterized by using a rotational viscometer, and the viscosity was 2050 mPa ⁇ s.
  • 200 ml of dimethylacetamide was added to the upper dispersion slurry, and the mixture was stirred at a temperature of 130° C. at a speed of 1000 rpm for 30 minutes, after which the stirring was stopped and cooled to room temperature.
  • the viscosity test result of the diluted dispersion liquid was 1000 mPa ⁇ s, which was used as the second dispersion slurry.
  • S3 Take a 30-micron-thick polyimide film as the substrate, first confirm the cleanliness of the substrate surface, and clean the substrate by wiping the corresponding part with acetone; then, the substrate is subjected to UV-ozone treatment to further clean the substrate surface Cleans and improves the wettability of the substrate surface.
  • the second dispersed slurry is subjected to vacuum stirring and defoaming treatment, it is extruded into a precision roller coating system for coating treatment to obtain a wet film supported on the substrate. During roll coating, the wet film thickness was approximately 2250 microns. After drying the wet film at a gradient of 60-120° C. for 20 minutes, a boron nitride thin film layer attached to the surface of the polyimide substrate was obtained.
  • the spiral micrometer measures each film layer of the boron nitride heat dissipation film, and the measured thickness of the boron nitride film layer is 300 microns, the total thickness of the two release film layers is 60 microns, and the thickness of the double-sided adhesive layer is 5 microns for a total thickness of 365 microns.
  • This embodiment provides a heat dissipation film and a preparation method thereof.
  • the preparation method includes the following steps:
  • the dispersion slurry in the upper 90% part of the total height of the liquid surface was taken as the upper dispersion slurry, and the lower dispersion slurry in the lower 10% part was calibrated with an appropriate concentration. Add to the first dispersing slurry produced in the next batch and perform high-speed shear peeling treatment again.
  • the initial concentration of boron nitride is 18% of the total mass of the slurry, the concentration in the upper layer dispersed slurry after static precipitation is about 17.7%, and the concentration in the lower layer dispersed slurry is about 20.7%.
  • the mass of the two-dimensional boron nitride in the upper dispersion slurry accounts for 89.8% of the sum of the two-dimensional boron nitride and sodium carboxymethyl cellulose in the second dispersion slurry, and the specific gravity difference of 90% of the initial dispersion liquid is small.
  • the viscosity of the obtained upper layer dispersion slurry was characterized by using a rotational viscometer, and the viscosity was 2340 mPa ⁇ s.
  • 280 ml of dimethylacetamide was added to the upper dispersion slurry, and the mixture was stirred at a temperature of 130° C. at a speed of 1000 rpm for 30 minutes, and then the stirring was stopped and cooled to room temperature.
  • the viscosity test result of the diluted dispersion liquid is 1025 mPa ⁇ s, which is used as the second dispersion slurry.
  • S3 Take a 30-micron-thick polyimide film as the substrate, first confirm the cleanliness of the substrate surface, and clean the substrate by wiping the corresponding part with acetone; then, the substrate is subjected to UV-ozone treatment to further clean the substrate surface Cleans and improves the wettability of the substrate surface.
  • the second dispersed slurry is subjected to vacuum stirring and defoaming treatment, it is extruded into a precision roller coating system for coating treatment to obtain a wet film supported on the substrate. During roll coating, the wet film thickness was approximately 375 microns. After drying the wet film at a gradient of 60-120° C. for 20 minutes, a boron nitride thin film layer attached to the surface of the polyimide substrate was obtained.
