CN112898780A - 具阻水气特性的硅胶薄膜 - Google Patents

具阻水气特性的硅胶薄膜 Download PDF

Info

Publication number
CN112898780A
CN112898780A CN201911305926.0A CN201911305926A CN112898780A CN 112898780 A CN112898780 A CN 112898780A CN 201911305926 A CN201911305926 A CN 201911305926A CN 112898780 A CN112898780 A CN 112898780A
Authority
CN
China
Prior art keywords
moisture
substituted
film
sio
silica gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201911305926.0A
Other languages
English (en)
Inventor
邓仕杰
黄如慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BenQ Materials Corp
Original Assignee
BenQ Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BenQ Materials Corp filed Critical BenQ Materials Corp
Publication of CN112898780A publication Critical patent/CN112898780A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/05Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明公开了一种具阻水气特性的硅胶薄膜,其是经由固化一可固化硅树脂组成物而形成,其中该可固化硅树脂组成物包含10至25重量份的线性聚硅氧烷;40至55重量份的一第一硅树脂,其中用于表示第一硅树脂的平均单元结构式至少具有R1SiO3/2单体以及R2 2SiO2/2单体,且该R1SiO3/2单体于平均单元结构式中所占的摩尔分率是介于0.60至0.75;15至30重量份的一第二硅树脂;15至25重量份的含硅氢键之聚硅氧烷;10至40重量份的微层片以及一铂族金属是催化剂。

Description

具阻水气特性的硅胶薄膜
技术领域
本发明是关于耐弯折的具阻水气特性的硅胶薄膜,其可用以封装光学半导体装置,尤其是是关于一种可应用于发光二极管LED(Light Emitting Diode)之封装的硅胶薄膜。
背景技术
相较于传统照明,发光二极管(Light Emitting Diode,LED)具有体积小、发光效率高、寿命长、安全性高、操作反应时间快、色彩丰富、无热辐射及无水银等有毒物质污染的优点,因此目前正迅速地蓬勃发展。其应用面相当多元,例如建筑照明、消费式手持照明、零售展示照明、居住用照明等等。
一般的LED封装结构中包含支架、设置于支架上的LED芯片以及封装胶。因硅胶具有良好的耐热、耐光等特性,在现有技术中常使用硅胶做为LED的封装材料。然而,因硅胶中的Si-O-Si键角较大,因此硅胶薄膜的阻水气特性较差,容易使LED中的荧光粉或量子点(Quantum dot)因受潮而导致颜色发生变化或光衰退。虽已知可利用增加硅胶之交联密度或添加纳米粒子来增加硅胶之阻水气特性,但前述方法对于阻气性的提升效果相当有限。此外,因硅胶之热膨胀系数(CTE)较大,在进行无机薄膜的溅镀制程中会产生较大的热应力,而不容易在硅胶表面得到致密平整的无机薄膜,故并不建议在硅胶上溅镀无机薄膜来提升硅胶的阻水气性。
现有的阻气膜结构是以聚乙烯对苯二甲酸酯(PET)或聚萘二甲酸乙二醇酯(PEN)等具有较佳阻水气特性的高分子材料做为基板,再利用原子层沉积法制备氧化铝薄膜于高分子基板上而形成。然而因聚乙烯对苯二甲酸酯(PET)或聚萘二甲酸乙二醇酯(PEN)其柔软性及可塑性皆不足以被应用于高端LED产品中的的芯片级封装制程(Chip Scale Package,CSP)。