  • FIG. 14 is a photograph of the finished boron nitride heat dissipation film prepared in this example.
  • the spiral micrometer measured each film layer of the boron nitride heat dissipation film, and the thickness of the boron nitride film layer was measured to be 55 microns, the total thickness of the two release film layers was 60 microns, and the thickness of the double-sided adhesive layer was 5 microns, the thickness of the single-sided adhesive layer is 5 microns, and the total thickness is 125 microns.
  • FIGS. 15 and 16 are schematic diagrams of the structures of the boron nitride heat dissipation films prepared in the above-mentioned Embodiments 1 to 9, respectively.
  • One of the structures is shown in FIG. 15 .
  • Another structure, as shown in FIG. 16 includes a first release film layer 151 , a double-sided adhesive film layer 152 , a boron nitride film layer 153 , a single-sided adhesive layer 161 , and a second release film layer 154 from bottom to top .
  • thermal diffusivity and thermal conductivity of the boron nitride heat dissipation film prepared in the examples of the present application are greatly improved, and the highest can reach 24.53mm 2 /s and 50.17W m -1 K -1 respectively .
  • the effect of the two-dimensional boron nitride heat dissipation film in the actual use environment was determined by the simulation experiment method of steady heat dissipation of a single heat source.
  • the basic principle is shown in Figure 17.
  • the heat dissipation film is mainly heated by a constant temperature heating plate. There are aluminum blocks and heat insulation space between the constant temperature heating plate and the heat dissipation film. After reaching a steady state, the hot spot temperature on the surface of the heat dissipation film is observed. .
  • the boron nitride heat dissipation film prepared in Example 6 with the same thickness is compared with traditional high-performance heat conduction films such as aluminum oxide and aluminum nitride. The results of the simulation experiment are shown in Fig. 18.
  • Boronide heat dissipation film, B and C are aluminum oxide and aluminum nitride heat dissipation films, respectively. It can be seen from the figure that the average value (AVG) and the maximum value (MAX) of the hot spot temperature on the surface of the heat dissipation film provided by the embodiments of the present application are significantly lower than those of the other two types of thermally conductive films, and the temperature is significantly reduced, indicating that The boron nitride heat dissipation film provided by the embodiments of the present application has excellent heat dissipation performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

提供了一种氮化硼散热膜及其制备方法和应用。提供氮化硼散热膜的制备方法,包括以下步骤:将氮化硼粉末、聚合物和溶剂混合,得到第一分散浆料;向第一分散浆料施加机械力进行剥离,得到包含氮化硼纳米片的第二分散浆料;将第二分散浆料在基底上涂布,得到薄膜;对薄膜进行压缩处理,得到氮化硼散热膜。分散浆料采用简单的构成体系,包括氮化硼粉末、聚合物和溶剂,成本和处理难度较低。剥离过程中,聚合物和溶剂可以很好地保护氮化硼粉末的六方氮化硼发生破碎作用,将部分对二维材料的冲击力转化为剪切力,从而其二维片层发生滑移。最终得到相对质量较高,即尺寸大、厚度小的二维氮化硼纳米片。

Description

氮化硼散热膜及其制备方法和应用 技术领域
本申请涉及导热材料技术领域,尤其是涉及氮化硼散热膜及其制备方法和应用。
背景技术
均热膜也被称之为散热膜,是一种高功率通讯设备中常用的散热材料。均热膜一般使用在单一轴向上热导率相比其他维度上较低的材料制备而成,这种薄膜一般具有较高的平面热导率及较低的垂直热导率。这种特殊的导热结构使得热流可以很快地沿平面传播,而很难穿透其散热膜的垂直方向。一般的均热材料是基于具有二维层状结构的材料制备而来,其中石墨是被最为广泛使用的材料之一。石墨具有极高的平面热导率、较低的密度、低热膨胀系数等优异特性,石墨散热膜被广泛拥有各类具有高散热需求的电子设备中。但是,石墨具有优秀的导电性,在电子器件中只能应用于绝缘封装好的元件部分。除此之外,其在电子器件中可能会产生一些其他的问题,例如模切石墨散热膜可能会产生少量的碎屑,有潜在造成电子器件短路的风险,再例如石墨散热膜可能会产生静电从而破坏一些较为脆弱的电子元件。在通信领域方面,石墨散热膜同样具有许多问题。首先,石墨作为一种良好的电磁屏蔽材料,会阻碍通信信号的传输,所以在通信设备中只能用在不影响射频天线的部分。再者,石墨拥有较高的介电系数,而较高的介电系数会导致较高的信号延迟,不利于未来5G对于超低延迟方面的需求。鉴于石墨散热膜在5G领域中的问题,急需一种导热能力强、绝缘、介电系数低、介电损耗低的散热材料。
六方氮化硼作为一种二维层状材料,和石墨拥有相似的晶体结构,也被称为白色石墨。六方氮化硼的二维结构也被称为氮化硼纳米片,热导率、机械强度等性能优异,而且拥有极佳的绝缘性、低介电系数及低介电损耗。但氮化硼的热导率约为300Wm -1K -1,对比石墨2000Wm -1K -1的热导率仍然处于较低的层次。而且,人工石墨散热膜的热导率可以达到1600Wm -1K -1以上,和石墨的理论热导率相差较小,而氮化硼散热膜的制备工艺开发尚处于初级阶段,和氮化硼的理论热导率仍存在较大的差距。因此,有必要提供一种具有更高热导率的氮化硼散热膜。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种具有更高热导率的氮化硼散热膜及其制备方法和应用。
本申请的第一方面,提供氮化硼散热膜的制备方法,包括以下步骤:
S1:将氮化硼粉末、聚合物和溶剂混合,得到第一分散浆料;
S2:向第一分散浆料施加机械力进行剥离,得到包含氮化硼纳米片的第二分散浆料;
S3:将第二分散浆料在基底上涂布,得到薄膜;
S4:对薄膜进行压缩处理,得到氮化硼散热膜。
根据本申请实施例的制备方法,至少具有如下有益效果:
(1)本申请实施例中分散浆料采用简单的构成体系,包括氮化硼粉末、聚合物和溶剂,成本和处理难度较低。剥离过程中,聚合物和溶剂可以很好地保护氮化硼粉末的六方氮化硼发生破碎作用,将部分对二维材料的冲击力转化为剪切力,从而其二维片层发生滑移。最终得到相对质量较高,即尺寸大、厚度小的二维氮化硼纳米片。
(2)压缩过程中,通过聚合物与二维氮化硼纳米片的相互作用,对薄膜内的二维材料进行有效的排列,从而得到高度有序的微观结构。不仅可以让热流在薄膜内的传播具有高度的定向性,从而表现为较高的平面热导率;而且可以促进其高密度堆积,以此降低散热膜内部的声子散射,从而促进其热导率的提升;最后,高度有序的薄膜结构可以实现二维材料的有效堆叠,形成仿珍珠贝结构,在二维氮化硼纳米片的层间相互作用力下,使得散热膜具有一定的机械强度和柔性。
其中,氮化硼粉末优选为六方氮化硼粉末,其粉末呈片状,尺寸优选为0.5~100微米,进一步优选为5-50微米。
聚合物是指可以被极性溶剂和/或非极性溶剂溶解或分散的聚合物或其混合物,其非限制性实例包括聚乙烯醇、 聚酰胺、聚酰亚胺、环氧树脂、聚酰亚胺、聚砜、聚酯、聚醚、聚乙二醇、聚乙烯吡咯烷酮、聚氧化乙烯、聚甲基丙烯酸酯、聚偏氟乙烯、聚芳酰胺、酚醛树脂、聚碳酸酯、聚乙烯亚胺等、纳米纤维素、羧甲基纤维素钠、硅橡胶前驱体等其中的至少一种。
溶剂是指任何可以溶解或分散前述聚合物的溶剂,其非限制性实例包括水、乙二醇、甲醇、乙醇、异丙醇、正丁醇、四氢呋喃、二甲基甲酰胺、二甲基亚砜、二甲基乙酰胺、N-甲基吡咯烷酮、苯、甲苯、二甲苯等其中的至少一种。
施加机械力是指提供机械力从而使得氮化硼粉末的相邻片层之间横向滑移进而剥离,其非限制性实例包括球磨、砂磨、研磨、砂磨、辊压、机械搅拌、高速剪切、超声处理、高压均质、微射流等其中至少一种。
基底是指为分散浆料形成氮化硼薄膜提供对应环境背景的材料,其非限制性实例包括玻璃、聚合物薄膜、硅片、纸张等,优选为聚合物薄膜。其中,聚合物薄膜的材料来源包括聚酰亚胺、聚对苯二甲酸乙二醇酯、聚碳酸酯、聚丙烯酸酯、硅橡胶、聚四氟乙烯等,优选为聚对苯二甲酸乙二醇酯。另外,基底的选择需要考虑对溶剂的浸润性和稳定性等问题,要求能够对第二分散浆料具有良好的亲和性从而促使高定向液膜在基底表面的形成,并且不会因为产生化学腐蚀作用从而影响成膜的质量,还需要有一定的热稳定性从而耐受薄膜固化环境的温度。而在此基础上,基底在涂布处理之前也可以经过一定的表面预处理(如表面等离子刻蚀、电晕或涂布相应的化合物层)以提升基底的表面性能。
涂布是指将第二分散浆料通过一定的方式在基底上形成对应的液层,其非限制性实例包括流延、刮涂、辊涂、卷对卷涂布、喷涂、丝网印刷、提拉涂敷等本领域熟知的方式。
压缩处理是指对形成的薄膜施加一定的压力,从而使得薄膜层内的二维氮化硼纳米片进一步取向层积堆叠,从而获得更高的热导率和机械性能。压缩处理的非限制性实例包括常温辊压、加热辊压、平压、平板热压等本领域熟知的处理方式。
在本申请的一些实施方式中,压缩处理的压力为1~1000MPa,处理时间为10s~24h。压缩处理过程中作用的压力大小和处理时间影响在此过程中二维氮化硼纳米片的排列效果,当控制在上述范围时,压缩效果较好,最终的散热膜的热导率等性能较为优异。
在本申请的一些实施方式中,压缩处理的压力为5~60MPa,处理时间为10s~2h。
在本申请的一些实施方式中,压缩处理的温度为20~400℃。
在本申请的一些实施方式中,压缩处理的温度为20~300℃。
在本申请的一些实施方式中,S4为:对薄膜进行压缩处理,得到负载在基底上的氮化硼薄膜层,转移氮化硼薄膜层得到氮化硼散热膜。
在本申请的一些实施方式中,转移的方式为使带有离型膜的双面胶与氮化硼薄膜层接触,将氮化硼薄膜层转移到双面胶,在氮化硼薄膜层远离双面胶的一侧覆盖单面胶,得到氮化硼散热膜。将氮化硼薄膜在双面胶上进行转贴,从而制备出相应的低成本氮化硼复合散热膜。依据不同的应用场景,不同的散热膜构型可以被开发。这种多层散热膜可以很好地将氮化硼薄膜层黏附在有散热需求的电子原件上,从而实现电子元件的高效散热。运输的过程中薄膜的表面或整体结构容易受到破坏,而两侧的离型膜可以对薄膜起到很好的保护作用,并且在一些极端环境中,如高湿度环境下,保证散热膜的有效性。
另外,氮化硼散热膜作为一种复合陶瓷材料,其机械性质也展现出相应的陶瓷性质,即强度较高但韧性较差,在贴装的过程中容易发生顺坏,从而降低材料的散热性能。而通过在二维氮化硼薄膜的一面或者两面附着上合适的膜层可以很好地分摊薄膜在发生形变时所产生的应力差,从而起到对薄膜的保护作用。
在本申请的一些实施方式中,双面胶和离型膜的总厚度为2~100微米,优选为5~15微米。
在本申请的一些实施方式中,双面胶的厚度为1~40微米,优选为2~10微米;离型膜的厚度为5~500微米,优选为10~100微米。
在本申请的一些实施方式中,转移过程中还包括除去基底的步骤,除去基底的方式具体可以是对复合双面胶后 进行辊压,辊压工艺可以选择常温辊压,辊压的压力为1~1000MPa,优选为5~60MPa;辊压速度为0.2~100米/分钟,优选为0.2-50米/分钟。
在本申请的一些实施方式中,单面胶上还具有离型层,总厚度为2~100微米,优选为5~15微米。
在本申请的一些实施方式中,单面胶上还具有离型层,单面胶层的厚度为1~40微米,优选为2~10微米;离型层的厚度为5~500微米,优选为10~100微米。
在本申请的一些实施方式中,第一分散浆料中氮化硼粉末的质量比为1~50%,优选为2-35%;聚合物的质量比为1~50%,优选为1-30%。
在本申请的一些实施方式中,氮化硼薄膜层中氮化硼的质量为50~99wt%。
在本申请的一些实施方式中,氮化硼粉末、聚合物和溶剂混合得到第一分散浆料的方式为共混搅拌。
在本申请的一些实施方式中,共混搅拌的速度为50~30000rpm,优选为100~4000rpm;共混搅拌的时间为5分钟~72小时,优选为10分钟~36小时;共混搅拌的温度为20℃至溶剂沸点,具体优选温度依据特定高分子化合物在特定溶剂中的溶解或分散情况而定。
在本申请的一些实施方式中,施加机械力的时间为1~144小时,优选为2~48小时。
在本申请的一些实施方式中,第二分散浆料在涂布前调节粘度为200~10000mPa·s。调节粘度所采用的溶剂为S1中的溶剂,在稀释后需要进行充分搅拌,搅拌速度为100~1000rpm。优选为200~800rpm;搅拌时间为10分钟~24小时,优选为20分钟~2小时。
在本申请的一些实施方式中,第二分散浆料在涂布前调节粘度为500~5000mPa·s。
在本申请的一些实施方式中,S2中施加机械力的方式为球磨。
可以看到,本申请的制备方法相较于传统工艺有所简化,通过对第一分散浆料的一步化处理即可得到高质量的二维六方氮化硼分散液用于二维氮化硼复合散热膜的制备。传统的工艺在筛分清洗二维氮化硼纳米片的同时,需要涉及到一系列复杂工艺,增加成本的同时也会导致废水、废气和粉尘的产生,对环境保护和生产安全均存在一定的影响。
本申请中所采用的简单球磨工艺可以促进聚合物和二维六方氮化硼的相互作用力,在促进二维氮化硼剥离效率的同时,可以实现其分散浆料发生类似胶化的效果,并且能够通过聚合物的分子链对二维氮化硼纳米片进行铆接。这种相互的铆接和交联可以促进二维六方氮化硼在涂布时具有较强的相互作用力,进一步提高其有序排列效果。
在本申请的一些实施方式中,S2中剥离后进行筛分处理以除去未剥离的氮化硼粉末,从而得到包含所述氮化硼纳米片的第二分散浆料。
在本申请的一些实施方式中,S2中剥离后进行筛分处理的方式包括但不限于自然沉降、离心筛分等,优选为自然沉降。自然沉降的时间为12~144小时,优选为12~48小时。其中,未剥离的六方氮化硼可以被下次生产中循环利用以提高原料的利用效率。采用自然沉降的方法,将剥离后的氮化硼和未剥离的氮化硼进行区分,沉降得到的下层主要包含未剥离氮化硼的浆料可以返回S2中重新施加机械力剥离,循环使用从而避免的筛分的步骤,简化了工艺,降低了生产成本。
在本申请的一些实施方式中,薄膜的厚度为1~10000微米,优选为5~500微米。