因此,仍需要一种新颖的具阻水气特性的硅胶薄膜,除了可以提供足够的阻水气特性,具有高加工性可应用于LED封装制程且仍能维持做为LED封装材料所需的光学性质。
发明内容
为达上述目的,本发明提供一种具阻水气特性的硅胶薄膜,其可用以封装光学半导体装置,尤其是是关于一种可应用于发光二极管LED(Light Emitting Diode)之封装的硅胶薄膜。
具阻水气特性的硅胶薄膜,其是经由固化一可固化硅树脂组成物而形成,前述可固化硅树脂组成物包含:10至25重量份的一线性聚硅氧烷,其平均单元结构式至少具有一个与硅原子键结之芳基与二个与硅原子键结之烯基;40至55重量份的一第一硅树脂,其平均单元结构式至少具有R1SiO3/2单体以及R2 2SiO2/2单体,其中R1及R2为经取代的或未取代之烷基、经取代的或未取代之烯基或经取代的或未取代之芳基,且在此平均单元结构式中,前述R1SiO3/2单体所占的摩尔分率是介于0.60至0.75之间,硅原子键结之烯基相对于所有与硅键结之官能基之摩尔数比值为0.03至0.15;15至30重量份的一第二硅树脂,其平均单元结构式至少具有R3SiO3/2以及R43SiO1/2之单体,其中R3及R4为经取代的或未取代之烷基、经取代的或未取代之烯基或经取代的或未取代之芳基;15至25重量份的至少一含硅氢键之聚硅氧烷,其化学结构式为:HR5 2SiO(SiR6 2O)nSiR5 2H,其中R5为经取代的或未取代的烷基或氢原子,R6为经取代或未取代的芳基或经取代的或未取代的烷基,n为大于等于0之整数;10至40重量份的微层片(microsheet);以及一铂族金属系催化剂,其中,此具阻水气特性的硅胶薄膜之水气穿透率(WVTR)小于40gm-2day-1,可见光穿透率大于92%且雾度小于4%。
根据本发明之一实施方式,前述微层片之一长径比是介于10至200之间,前述微层片之一长度是介于0.1微米(μm)至25微米(μm)之间。
根据本发明之一实施方式,前述微层片可以是云母、黏土、层状双氢氧化合物、磷酸氢钙之至少之一或其组合。
根据本发明之一实施方式,此具阻水气特性的硅胶薄膜之25℃-50℃热膨胀系数(CTE)是介于20ppm至60ppm之间,80℃-100℃热膨胀系数(CTE)是介于50ppm至150ppm之间,且中心线平均粗糙度(Ra)是介于0.01微米(μm)至0.15微米(μm)间。
根据本发明之另一实施方式,前述可固化硅树脂成物可选择性地进一步包括接着剂、抑制剂、触变剂、抗沉降剂、无机填料、荧光粉或其组合。
根据本发明之一实施方式,于前述可固化硅树脂成物中的无机填料包括一气相二氧化硅。
根据本发明之又一实施方式,前述具阻水气特性的硅胶薄膜可选择性地更包括一无机镀膜层,其位于前述具阻水气特性的硅胶薄膜之一表面上。
根据本发明之一实施方式,前述无机镀膜层是通过溅镀法(Sputter Deposition)或原子层沉积法(Atomic Layer Deposition,ALD)形成于前述具阻水气特性的硅胶薄膜之一表面上。
根据本发明之又一实施方式,前述无机镀膜层之厚度是介于10纳米(nm)至300纳米(nm)之间。
根据本发明之又一实施方式,前述无机镀膜层包括二氧化硅(SiO2)、三氧化二铝(Al2O3)或二氧化铪(HfO2)。
根据本发明之又一实施方式,前述具阻水气特性的硅胶薄膜之水气穿透率(WVTR)小于0.5gm-2day-1
本发明另提出一种光学半导体装置,其中此光学半导体装置是由前述具阻水气特性的硅胶薄膜封装而成。
具体实施方式
为了使本发明公开内容的叙述更加详细与完备,下文针对本发明的实施方案与具体实施例进行了说明性的描述;但这并非是实施或运用本发明具体实施例的唯一形式。以下所揭露的各中实施例,在有益的情形下可相互组合或取代,也可在一种实施例中附加其他的实施例,而无须进一步的记载或说明。
本发明之优点、特征以及达到之技术方法将参照例示性实施例进行更详细地描述而更容易理解,且本发明或可以不同形式来实现,故不应被理解仅限于此处所陈述的实施例,相反地,对所属技术领域具有通常知识者而言,所提供的实施例将使本揭露更加透彻与全面且完整地传达本发明的范畴,且本发明将仅为所附加的申请专利范围所定义。
而除非另外定义,所有使用于后文的术语(包含科技及科学术语)与专有名词,于实质上是与本发明所属该领域的技术人士一般所理解之意思相同,而例如于一般所使用的字典所定义的那些术语应被理解为具有与相关领域的内容一致的意思,且除非明显地定义于后文,将不以过度理想化或过度正式的意思理解。
本发明提出之具阻水气特性的硅胶薄膜,其是经由固化一可固化硅树脂组成物而成,其中该可固化硅树脂组成物包含:10至25重量份的一线性聚硅氧烷,其平均单元结构式至少具有一个与硅原子键结之芳基与二个与硅原子键结之烯基;40至55重量份的一第一硅树脂,其平均单元结构式至少具有R1SiO3/2单体以及R2 2SiO2/2单体,其中R1及R2为经取代的或未取代之烷基、经取代的或未取代之烯基或经取代的或未取代之芳基,且在此平均单元结构式中,前述R1SiO3/2单体所占的摩尔分率是介于0.60至0.75之间,硅原子键结之烯基相对于所有与硅键结之官能基之摩尔数比值为0.03至0.15;15至30重量份的一第二硅树脂,其平均单元结构式至少具有R3SiO3/2以及R43SiO1/2之单体,其中R3及R4为经取代的或未取代之烷基、经取代的或未取代之烯基或经取代的或未取代之芳基;15至25重量份的至少一含硅氢键之聚硅氧烷,其化学结构式为:HR5 2SiO(SiR6 2O)nSiR5 2H,其中R5为经取代的或未取代的烷基或氢原子,R6为经取代或未取代的芳基或经取代的或未取代的烷基,n为大于等于0之整数;10至40重量份的微层片(microsheet);以及一铂族金属是催化剂。
于本发明之具阻水气特性的硅胶薄膜的可固化硅树脂组成物中,通过添加特定比例的微层片来提升硅胶薄膜的阻水气特性,且仍能维持高可见光穿透率以及低雾度等做为LED封装材料所需的光学性质以及必要之加工性。
在本发明之一实施例中,适合之微层片可以例如是云母、黏土、层状双氢氧化合物、磷酸氢钙、氮化硼之至少之一或其组合。适合之微层片之一长径比是介于10至200之间,且较佳是介于50至200之间。适合之微层片之长度是介于0.1微米(μm)至25微米(μm)之间,且较佳是介于2微米(μm)至25微米之间。适合之微层片之厚度是介于10纳米(nm)至1000纳米(nm)之间,且较佳是介于10纳米(nm)至400纳米(nm)之间。
在本发明之一较佳实施例中,可固化硅树脂中的微层片可经硅胶改质以提高微层片的疏水性质,以避免微层片在可固化硅树脂中发生聚集现象。在本发明之一较佳实施例中,可固化硅树脂中的微层片可以是经甲基硅酮处理之云母层片。
在本发明之可固化硅树脂组成物中,微层片(microsheet)之添加量可介于10至40重量份之间,当微层片的添加量过高,则会使具阻水气特性的硅胶薄膜雾度太高而影响LED的发光效率。当添加量过低,则无法有效提升具阻水气特性的硅胶薄膜之阻水气特性,且会因无法有效降低硅胶之热胀是数(CTE),热胀是数(CTE)过高时在后续形成无机镀膜层后可能会有龟裂现象,而无法维持必须的阻水气性质。
在本发明之一实施例中,第一硅树脂之平均单元结构式至少具有R1SiO3/2单体以及R22SiO2/2单体,其中,R1及R2为经取代的或未取代之烷基、经取代的或未取代之烯基或经取代的或未取代之芳基。此经取代的或未取代的芳基例如可为苯基、甲苯基、二甲苯基或萘基,较佳为苯基。此经取代的或未取代的烯基例如可为乙烯基、丙烯基、烯丙基、丁烯基、戊烯基或是己烯基,较佳为乙烯基。除了经取代的或未取代的芳基与经取代的或未取代的烯基以外,其余与硅原子键结之官能基可为经取代的或未取代的烷基,例如可为甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、戊基、新戊基、己基、环己基、辛基、壬基或癸基,较佳为甲基。
在本发明之一实施例中,为了提高具阻水气特性的硅胶薄膜的耐热性以及硬度,于第一硅树脂之平均单元结构式中,除了封端基单体以外,与硅原子键结之芳基相对于所有与硅键结之官能基之摩尔数比值至少为0.48以上。第一硅树脂的重量平均分子量可介于500至200,000之间,且较佳为介于1,000至190,000之间。