在本申请的一些实施方式中,涂布完成后还需要进行干燥,使得涂布的湿膜转变为干膜。干燥温度为20~200℃,优选为40~150℃。另外,干燥温度还需要考虑基底和薄膜中聚合物的热稳定性,以及溶剂的沸点及挥发速率。干燥时间为2分钟至24小时,优选为5分钟至2小时。
本申请的第二方面,提供氮化硼散热膜,该氮化硼散热膜采用上述的制备方法制得。
本申请的第三方面,提供电子器件,该电子器件设置有上述的氮化硼散热膜。该电子器件的非限制性实例包括印刷电路板、射频器件等。该散热膜利用氮化硼材料在部分应用场景上取代传统的石墨散热膜,在保证一定的散热能力的基础上,二维氮化硼材料所具有高绝缘性、低介电损耗、低介电系数、透波和白色外观可以很好地解决石墨散热膜在实际应用中所存在的许多痛点,特别是在5G通讯设备、射频器件、高速通讯装置等相关电子元件的散热 场景。除此以外,二维氮化硼复合散热膜的出现可以更好地改变现有电子设备的设计思路,有助于电子设备的小型化和紧凑化发展。另外,该散热膜在柔性印刷电路板、绝缘膜、柔性电子封装等领域均有着潜在的发展空间和应用价值。
本申请的第四方面,提供电子设备,该电子设备包括上述的氮化硼散热膜。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是本申请实验例1中二维氮化硼纳米片的扫描电子显微镜图像。
图2是本申请实验例1中二维氮化硼纳米片的透射电子显微镜图像。
图3是本申请实验例1中二维氮化硼纳米片的片层尺寸统计图。
图4是本申请实验例1中二维氮化硼纳米片的原子力显微镜示意图。
图5是本申请实验例1中二维氮化硼纳米片的片层厚度统计示意图。
图6是本申请实验例1中氮化硼散热膜成品的数码照片。
图7是本申请实验例1中氮化硼散热膜成品的数码照片。
图8是本申请实验例1中氮化硼散热膜横截面的扫描电子显微镜图像。
图9是本申请实验例1中氮化硼散热膜表面的扫描电子显微镜图像。
图10是本申请实验例2中二维氮化硼纳米片的扫描电子显微镜图像。
图11是本申请实验例2中二维氮化硼纳米片的透射电子显微镜图像。
图12是本申请实验例2中氮化硼散热膜成品的数码照片。
图13是本申请实验例3中氮化硼散热膜的弯曲照片。
图14是本申请实验例9中氮化硼散热膜成品的数码照片。
图15是本申请实施例中氮化硼散热膜的一种结构示意图。
图16是本申请实施例中氮化硼散热膜的另一种结构示意图。
图17是本申请实验例10中氮化硼散热膜成品的散热能力的测试原理图。
图18是本申请实验例10中氮化硼散热膜成品与其他传统热界面材料在模拟实验环境下的使用效果对比。
附图标记:第一离型膜层151、双面胶膜层152、氮化硼薄膜层153、第二离型膜层154、单面胶层161。
具体实施方式
以下将结合实施例对本申请的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本申请的目的、特征和效果。显然,所描述的实施例只是本申请的一部分实施例,而不是全部实施例,基于本申请的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本申请保护的范围。
下面详细描述本申请的实施例,描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,若干的含义是一个以上,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
本申请的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
实施例1
本实施例提供一种散热膜及其制备方法,其制备方法包括以下步骤:
S1:取1800g六方氮化硼粉末、200g羧甲基纤维素钠和8000ml去离子水共混,在80℃温度下混合,以1000rpm的转速搅拌2小时后冷却至室温,得到第一分散浆料。
S2:将第一分散浆料加入到大型夹套反应器中,该反应器以适当的流速连通温度为5℃的循坏水。将合适尺寸和形状的高速剪切刀具插入浆料中至合适位置,待密封完全后以10000rpm的速度进行高速搅拌处理1小时,停止20分钟后,反复此操作。待高速剪切处理12小时后,将得到的二维氮化硼分散浆料从夹套反应器中取出静置。在二维氮化硼分散浆料静置24小时后,取液面总高度上层90%部分的分散浆料作为上层分散浆料,而下层10%部分的下层分散浆料经适当的浓度标定后加入下一批次生产的第一分散浆料中重新进行高速剪切剥离处理。
该步骤中,氮化硼的初始浓度为浆料总质量的18%,在静置沉淀后的上层分散浆料中浓度约为17.8%,下层分散浆料中的浓度约为19.7%。上层分散浆料中二维氮化硼的质量占第二分散浆料中二维氮化硼和羧甲基纤维素钠总和的89.9%,对比初始分散液90%的比重区别较小。
通过使用旋转粘度计对所得到的上层分散浆料进行粘度表征,其粘度为4123mPa·s。另外加入875ml去离子水加入到上层分散浆料中,在80℃的温度下以1000rpm的速率搅拌30分钟后停止搅拌并冷却至室温。稀释后的分散液粘度测试结果为1020mPa·s,以此作为第二分散浆料。
S3:取30微米厚的聚酰亚胺薄膜作为基底,首先确认基底表面的洁净程度,并通过使用丙酮对相应部分擦拭对基底进行清洁;然后将基底进行紫外-臭氧处理,从而进一步对基底表面进行清洁并提升基底表面的润湿性。将第二分散浆料进行真空搅拌除泡处理后,挤出至精密滚涂系统中进行涂布处理,得到负载在基底上的湿膜。滚涂的过程中,湿膜厚度约为500微米。将湿膜在60~80℃的梯度干燥20分钟后得到附着在聚酰亚胺基底表面的氮化硼薄膜层。
S4:在该氮化硼薄膜层远离聚酰亚胺基底表面的一侧附上一层单面带有离型膜的双面胶膜,双面胶膜与氮化硼薄膜层相接触,并通过10MPa压力的常温平板静压20分钟,得到终产品氮化硼散热膜。
取少量上层分散浆料,10000rpm离心处理3分钟后,取沉淀后用去离子水分散,反复离心-分散的步骤5次后,取得二维氮化硼纳米片的水分散液。图1是二维氮化硼纳米片的扫描电子显微镜图像,从图中可以看出,机械力剥离出的二维氮化硼纳米片呈现出明显的二维层状结构,且被高效剥离,厚度较小。图2是二维氮化硼纳米片的透射电子显微镜图像,从图中可以看出,二维氮化硼纳米片的厚度较小,而且片层尺寸仍然在微米级。经过对透射电子显微镜的图像进行统计分析,结果如图3所示,可见所剥离的纳米片的平均片层尺寸在1微米左右,属于高质量的大片二维材料。图4是所制备的二维氮化硼纳米片的原子力显微镜图像,从图中可以看出,二维氮化硼纳米片的厚度在1~10纳米的区间内,平均厚度较低且相对均匀。原子力显微镜图像的统计分析结果见图5,结合图5可以看出,二维氮化硼纳米片的平均厚度为5纳米左右,大约不到20个原子层。综上所述,本实验例方案可以以极高的产率高效地制备出高质量、大片、薄层的二维氮化硼材料。
最终制备得到的氮化硼散热膜成品在揭开表面离型膜后如图6和图7所示,从图中可以看出,氮化硼散热膜的一面附有双面胶层,可以很好地附着于相应的电子元器件的表面从而实现紧密贴合,并具有一定的柔性。而且这种薄膜具有一定的强度,可以实现自支撑,并且呈现出明显的陶瓷质感。
图8和图9分别是氮化硼散热膜的界面和表面的扫描电子显微镜图像,可见薄膜的内部呈现出高度有序的平面排列,并且相互连接紧密,同时薄膜表面也呈现出高度致密的外观,难以观察到原有的粉末状结构,避免了潜在的造成电子元器件的短路风险。经过螺旋测微计对氮化硼散热膜的各个膜层进行测定,测得氮化硼薄膜层的厚度为55微米,两层离型膜的总厚度为60微米,双面胶层的厚度为5微米,总厚度为120微米。
实施例2
本实施例提供一种散热膜及其制备方法,其制备方法包括以下步骤:
S1:取1800g六方氮化硼粉末、200g聚乙烯亚胺和8000ml去离子水共混,在80℃温度下混合,以1000rpm的速度搅拌2小时后冷却至室温,得到第一分散浆料。
S2:将第一分散浆料加入到大型夹套反应器中,该反应器以适当的流速连通温度为5℃的循坏水。将合适尺寸和形状的高速剪切刀具插入浆料中至合适位置,待密封完全后以10000rpm的速度进行高速搅拌处理1小时,停止20分钟后,反复此操作。待高速剪切处理12小时后,将得到的二维氮化硼分散浆料从夹套反应器中取出静置。在二维氮化硼分散浆料静置24小时后,取液面总高度上层90%部分的分散浆料作为上层分散浆料,而下层10%部分的下层分散浆料经适当的浓度标定后加入下一批次生产的第一分散浆料中重新进行高速剪切剥离处理。
该步骤中,氮化硼的初始浓度为浆料总质量的18%,在静置沉淀后的上层分散浆料中浓度约为17.7%,下层分散浆料中的浓度约为20.5%。上层分散浆料中二维氮化硼的质量占第二分散浆料中二维氮化硼和羧甲基纤维素钠总和的89.8%,对比初始分散液90%的比重区别较小。
通过使用旋转粘度计对所得到的上层分散浆料进行粘度表征,其粘度为3220mPa·s。另外加入550ml去离子水加入到上层分散浆料中,在80℃的温度下以1000rpm的速率搅拌30分钟后停止搅拌并冷却至室温。稀释后的分散液粘度测试结果为1070mPa·s,以此作为第二分散浆料。