于本发明之一较佳实施例中,用于表示第一硅树脂的平均单元结构式,其可例如由(PhSiO3/2)0.7(Me2SiO2/2)0.15(ViMeSiO2/2)0.15及用于封端之单体ViMe2SiO1/2所组成。上述Ph表示苯基,Me表示甲基,Vi表示乙烯基。
于本发明之另一较佳实施例中,用于表示第一硅树脂的平均单元结构式,其可例如由(PhSiO3/2)0.7(Me2SiO2/2)0.2(ViMeSiO2/2)0.1及用于封端之单体ViMe2SiO1/2所组成。
线性聚硅氧烷可提高与第一硅树脂及第二硅树脂之该些硅树脂间的加工性与所制得之具阻水气特性的硅胶薄膜的柔韧性。在本发明之一实施例中,适合的线性聚硅氧烷之平均单元结构式至少具有一个与硅原子键结之芳基与二个与硅原子键结之烯基。前述芳基可为取代的或未取代之芳基,如可为苯基、甲苯基、二甲苯基或萘基,较佳为苯基。前述烯基可为经取代的或未取代之烯基,例如可为乙烯基、丙烯基、烯丙基、丁烯基、戊烯基或是己烯基,较佳为乙烯基。除了芳基与烯基以外,其余与硅原子键结之官能基可为经取代的或未取代的烷基,例如可为甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、戊基、新戊基、己基、环己基、辛基、壬基或癸基,较佳为甲基。
为了提高具阻水气特性的硅胶薄膜的耐热性、硬度以及折射率,故于可固化硅树脂组成物中,线性聚硅氧烷之平均单元结构式中,除了封端基单体以外,与硅原子键结之芳基相对于所有与硅键结之官能基之摩尔数比值至少为0.4以上。且线性聚硅氧烷的添加量可为10至25重量份,较佳为14至20重量份。
于本发明之一较佳实施例,用以表示线性聚硅氧烷的平均单元结构式如下所示:由(PhMeSiO2/2)0.8(Me2SiO2/2)0.1(ViMeSiO2/2)0.1及用于封端之单体ViMe2SiO1/2所组成,上述Ph表示苯基,Me表示甲基,Vi表示乙烯基。线性聚硅氧烷的重量平均分子量可在介于1,000至200,000之间,且较佳为介于1,000至160,000之间。线性聚硅氧烷于25℃的黏度未受限制,较佳范围为6,000mPa.s至10,000mPa.s。在本发明之一较佳实施例中,线性聚硅氧烷于25℃的黏度为6420mPa.s。
于形成具阻水气特性的硅胶薄膜之可固化硅树脂组成物中,用于表示第二硅树脂之平均单元结构式至少具有R3SiO3/2以及R4 3SiO1/2之单体,其中R3为经取代的或未取代的芳基、经取代的或未取代的烷基或经取代的或未取代的烯基。R4为经取代的或未取代的芳基、经取代的或未取代的烷基或经取代的或未取代的烯基。上述经取代的或未取代的芳基例如可为苯基、甲苯基、二甲苯基、或萘基,较佳为苯基。上述经取代的或未取代的烯基例如可为乙烯基、丙烯基、烯丙基、丁烯基、戊烯基或是己烯基,较佳为乙烯基。除了经取代的或未取代的芳基与经取代的或未取代的烯基以外,其余与硅原子键结之官能基为经取代的或未取代的烷基,例如可为甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、戊基、新戊基、己基、环己基、辛基、壬基或癸基,较佳为甲基。
为了提高具阻水气特性的硅胶薄膜的耐热性及硬度,于可固化硅树脂组成物中,第二硅树脂中除封端基单体以外,与硅原子键结之芳基相对于与硅键结之所有官能基之摩尔数比值至少为0.25以上。
于本发明之一较佳实施例中,用于表示第二硅树脂的平均单元结构式如以下所式:(PhSiO3/2)0.5(ViMe2SiO1/2)0.5。上述Ph表示苯基,Me表示甲基,Vi表示乙烯基。第二硅树脂的重量平均分子量可介于100至10,000之间,且较佳为介于500至5,000之间。
于本发明之形成具阻水气特性的硅胶薄膜之可固化硅树脂组成物中,用以表示含硅氢键之聚硅氧烷之化学结构式为:HR5 2SiO(SiR6 2O)nSiR5 2H,其中R5为经取代的或未取代的烷基或氢原子,R6为经取代或未取代的芳基或经取代的或未取代的烷基,且n为大于等于0之整数。
上述经取代的或未取代的芳基例如可为苯基、甲苯基、二甲苯基、或萘基,较佳为苯基。取代的或未取代的烷基例如可为甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、戊基、新戊基、己基、环己基、辛基、壬基或癸基,较佳为甲基。
于本发明之一较佳实施例中,用于表示含硅氢键之聚硅氧烷的平均单元结构式如下所式:(Ph2SiO2/2)1(HMe2SiO1/2)2。上述Ph表示苯基,Me表示甲基。含硅氢键之聚硅氧烷的重量平均分子量可介于100至5,000之间,且较佳为介于100至1,000之间。
适合之铂族金属是催化剂可例如为铂-型式催化剂、铑-型式催化剂或钯-型式催化剂,较佳为铂-型式催化剂,常用的催化剂可例如为H2PtCl6·mH2O,K2PtCl6,KHPtCl6·mH2O,K2PtCl4,K2PtCl4·mH2O或PtO2·mH2O(m为正整数)等。亦或该些催化剂与链烯烃、醇或含有乙烯基的有机聚硅氧烷之间的错合物,例如可为铂(0)-2,4,6,8-四甲基-2,4,6,8-四乙烯基环四硅氧烷复合体溶液(Platinum(0)-2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane complex solution)或辛醇络铂化合物(Platinum-Octanal/Octanol Complex),但不限于此。上述该些铂族金属是催化剂可单独使用或合并使用。铂族金属是催化剂的添加量为线性聚硅氧烷、第一硅树脂、第二硅树脂及含硅氢键之聚硅氧烷之重量份总和的1ppm至50ppm,较佳为3ppm至10ppm。
于本发明之一较佳实施例,所使用的铂族金属是催化剂为辛醇络铂化合物,其使用量为线性聚硅氧烷、第一硅树脂、第二硅树脂及含硅氢键之聚硅氧烷之重量份总和的4.3ppm。
另,于本发明之形成具阻水气特性的硅胶薄膜之可固化硅树脂组成物中,进一步还可包括触变剂、抑制剂、抗沉降剂、无机填料、荧光粉或其组合。
上述无机填料是用以增加具阻水气特性的硅胶薄膜的耐热性,亦可作为防止荧光粉沈降的抗沈降剂,此外,也作为反射粒子之用途。该些无机填料例如可为气相法二氧化硅、气相法二氧化钛等增强型无机填充剂以及碳酸钙、硅酸钙、二氧化钛、氧化钛、氧化锌等非增强型无机填充剂。
于本发明之一实施例中,于形成具阻水气特性的硅胶薄膜的可固化硅树脂组成物中,其包括气相二氧化硅,该气相二氧化硅添加量相对100重量份之线性聚硅氧烷、第一硅树脂、第二硅树脂及含硅氢键之聚硅氧烷之总和,是为0.1至5重量份。
本发明所提出的具阻水气特性的硅胶薄膜具有良好的阻水气性质、适当的光学性质,其水气穿透率(WVTR)可小于40gm-2day-1,可见光穿透率可大于92%,雾度可小于4%。此外,本发明所提出的具阻水气特性的硅胶薄膜具有良好的加工性,其25℃-50℃热膨胀系数(CTE)可介于20ppm至60ppm之间,80℃-100℃热膨胀系数(CTE)可介于50ppm至150ppm之间,且中心线平均粗糙度(Ra)可介于0.01微米(μm)至0.15微米(μm)间,有利于形成后续的无机镀膜层。
在本发明之另一实施例中,具阻水气特性的硅胶薄膜之一表面上更具有一无机镀膜层,以进一步降低硅胶薄膜之阻水气性质。
无机镀膜层可包含但不限于二氧化硅(SiO2)、三氧化二铝(Al2O3)或二氧化铪(HfO2),在本发明之一实施例中,无机镀膜层可为三氧化二铝(Al2O3)镀膜层。在本发明之另一实施例中,无机镀膜层可为三氧化二铝(Al2O3)/二氧化铪(HfO2)镀膜层。
无机镀膜层可通过溅镀法(Sputter Deposition)或原子层沉积法(Atomic LayerDeposition,ALD)形成于具阻水气特性的硅胶薄膜之一表面上。
在本发明之一实施例中,无机镀膜层之厚度可介于10纳米(nm)至300纳米(nm)之间,且较佳是介于20纳米(nm)至30纳米(nm)之间。且此具有无机镀膜层之具阻水气特性的硅胶薄膜之一水气穿透率(WVTR)可小于0.5gm-2day-1
本发明提出一种光学半导体装置,其中此光学半导体装置是利用前述具阻水气特性的硅胶薄膜封装而成。
下述实施例是用来进一步说明本发明,但本发明的内容并不受其限制。
实施例:制备例1:线性聚硅氧烷(化合物1)的制备方法