S3:取30微米厚的聚酰亚胺薄膜作为基底,首先确认基底表面的洁净程度,并通过使用丙酮对相应部分擦拭对基底进行清洁;然后将基底进行紫外-臭氧处理,从而进一步对基底表面进行清洁并提升基底表面的润湿性。将第二分散浆料进行真空搅拌除泡处理后,挤出至精密滚涂系统中进行涂布处理,得到负载在基底上的湿膜。滚涂的过程中,湿膜厚度约为600微米。将湿膜在60~80℃的梯度干燥20分钟后得到附着在聚酰亚胺基底表面的氮化硼薄膜层。
S4:在该氮化硼薄膜层远离聚酰亚胺基底表面的一侧附上一层单面带有离型膜的双面胶膜,双面胶膜与氮化硼薄膜层相接触,并通过10MPa压力的常温平板静压20分钟,得到终产品氮化硼散热膜。
按照实施例1中的方法检测S2中制备得到的二维氮化硼纳米片,扫描电子显微镜图像如图10所示,从图中可以看出,二维氮化硼纳米片呈现出明显的二维层状结构,且被高效剥离,厚度较小。图11为二维氮化硼纳米片的透射电子显微镜图像,从图中可以看出,二维氮化硼纳米片的厚度较小,其平均片层尺寸在1微米左右,属于高质量的大片二维材料。最终制备得到的氮化硼散热膜成品在揭开表面离型膜后如图12所示,从图中可以看出,氮化硼散热膜的一面附有双面胶层,可以很好地附着于相应的电子元器件的表面从而实现紧密贴合,并具有一定的柔性。螺旋测微计对氮化硼散热膜的各个膜层进行测定,测得氮化硼薄膜层的厚度为65微米,两层离型膜层的总厚度为60微米,双面胶层的厚度为5微米,总厚度为130微米。
实施例3
本实施例提供一种散热膜及其制备方法,其制备方法包括以下步骤:
S1:取1800g六方氮化硼粉末、200g聚酰亚胺和8000ml二甲基乙酰胺共混,在130℃温度下混合,以1000rpm的速度搅拌2小时后冷却至室温,得到第一分散浆料。
S2:将第一分散浆料加入到大型夹套反应器中,该反应器以适当的流速连通温度为5℃的循坏水。将合适尺寸和形状的高速剪切刀具插入浆料中至合适位置,待密封完全后以10000rpm的速度进行高速搅拌处理1小时,停止20分钟后,反复此操作。待高速剪切处理12小时后,将得到的二维氮化硼分散浆料从夹套反应器中取出静置。在二维氮化硼分散浆料静置24小时后,取液面总高度上层90%部分的分散浆料作为上层分散浆料,而下层10%部分的下层分散浆料经适当的浓度标定后加入下一批次生产的第一分散浆料中重新进行高速剪切剥离处理。
该步骤中,氮化硼的初始浓度为浆料总质量的18%,在静置沉淀后的上层分散浆料中浓度约为17.7%,下层分散浆料中的浓度约为20.6%。上层分散浆料中二维氮化硼的质量占第二分散浆料中二维氮化硼和羧甲基纤维素钠总和的89.8%,对比初始分散液90%的比重区别较小。
通过使用旋转粘度计对所得到的上层分散浆料进行粘度表征,其粘度为2175mPa·s。另外加入250ml二甲基乙酰胺加入到上层分散浆料中,在130℃的温度下以1000rpm的速率搅拌30分钟后停止搅拌并冷却至室温。稀释后的分散液粘度测试结果为978mPa·s,以此作为第二分散浆料。
S3:取30微米厚的聚酰亚胺薄膜作为基底,首先确认基底表面的洁净程度,并通过使用丙酮对相应部分擦拭 对基底进行清洁;然后将基底进行紫外-臭氧处理,从而进一步对基底表面进行清洁并提升基底表面的润湿性。将第二分散浆料进行真空搅拌除泡处理后,挤出至精密滚涂系统中进行涂布处理,得到负载在基底上的湿膜。滚涂的过程中,湿膜厚度约为375微米。将湿膜在60~120℃的梯度干燥20分钟后得到附着在聚酰亚胺基底表面的氮化硼薄膜层。
S4:在该氮化硼薄膜层远离聚酰亚胺基底表面的一侧附上一层单面带有离型膜的双面胶膜,双面胶膜与氮化硼薄膜层相接触,并通过10MPa压力的常温平板静压20分钟,得到终产品氮化硼散热膜。
制备得到的氮化硼散热膜如图13所示,从图中可以看出,其具有优秀的柔性。螺旋测微计对氮化硼散热膜的各个膜层进行测定,测得氮化硼薄膜层的厚度为55微米,两层离型膜层的总厚度为60微米,双面胶层的厚度为5微米,总厚度为120微米。
实施例4
本实施例提供一种散热膜及其制备方法,其制备方法包括以下步骤:
S1:取1800g六方氮化硼粉末、200g聚偏二氟乙烯和8000ml二甲基乙酰胺共混,在130℃温度下混合,以1000rpm的速度搅拌2小时后冷却至室温,得到第一分散浆料。
S2:将第一分散浆料加入到大型夹套反应器中,该反应器以适当的流速连通温度为5℃的循坏水。将合适尺寸和形状的高速剪切刀具插入浆料中至合适位置,待密封完全后以10000rpm的速度进行高速搅拌处理1小时,停止20分钟后,反复此操作。待高速剪切处理12小时后,将得到的二维氮化硼分散浆料从夹套反应器中取出静置。在二维氮化硼分散浆料静置24小时后,取液面总高度上层90%部分的分散浆料作为上层分散浆料,而下层10%部分的下层分散浆料经适当的浓度标定后加入下一批次生产的第一分散浆料中重新进行高速剪切剥离处理。
该步骤中,氮化硼的初始浓度为浆料总质量的18%,在静置沉淀后的上层分散浆料中浓度约为17.7%,下层分散浆料中的浓度约为20.7%。上层分散浆料中二维氮化硼的质量占第二分散浆料中二维氮化硼和羧甲基纤维素钠总和的89.8%,对比初始分散液90%的比重区别较小。
通过使用旋转粘度计对所得到的上层分散浆料进行粘度表征,其粘度为2340mPa·s。另外加入280ml二甲基乙酰胺加入到上层分散浆料中,在130℃的温度下以1000rpm的速率搅拌30分钟后停止搅拌并冷却至室温。稀释后的分散液粘度测试结果为1025mPa·s,以此作为第二分散浆料。
S3:取30微米厚的聚酰亚胺薄膜作为基底,首先确认基底表面的洁净程度,并通过使用丙酮对相应部分擦拭对基底进行清洁;然后将基底进行紫外-臭氧处理,从而进一步对基底表面进行清洁并提升基底表面的润湿性。将第二分散浆料进行真空搅拌除泡处理后,挤出至精密滚涂系统中进行涂布处理,得到负载在基底上的湿膜。滚涂的过程中,湿膜厚度约为375微米。将湿膜在60~120℃的梯度干燥20分钟后得到附着在聚酰亚胺基底表面的氮化硼薄膜层。
S4:在该氮化硼薄膜层远离聚酰亚胺基底表面的一侧附上一层单面带有离型膜的双面胶膜,双面胶膜与氮化硼薄膜层相接触,并通过10MPa压力的常温平板静压20分钟,得到终产品氮化硼散热膜。
螺旋测微计对氮化硼散热膜的各个膜层进行测定,测得氮化硼薄膜层的厚度为55微米,两层离型膜层的总厚度为60微米,双面胶层的厚度为5微米,总厚度为120微米。
实施例5
本实施例提供一种散热膜及其制备方法,其制备方法包括以下步骤:
S1:取1800g六方氮化硼粉末、200g聚偏二氟乙烯和8000ml二甲基乙酰胺共混,在130℃温度下混合,以1000rpm的速度搅拌2小时后冷却至室温,得到第一分散浆料。
S2:将第一分散浆料加入到大型夹套反应器中,该反应器以适当的流速连通温度为5℃的循坏水。将高功率超声探针插入浆料中至合适位置,待密封完全后以800W的功率超声处理6秒,停止20秒后,设定程序反复此操作。待超声处理72小时后,将得到的二维氮化硼分散浆料从夹套反应器中取出静置。在二维氮化硼分散浆料静置24小时后,取液面总高度上层90%部分的分散浆料作为上层分散浆料,而下层10%部分的下层分散浆料经适当的浓度标 定后加入下一批次生产的第一分散浆料中重新进行高速剪切剥离处理。
该步骤中,氮化硼的初始浓度为浆料总质量的18%,在静置沉淀后的上层分散浆料中浓度约为17.1%,下层分散浆料中的浓度约为25.2%。上层分散浆料中二维氮化硼的质量占第二分散浆料中二维氮化硼和羧甲基纤维素钠总和的89.5%,对比初始分散液90%的比重区别较小。
通过使用旋转粘度计对所得到的上层分散浆料进行粘度表征,其粘度为1940mPa·s。另外加入195ml二甲基乙酰胺加入到上层分散浆料中,在130℃的温度下以1000rpm的速率搅拌30分钟后停止搅拌并冷却至室温。稀释后的分散液粘度测试结果为925mPa·s,以此作为第二分散浆料。
S3:取30微米厚的聚酰亚胺薄膜作为基底,首先确认基底表面的洁净程度,并通过使用丙酮对相应部分擦拭对基底进行清洁;然后将基底进行紫外-臭氧处理,从而进一步对基底表面进行清洁并提升基底表面的润湿性。将第二分散浆料进行真空搅拌除泡处理后,挤出至精密滚涂系统中进行涂布处理,得到负载在基底上的湿膜。滚涂的过程中,湿膜厚度约为300微米。将湿膜在60~120℃的梯度干燥20分钟后得到附着在聚酰亚胺基底表面的氮化硼薄膜层。
S4:在该氮化硼薄膜层远离聚酰亚胺基底表面的一侧附上一层单面带有离型膜的双面胶膜,双面胶膜与氮化硼薄膜层相接触,并通过10MPa压力的常温平板静压20分钟,得到终产品氮化硼散热膜。
螺旋测微计对氮化硼散热膜的各个膜层进行测定,测得氮化硼薄膜层的厚度为45微米,两层离型膜层的总厚度为60微米,双面胶层的厚度为5微米,总厚度为110微米。
实施例6
本实施例提供一种散热膜及其制备方法,其制备方法包括以下步骤:
S1:取1800g六方氮化硼粉末、200g聚偏二氟乙烯和8000ml二甲基乙酰胺共混,在130℃温度下混合,以1000rpm的速度搅拌2小时后冷却至室温,得到第一分散浆料。