将3499.92克(19.13mole)的甲基苯基二甲氧基硅烷(phenylmethyldimethoxysilane,购自恒桥产业股份有限公司,台湾),288.48克(2.4mole)的二甲基二甲氧基硅烷(Dimethyldimethoxysilane,购自恒桥产业股份有限公司,台湾),以及317.28克(2.4mole)的甲基乙烯基二甲氧基硅烷(Methylvinyldimethoxysilane,购自六和化工股份有限公司,台湾)加至反应槽中并于室温下搅拌形成一均匀混和溶液。将此混和溶液滴入浓度5%的硫酸水溶液(5337.4克)中得到一反应溶液,接着将此反应溶液加热至75℃以进行水解,待反应完全后以去离子水进行萃取使有机层达到中性,最后移除溶剂以制得一水解产物。
将上述水解产物、69.52克(0.374mole)的二乙烯基四甲基二硅氧烷(Divinyltetramethyldisiloxane,购自六和化工股份有限公司,台湾)以及5.88克的四甲基氢氧化铵(Tetramethyl ammonium hydroxide,商品名L09658,购自Alfa Aesar,美国)置于反应槽中,于反应槽中通入氮气,并于室温下均匀搅拌以制得一反应溶液。将此反应溶液加热至95℃,待反应完全后,进行除碱以完成化合物1的制备。化合物1之平均单元结构式是由(PhMeSiO2/2)0.8(Me2SiO2/2)0.1(ViMeSiO2/2)0.1及用于封端之单体ViMe2SiO1/2所组成。上述Ph表示苯基,Me表示甲基,Vi表示乙烯基。制备例2:第一硅树脂(化合物2)的制备方法
将2685克(13.5mole)的苯基三甲氧基硅烷(phenyl-trimethoxysilane,购自六和股份有限公司,台湾),349克(2.9mole)的二甲基二甲氧基硅烷(Dimethyldimethoxysilane,购自恒桥产业股份有限公司,台湾),以及384克(2.9mole)的甲基乙烯基二甲氧基硅烷(Methylvinyldimethoxysilane,购自六和化工股份有限公司,台湾)置于反应槽中,于室温下搅拌以制得均匀混合溶液。将混和溶液滴入浓度5%的硫酸水溶液(4579克)中以制得一反应溶液,接着将此反应溶液加热至75℃进行水解,待反应完全后,以去离子水进行萃取使有机层达到中性,最后移除溶剂以制得一水解产物。
将上述水解产物、21.39克(0.11mole)的二乙烯基四甲基二硅氧烷(Divinyltetramethyldisiloxane,购自六和化工股份有限公司,台湾)、22.74克的氢氧化钾以及2274克的甲苯置于反应槽中,于反应槽中通入氮气,并于室温下搅拌以制得一反应溶液。接着将此反应溶液加热至95℃。待反应完全后,以去离子水进行萃取使有机层达到中性,最后移除溶剂以完成化合物2的制备。化合物2之平均单元结构式是由(PhSiO3/2)0.7(Me2SiO2/2)0.15(ViMeSiO2/2)0.15及用于封装之单体ViMe2SiO1/2所组成。
制备例3:第一硅树脂(化合物3)的制备方法
将2776克(14mole)的苯基三甲氧基硅烷(phenyl-trimethoxysilane,购自六和股份有限公司,台湾),480.88克(4mole)的二甲基二甲氧基硅烷(Dimethyldimethoxysilane,购自恒桥产业股份有限公司,台湾),以及264.46克(2mole)的甲基乙烯基二甲氧基硅烷(Methylvinyldimethoxysilane,购自六和化工股份有限公司,台湾)置于反应槽中,于室温下搅拌以制得均匀混合溶液。将混和溶液滴入浓度5%的硫酸水溶液中以制得一反应溶液,接着将此反应溶液加热至75℃进行水解,待反应完全后,以去离子水进行萃取使有机层达到中性,最后移除溶剂以制得一水解产物。
将上述水解产物、21.39克(0.11mole)的二乙烯基四甲基二硅氧烷(Divinyltetramethyldisiloxane,购自六和化工股份有限公司,台湾)、22.74克的氢氧化钾以及2274克的甲苯置于反应槽中,于反应槽中通入氮气,并于室温下搅拌以制得一反应溶液。接着将此反应溶液加热至95℃。待反应完全后,以去离子水进行萃取使有机层达到中性,最后移除溶剂以完成化合物3的制备。化合物3之平均单元结构式是由(PhSiO3/2)0.7(Me2SiO2/2)0.2(ViMeSiO2/2)0.1及用于封装之单体ViMe2SiO1/2所组成。
制备例4:第二硅树脂(化合物4)的制备方法
将2379.4克(12mole)的苯基三甲氧基硅烷(Phenyltrimethoxysilane,购自六和化工股份有限公司,台湾),以及1118.4克(6mole)的二乙烯基四甲基二硅氧烷(Divinyltetramethyldisiloxane,购自六和化工股份有限公司,台湾)置于反应槽中,于室温下搅拌以制得均匀混和溶液。将此混和溶液滴入浓度5%的硫酸水溶液(4547.16克)中以制得一反应溶液,接着将此反应溶液加热至75℃,以进行水解,待反应完全后,以去离子水进行萃取使有机层达到中性,最后移除溶剂以制得一水解产物。
将上述水解产物、1998克的甲苯以及10克的氢氧化钾置于反应槽中,于反应槽中通入氮气,并于室温下均匀搅拌以制得一反应溶液。将此反应溶液进行加热至85℃。待反应完全后,以去离子水进行萃取使有机层达到中性,最后移除溶剂以完成化合物4的制备。化合物4之平均单元结构式为(PhSiO3/2)0.5(ViMe2SiO1/2)0.5
制备例5:含硅氢键之聚硅氧烷(化合物5)的制备方法
将3432.04克(14mole)的二苯基二甲氧基硅烷(Diphenyldimethoxysilane,购自六和化工股份有限公司,台湾),以及1880.62克(14mole)的四甲基二硅氧烷(1,1,3,3-Tetramethyldisiloxane,购自恒桥产业有限公司,台湾)置于反应槽中,于室温下搅拌以制得一均匀混和溶液。将混和溶液滴入浓度50%的硫酸水溶液(2669克)中以制得一反应溶液,接着将此反应溶液于室温下反应4小时以进行水解。待反应完全后,以去离子水萃取使有机层达到中性,最后移除溶剂以完成化合物5的制备。化合物5之平均单元结构式是(Ph2SiO2/2)0.33(HMe2SiO1/2)0.67
实施例1
首先,先于反应瓶中置入47.3克的化合物2、18.4克的化合物4、20克的化合物5,1000ppm(相对于100克的化合物1,化合物2,化合物4及化合物5的总和)的1-乙炔基环己醇作为抑制剂,以及1.5重量份的气相二氧化硅(TS-720,购自Cabot Corp.,美国)以制得第一溶液。于另一反应瓶中置入14.3克的化合物1,以及4.3ppm(相对于100克的化合物1,化合物2,化合物4及化合物5的总和)的辛醇络铂化合物(PIatinum–Octanal/Octanol Complex,购自Gelest,美国)以形成第二溶液。将第一溶液、第二溶液、30克的经甲基硅酮处理之云母层片(购自加全实业,台湾)、30克的溶剂甲苯以及与前述材料等重量的0.3mm锆珠,以真空行星脱泡机Thinky ARV-310机型搅拌均匀,并于PET基材上进行涂布,再经80℃加热15分钟、150℃加热3小时固化后,撕除PET基材,制得硅胶薄膜。硅胶薄膜厚度约为50微米(μm)。
实施例2
以相同于实施例1之方法制得硅胶薄膜,但将经甲基硅酮处理之云母层片之使用量变更为40重量份,并将溶剂甲苯之使用量变更为35重量份。
实施例3
首先,先于反应瓶中置入47.84克的化合物3、19.53克的化合物4、15.96克的化合物5、2.05克的化合物6,1000ppm(相对于100克的化合物1,化合物3,化合物4,化合物5及化合物6的总和)的1-乙炔基环己醇作为抑制剂,以及1.5重量份的气相二氧化硅(TS-720,购自Cabot Corp.,美国)以制得第一溶液。于另一反应瓶中置入14.53克的化合物1,以及4.3ppm(相对于100克的化合物1,化合物3,化合物4,化合物5以及化合物6的总和)的辛醇络铂化合物(PIatinum–Octanal/Octanol Complex,购自Gelest,美国)以形成第二溶液。将第一溶液、第二溶液、10克的经甲基硅酮处理之云母层片(购自加全实业,台湾)、10克的溶剂甲苯以及与前述材料等重量的0.3mm锆珠,以真空行星脱泡机Thinky ARV-310机型搅拌均匀,并于PET基材上进行涂布,再经80℃加热15分钟、150℃加热3小时固化后,撕除PET基材,制得硅胶薄膜。硅胶薄膜厚度约为50微米(μm)。