S2:将第一分散浆料加入到大型夹套反应器中,该反应器以适当的流速连通温度为5℃的循坏水。将高功率超声探针插入浆料中至合适位置,待密封完全后以800W的功率超声处理6秒,停止20秒后,设定程序反复此操作。待超声处理72小时后,将得到的二维氮化硼分散浆料从夹套反应器中取出静置。在二维氮化硼分散浆料静置24小时后,取液面总高度上层90%部分的分散浆料作为上层分散浆料,而下层10%部分的下层分散浆料经适当的浓度标定后加入下一批次生产的第一分散浆料中重新进行高速剪切剥离处理。
该步骤中,氮化硼的初始浓度为浆料总质量的18%,在静置沉淀后的上层分散浆料中浓度约为17.1%,下层分散浆料中的浓度约为25.2%。上层分散浆料中二维氮化硼的质量占第二分散浆料中二维氮化硼和羧甲基纤维素钠总和的89.5%,对比初始分散液90%的比重区别较小。
通过使用旋转粘度计对所得到的上层分散浆料进行粘度表征,其粘度为1940mPa·s。另外加入195ml二甲基乙酰胺加入到上层分散浆料中,在130℃的温度下以1000rpm的速率搅拌30分钟后停止搅拌并冷却至室温。稀释后的分散液粘度测试结果为925mPa·s,以此作为第二分散浆料。
S3:取30微米厚的聚酰亚胺薄膜作为基底,首先确认基底表面的洁净程度,并通过使用丙酮对相应部分擦拭对基底进行清洁;然后将基底进行紫外-臭氧处理,从而进一步对基底表面进行清洁并提升基底表面的润湿性。将第二分散浆料进行真空搅拌除泡处理后,挤出至精密滚涂系统中进行涂布处理,得到负载在基底上的湿膜。滚涂的过程中,湿膜厚度约为200微米。将湿膜在60~120℃的梯度干燥20分钟后得到附着在聚酰亚胺基底表面的氮化硼薄膜层。
S4:在该氮化硼薄膜层远离聚酰亚胺基底表面的一侧附上一层单面带有离型膜的双面胶膜,双面胶膜与氮化硼薄膜层相接触,并通过10MPa压力的常温平板静压20分钟,得到终产品氮化硼散热膜。
螺旋测微计对氮化硼散热膜的各个膜层进行测定,测得氮化硼薄膜层的厚度为30微米,两层离型膜层的总厚度为60微米,双面胶层的厚度为5微米,总厚度为95微米。
实施例7
本实施例提供一种散热膜及其制备方法,其制备方法包括以下步骤:
S1:取1800g六方氮化硼粉末、200g聚偏二氟乙烯和8000ml二甲基乙酰胺共混,在130℃温度下混合,以1000rpm的速度搅拌2小时后冷却至室温,得到第一分散浆料。
S2:将第一分散浆料加入到球磨罐中,加入适量不同尺寸的氧化锆磨球,球磨速度为300rpm。待球磨处理24小时后,将得到的二维氮化硼分散浆料从球磨罐中取出过滤除去磨球并静置。在二维氮化硼分散浆料静置24小时后,取液面总高度上层90%部分的分散浆料作为上层分散浆料,而下层10%部分的下层分散浆料经适当的浓度标定后加入下一批次生产的第一分散浆料中重新进行高速剪切剥离处理。
该步骤中,氮化硼的初始浓度为浆料总质量的18%,在静置沉淀后的上层分散浆料中浓度约为17.8%,下层分散浆料中的浓度约为29.7%。上层分散浆料中二维氮化硼的质量占第二分散浆料中二维氮化硼和羧甲基纤维素钠总和的89.8%,对比初始分散液90%的比重区别较小。
通过使用旋转粘度计对所得到的上层分散浆料进行粘度表征,其粘度为2050mPa·s。另外加入200ml二甲基乙酰胺加入到上层分散浆料中,在130℃的温度下以1000rpm的速率搅拌30分钟后停止搅拌并冷却至室温。稀释后的分散液粘度测试结果为1000mPa·s,以此作为第二分散浆料。
S3:取30微米厚的聚酰亚胺薄膜作为基底,首先确认基底表面的洁净程度,并通过使用丙酮对相应部分擦拭对基底进行清洁;然后将基底进行紫外-臭氧处理,从而进一步对基底表面进行清洁并提升基底表面的润湿性。将第二分散浆料进行真空搅拌除泡处理后,挤出至精密滚涂系统中进行涂布处理,得到负载在基底上的湿膜。滚涂的过程中,湿膜厚度约为750微米。将湿膜在60~120℃的梯度干燥20分钟后得到附着在聚酰亚胺基底表面的氮化硼薄膜层。
S4:在该氮化硼薄膜层远离聚酰亚胺基底表面的一侧附上一层单面带有离型膜的双面胶膜,双面胶膜与氮化硼薄膜层相接触,并通过10MPa压力的常温平板静压20分钟,得到终产品氮化硼散热膜。
螺旋测微计对氮化硼散热膜的各个膜层进行测定,测得氮化硼薄膜层的厚度为100微米,两层离型膜层的总厚度为60微米,双面胶层的厚度为5微米,总厚度为165微米。
实施例8
本实施例提供一种散热膜及其制备方法,其制备方法包括以下步骤:
S1:取1800g六方氮化硼粉末、200g聚偏二氟乙烯和8000ml二甲基乙酰胺共混,在130℃温度下混合,以1000rpm的速度搅拌2小时后冷却至室温,得到第一分散浆料。
S2:将第一分散浆料加入到球磨罐中,加入适量不同尺寸的氧化锆磨球,球磨速度为300rpm。待球磨处理24小时后,将得到的二维氮化硼分散浆料从球磨罐中取出过滤除去磨球并静置。在二维氮化硼分散浆料静置24小时后,取液面总高度上层90%部分的分散浆料作为上层分散浆料,而下层10%部分的下层分散浆料经适当的浓度标定后加入下一批次生产的第一分散浆料中重新进行高速剪切剥离处理。
该步骤中,氮化硼的初始浓度为浆料总质量的18%,在静置沉淀后的上层分散浆料中浓度约为17.8%,下层分散浆料中的浓度约为29.7%。上层分散浆料中二维氮化硼的质量占第二分散浆料中二维氮化硼和羧甲基纤维素钠总和的89.8%,对比初始分散液90%的比重区别较小。
通过使用旋转粘度计对所得到的上层分散浆料进行粘度表征,其粘度为2050mPa·s。另外加入200ml二甲基乙酰胺加入到上层分散浆料中,在130℃的温度下以1000rpm的速率搅拌30分钟后停止搅拌并冷却至室温。稀释后的分散液粘度测试结果为1000mPa·s,以此作为第二分散浆料。
S3:取30微米厚的聚酰亚胺薄膜作为基底,首先确认基底表面的洁净程度,并通过使用丙酮对相应部分擦拭对基底进行清洁;然后将基底进行紫外-臭氧处理,从而进一步对基底表面进行清洁并提升基底表面的润湿性。将第二分散浆料进行真空搅拌除泡处理后,挤出至精密滚涂系统中进行涂布处理,得到负载在基底上的湿膜。滚涂的过程中,湿膜厚度约为2250微米。将湿膜在60~120℃的梯度干燥20分钟后得到附着在聚酰亚胺基底表面的氮化硼薄膜层。
S4:在该氮化硼薄膜层远离聚酰亚胺基底表面的一侧附上一层单面带有离型膜的双面胶膜,双面胶膜与氮化硼薄膜层相接触,并通过10MPa压力的常温平板静压20分钟,得到终产品氮化硼散热膜。
螺旋测微计对氮化硼散热膜的各个膜层进行测定,测得氮化硼薄膜层的厚度为300微米,两层离型膜层的总厚度为60微米,双面胶层的厚度为5微米,总厚度为365微米。
实施例9
本实施例提供一种散热膜及其制备方法,其制备方法包括以下步骤:
S1:取1800g六方氮化硼粉末、200g聚偏二氟乙烯和8000ml二甲基乙酰胺共混,在130℃温度下混合,以1000rpm的速度搅拌2小时后冷却至室温,得到第一分散浆料。
S2:将第一分散浆料加入到大型夹套反应器中,该反应器以适当的流速连通温度为5℃的循坏水。将合适尺寸和形状的高速剪切刀具插入浆料中至合适位置,待密封完全后以10000rpm的速度进行高速搅拌处理1小时,停止20分钟后,反复此操作。待高速剪切处理12小时后,将得到的二维氮化硼分散浆料从夹套反应器中取出静置。在二维氮化硼分散浆料静置24小时后,取液面总高度上层90%部分的分散浆料作为上层分散浆料,而下层10%部分的下层分散浆料经适当的浓度标定后加入下一批次生产的第一分散浆料中重新进行高速剪切剥离处理。
该步骤中,氮化硼的初始浓度为浆料总质量的18%,在静置沉淀后的上层分散浆料中浓度约为17.7%,下层分散浆料中的浓度约为20.7%。上层分散浆料中二维氮化硼的质量占第二分散浆料中二维氮化硼和羧甲基纤维素钠总和的89.8%,对比初始分散液90%的比重区别较小。
通过使用旋转粘度计对所得到的上层分散浆料进行粘度表征,其粘度为2340mPa·s。另外加入280ml二甲基乙酰胺加入到上层分散浆料中,在130℃的温度下以1000rpm的速率搅拌30分钟后停止搅拌并冷却至室温。稀释后的分散液粘度测试结果为1025mPa·s,以此作为第二分散浆料。
S3:取30微米厚的聚酰亚胺薄膜作为基底,首先确认基底表面的洁净程度,并通过使用丙酮对相应部分擦拭对基底进行清洁;然后将基底进行紫外-臭氧处理,从而进一步对基底表面进行清洁并提升基底表面的润湿性。将第二分散浆料进行真空搅拌除泡处理后,挤出至精密滚涂系统中进行涂布处理,得到负载在基底上的湿膜。滚涂的过程中,湿膜厚度约为375微米。将湿膜在60~120℃的梯度干燥20分钟后得到附着在聚酰亚胺基底表面的氮化硼薄膜层。
S4:在该氮化硼薄膜层远离聚酰亚胺基底表面的一侧附上一层单面带有离型膜的双面胶膜,双面胶膜与氮化硼薄膜层相接触,除去原有的聚酰亚胺基底,并在氮化硼薄膜层的该侧重新附上一层单面胶保护膜层,通过10MPa压力的常温平板静压20分钟,得到终产品氮化硼散热膜。
图14是本实施例制备得到的氮化硼散热膜成品的照片。螺旋测微计对氮化硼散热膜的各个膜层进行测定,测得氮化硼薄膜层的厚度为55微米,两层离型膜层的总厚度为60微米,双面胶层的厚度为5微米,单面胶层的厚度为5微米,总厚度为125微米。
图15和图16分别是上述实施例1~9中制备得到的氮化硼散热膜的结构示意图,其中一种结构如图15所示,从下到上包括第一离型膜层151、双面胶膜层152、氮化硼薄膜层153、第二离型膜层154。另一种结构如图16所示,从下到上包括第一离型膜层151、双面胶膜层152、氮化硼薄膜层153、单面胶层161、第二离型膜层154。
实施例10
散热膜性能检测
分别取实施例1~9制备得到的氮化硼散热膜,使用闪光法热扩散系数测定仪(LFA-467)测定散热膜的热扩散系数,采用差示扫描量热法测定散热膜的比热容,使用排水法测定散热膜的密度,结果如表1所示。
表1.散热膜性能检测结果
样品 热扩散系数 密度 比热容 热导率
  (mm 2/s) (g/cm 3) (kJ kg -1K -1) (W m -1K -1)
实验例1 16.41 1.72 1.09 30.77
实验例2 17.32 1.68 1.11 32.30
实验例3 19.97 1.77 1.14 40.30
实验例4 20.03 1.74 1.13 39.38
实验例5 20.15 1.77 1.13 40.30
实验例6 24.53 1.81 1.13 50.17
实验例7 18.54 1.69 1.13 35.41
实验例8 16.33 1.66 1.13 30.63
实验例9 16.43 1.64 1.13 30.45
从图中可以看出,本申请实施例制备得到的氮化硼散热膜的热扩散系数和导热率有非常大的提升,最高分别可以达到24.53mm 2/s和50.17W m -1K -1
实施例11
散热能力验证实验
采用对单一发热源进行稳态散热的模拟实验方法测定二维氮化硼散热膜在实际使用环境下的效果。基本原理如图17所示,主要通过一个恒温加热板对散热膜进行加热,恒温加热板和散热膜之间设有铝块和隔热间隔,并在达到稳态后观察散热膜表面的热点温度。采用相同厚度的实施例6制得的氮化硼散热膜与氧化铝、氮化铝等传统高性能导热薄膜进行对比,模拟实验的结果如图18所示,A是本申请实施例提供的氮化硼散热膜,B和C分别是氧化铝和氮化铝散热膜。从图中可以看出,本申请实施例所提供的散热膜表面的热点温度的平均值(AVG)和最高值(MAX)相比于其它两类导热薄膜都明显更低,温度降低明显,表明本申请实施例所提供的氮化硼散热膜具有优异的散热性能。
上面结合实施例对本申请作了详细说明,但是本申请不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。此外,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 氮化硼散热膜的制备方法,其特征在于,包括以下步骤:
    S1:将氮化硼粉末、聚合物和溶剂混合,得到第一分散浆料;
    S2:向所述第一分散浆料施加机械力进行剥离,得到包含氮化硼纳米片的第二分散浆料;
    S3:将所述第二分散浆料在基底上涂布,得到薄膜;
    S4:对所述薄膜进行压缩处理,得到氮化硼散热膜。
  2. 根据权利要求1所述的制备方法,其特征在于,所述压缩处理的压力为1~1000MPa,处理时间为10s~24h;
    优选的,所述压缩处理的压力为5~60MPa,处理时间为10s~2h;
    优选的,所述压缩处理的温度为20~400℃。
  3. 根据权利要求1所述的制备方法,其特征在于,所述S4为:对所述薄膜进行压缩处理,得到负载在所述基底上的氮化硼薄膜层,转移所述氮化硼薄膜层得到所述氮化硼散热膜;
    优选的,所述转移的方式为使带有离型膜的双面胶与所述氮化硼薄膜层接触,将所述氮化硼薄膜层转移到所述双面胶,得到所述氮化硼散热膜;
    优选的,转移到所述双面胶后,还包括在所述氮化硼薄膜层远离所述双面胶的一侧覆盖单面胶。
  4. 根据权利要求3所述的制备方法,其特征在于,所述氮化硼薄膜层中氮化硼的质量为50~99wt%。
  5. 根据权利要求1所述的制备方法,其特征在于,所述第二分散浆料在涂布前调节粘度为200~10000mPa·s,优选为500~5000mPa·s。
  6. 根据权利要求1所述的制备方法,其特征在于,所述S2中,施加机械力的方式为球磨。
  7. 根据权利要求1至6任一项所述的制备方法,其特征在于,所述聚合物选自聚乙烯醇、聚酰胺、聚酰亚胺、环氧树脂、聚砜、聚酯、聚醚、聚乙二醇、聚乙烯吡咯烷酮、聚氧化乙烯、聚甲基丙烯酸酯、聚偏氟乙烯、聚芳酰胺、酚醛树脂、聚碳酸酯、聚乙烯亚胺、纳米纤维素、羧甲基纤维素钠、硅橡胶前驱体中的至少一种。
  8. 氮化硼散热膜,其特征在于,采用权利要求1至7任一项所述的制备方法制备得到。
  9. 电子器件,其特征在于,设置有权利要求8所述的氮化硼散热膜。
  10. 电子设备,其特征在于,包括权利要求8所述的氮化硼散热膜。
PCT/CN2021/116972 2021-03-15 2021-09-07 氮化硼散热膜及其制备方法和应用 WO2022193572A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110277139.0 2021-03-15
CN202110277139.0A CN113179611B (zh) 2021-03-15 2021-03-15 氮化硼散热膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022193572A1 true WO2022193572A1 (zh) 2022-09-22

Family

ID=76922034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116972 WO2022193572A1 (zh) 2021-03-15 2021-09-07 氮化硼散热膜及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113179611B (zh)
WO (1) WO2022193572A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115847987A (zh) * 2022-12-02 2023-03-28 苏州铂韬新材料科技有限公司 一种带有透波导热功能的膜材及其制备工艺
CN115975248A (zh) * 2022-12-29 2023-04-18 保定维赛新材料科技股份有限公司 氮化硼气凝胶制备方法、定型复合相变材料及其制备方法
CN116651720A (zh) * 2023-05-25 2023-08-29 佛山(华南)新材料研究院 一种高定向水平排列氮化硼膜的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113179611B (zh) * 2021-03-15 2023-03-24 佛山市晟鹏科技有限公司 氮化硼散热膜及其制备方法和应用
CN114573932A (zh) * 2022-03-16 2022-06-03 北京大学 一种基于大片层本征六方氮化硼的高导热氮化硼纸及其制备方法
CN114874676A (zh) * 2022-06-02 2022-08-09 中国计量大学 一种二维层状纳米材料有序排列涂层的制备方法
WO2024059892A1 (en) * 2022-09-21 2024-03-28 Monash University Nanosheet monolayers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106084776A (zh) * 2016-07-08 2016-11-09 上海电力学院 一种高强度高导热绝缘复合膜及其制备方法
CN109181301A (zh) * 2018-07-21 2019-01-11 上海大学 一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法
CN109956499A (zh) * 2017-12-14 2019-07-02 中国科学院深圳先进技术研究院 二维材料的剥离方法
CN111115591A (zh) * 2020-01-03 2020-05-08 青岛科技大学 一种超高浓度氮化硼纳米膏及其制备方法
CN111423699A (zh) * 2020-05-12 2020-07-17 河北工业大学 高填充量六方氮化硼/聚合物块状复合材料的制备方法
WO2021034490A2 (en) * 2019-07-31 2021-02-25 Northeastern University Thermally conductive boron nitride films and multilayered composites containing them
CN113179611A (zh) * 2021-03-15 2021-07-27 佛山市晟鹏科技有限公司 氮化硼散热膜及其制备方法和应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104803363A (zh) * 2015-04-14 2015-07-29 上海大学 一种大批量制备六方氮化硼纳米片的方法
CN106243715B (zh) * 2016-08-15 2018-10-02 中国科学院宁波材料技术与工程研究所 一种高导热聚酰亚胺/氮化硼复合材料及其制备方法
JP6294927B1 (ja) * 2016-09-15 2018-03-14 日清紡ホールディングス株式会社 樹脂組成物及びこれを用いた熱伝導性軟質シート、並びに放熱構造
CN107033539B (zh) * 2016-11-17 2019-03-15 中国科学院宁波材料技术与工程研究所 环氧树脂氮化硼纳米复合材料及其制备方法
CN109020556B (zh) * 2018-06-19 2021-09-17 杭州格蓝丰纳米科技有限公司 一种基于混合烧结的氮化硼绝缘散热膜的制备方法
US20200163255A1 (en) * 2018-11-16 2020-05-21 The University Of Akron Highly elastic, thermally conductive and optically transparent polymer based material for heat dissipation in flexible/wearable electronics and other thermal management applications
CN109971020B (zh) * 2019-03-26 2022-03-25 上海大学 一种功能纳米纤维素-氮化硼复合薄膜及其制备方法
CN110203896A (zh) * 2019-06-16 2019-09-06 深圳市中科墨磷科技有限公司 一种球磨增强剥离制备二维材料纳米片的方法
CN110922719A (zh) * 2019-11-22 2020-03-27 中南大学 高导热氮化硼/环氧树脂复合材料及其制备方法与应用
CN111186823B (zh) * 2020-02-19 2022-02-11 清华-伯克利深圳学院筹备办公室 聚合物辅助制备二维材料及其复合材料的方法
CN111423698B (zh) * 2020-05-12 2022-11-15 河北工业大学 高填充量六方氮化硼纳米片/纤维/聚合物块状复合材料及制备方法
CN112409997A (zh) * 2020-11-18 2021-02-26 信骅(上海)器材有限公司 一种耐弯折复合散热膜的制备方法及散热材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106084776A (zh) * 2016-07-08 2016-11-09 上海电力学院 一种高强度高导热绝缘复合膜及其制备方法
CN109956499A (zh) * 2017-12-14 2019-07-02 中国科学院深圳先进技术研究院 二维材料的剥离方法
CN109181301A (zh) * 2018-07-21 2019-01-11 上海大学 一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法
WO2021034490A2 (en) * 2019-07-31 2021-02-25 Northeastern University Thermally conductive boron nitride films and multilayered composites containing them
CN111115591A (zh) * 2020-01-03 2020-05-08 青岛科技大学 一种超高浓度氮化硼纳米膏及其制备方法
CN111423699A (zh) * 2020-05-12 2020-07-17 河北工业大学 高填充量六方氮化硼/聚合物块状复合材料的制备方法
CN113179611A (zh) * 2021-03-15 2021-07-27 佛山市晟鹏科技有限公司 氮化硼散热膜及其制备方法和应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115847987A (zh) * 2022-12-02 2023-03-28 苏州铂韬新材料科技有限公司 一种带有透波导热功能的膜材及其制备工艺
CN115847987B (zh) * 2022-12-02 2023-12-08 苏州铂韬新材料科技有限公司 一种带有透波导热功能的膜材及其制备工艺
CN115975248A (zh) * 2022-12-29 2023-04-18 保定维赛新材料科技股份有限公司 氮化硼气凝胶制备方法、定型复合相变材料及其制备方法
CN115975248B (zh) * 2022-12-29 2024-02-13 保定维赛新材料科技股份有限公司 氮化硼气凝胶制备方法、定型复合相变材料及其制备方法
CN116651720A (zh) * 2023-05-25 2023-08-29 佛山(华南)新材料研究院 一种高定向水平排列氮化硼膜的制备方法
CN116651720B (zh) * 2023-05-25 2023-11-21 佛山(华南)新材料研究院 一种高定向水平排列氮化硼膜的制备方法

Also Published As

Publication number Publication date
CN113179611A (zh) 2021-07-27
CN113179611B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2022193572A1 (zh) 氮化硼散热膜及其制备方法和应用
WO2022104949A1 (zh) 导热复合材料及其制备方法
Zhou et al. Improved dielectric properties and thermal conductivity of PVDF composites filled with core–shell structured Cu@ CuO particles
CN112029125B (zh) 一种绝缘聚乙烯醇复合导热薄膜及其制备方法
Lin et al. Construction of a 3D interconnected boron nitride nanosheets in a PDMS matrix for high thermal conductivity and high deformability
JP5959983B2 (ja) 絶縁性熱伝導フィラー分散組成物
CN109971020B (zh) 一种功能纳米纤维素-氮化硼复合薄膜及其制备方法
JP6161757B2 (ja) 絶縁性熱伝導ポリイミド樹脂組成物
CN112208173A (zh) 一种热界面材料及其制备方法
CN114481355A (zh) 一种基于六方氮化硼制备导热绝缘膜的方法
Ma et al. Highly anisotropic thermal conductivity and electrical insulation of nanofibrillated cellulose/Al2O3@ rGO composite films: effect of the particle size
CN113912914A (zh) 聚合物基复合导热材料及其制备方法和应用
CN114103305A (zh) 一种高Tg高导热的金属基覆铜板及其加工工艺
CN116438075A (zh) 四氟乙烯类聚合物的组合物、层叠体和膜
CN114589987A (zh) 高频高速高介电低损耗ptfe挠性覆铜板及其制备工艺
JP2022113635A (ja) 電磁波シールド用組成物、電磁波シールドシート付基体の製造方法、電磁波シールドシート及びプリント配線基板
TW202142486A (zh) 複合材料及其製造方法
CN111799106A (zh) 平面电容的制作方法及制作装置
CN115584038B (zh) 一种柔性芳纶纳米纤维/MXene高导热阻燃复合薄膜及其制备方法与应用
WO2024075609A1 (ja) 水性分散液
CN109354716B (zh) 一种纤维素纳米纤丝-氮化铝复合材料的制备方法
WO2023100739A1 (ja) 液状組成物、積層体及びそれらの製造方法
TW202400689A (zh) 分散液
TW202406998A (zh) 水系分散液之製造方法及水系分散液
CN116749562A (zh) 一种基于低含量氮化硼制备柔性聚乙烯醇复合材料导热薄膜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931147

Country of ref document: EP

Kind code of ref document: A1