实施例4
以相同于实施例3之方法制得硅胶薄膜,但将经甲基硅酮处理之云母层片之使用量变更为30重量份,并将溶剂甲苯之使用量变更为37重量份。
实施例5
以相同于实施例3之方法制得硅胶薄膜,但将经甲基硅酮处理之云母层片之使用量变更为40重量份,并将溶剂甲苯之使用量变更为37重量份。
比较例1
以相同于实施例1之方法制得硅胶薄膜,但未添加经甲基硅酮处理之云母层片以及溶剂甲苯。
比较例2
以相同于实施例3之方法制得硅胶薄膜,但未添加经甲基硅酮处理之云母层片以及溶剂甲苯。
比较例3
以相同于实施例1之方法制得硅胶薄膜,但将经甲基硅酮处理之云母层片之使用量变更为50重量份,并将溶剂甲苯之使用量变更为45重量份。
以下,将本发明所提出的具阻水气特性的硅胶薄膜依照下列方法进行评估测试,量测结果如下列表1所示。
水气穿透率(WVTR)量测
水气穿透率(WVTR)以Moconaquatran model 1(量测范围:5-5×10-5gm-2day-1)依据ASTM F1249规则量测,量测面积0.5-5cm2,于温度25℃、湿度90%RH条件下进行量测。
热膨胀系数(CTE)
依照ASTM E831规则,以热机械分析仪(TMA from TA instrument)在氮气环境中,以10℃/分钟的升温速率量测30-100℃范围内的CTE,所用张力为0.0023N。
穿透率(T%)
以分光亮度计(U4100,购自Hitachi,日本)量测380-700nm波长范围内之光穿透率。
雾度量测
以雾度计(NDH2000,购自日本电色工司)量测硅胶薄膜之雾度。
表面粗糙度(Roughness,Sa)量测
使用Olympus OLS5000 3D雷射显微镜,以雷射共轭焦的原理,根据ISO25178规则量测硅胶薄膜表面粗糙度。
表1:实施例1-实施例5以及比较例1-比较例2之硅胶薄膜特性测试结果
Figure BDA0002323090660000131
在表1所列之测试结果,实施例1至实施例5之硅胶薄膜因添加了微层片,故水气穿透率皆小于比较例1及比较例2之硅胶薄膜。且实施例1至实施例5的之光穿透率皆仍大于96%,实施例1至实施例4之硅胶薄膜之雾度皆仅有0,显见仍能具有良好的光学性质。此外,实施例1至实施例5之热膨胀系数皆比比较例1及比较例2为低,故可具有更好的加工性以利后续形成无机镀膜层。
实施例6
将实施例3所制得之硅胶薄膜进一步利用Syskey Technology之溅镀设备,以氩气做为工作气体,在0.005Torr的工作压力下,以溅镀法在薄膜表面形成一厚度约为50纳米(nm)之氧化铝(Al2O3)镀膜层。
实施例7
将实施例3所制得之硅胶薄膜以氧气电浆进行前处理。接着,利用ALD设备(i-SA,购自Syskey Technology,台湾),以三甲基铝(AlCH3)3以及四双(乙基甲基氨)铪(Tetrakis(ethylmethylamino)hafnium,TEMAHF)做为前驱物,水(H2O)做为氧化剂,以高纯度氮气作为吹扫气和载气,在25℃及9Torr的工作压力下,以原子层沉积法在硅胶薄膜表面上形成一厚度约为20纳米之三氧化二铝(Al2O3)/二氧化铪(HfO2)镀膜层。
实施例8
将实施例2所制得之硅胶薄膜以相同于实施例7之方法在硅胶薄膜上以原子层沉积法在硅胶薄膜表面上形成一厚度约为20纳米之三氧化二铝(Al2O3)/二氧化铪(HfO2)镀膜层。
上述实施例6至实施例8的具阻水气特性的硅胶薄膜之详细测试结果如下列表2所示。
表2:实施例6-实施例8之硅胶薄膜特性测试结果
Figure BDA0002323090660000141
由表2所列之测试结果可知,硅胶薄膜之表面可再形成无机镀膜层以进一步降低水气穿透率。实施例6至实施例8在形成无机镀膜层后水气穿透率可进一步的下降至0.5gm- 2day-1以下。故本发明之具阻水气特性的硅胶薄膜可同时具有良好的阻水气性质且兼具优良的之可加工性。
以上所述仅为本发明较佳实施例,并非用以限定本发明的范围,任何熟悉本项技术的人员,在不脱离本发明的精神和范围内,可在此基础上做进一步的改进和变化,因此本发明的保护范围当权利要求书所界定的范围为准。

Claims (13)

1.一种具阻水气特性的硅胶薄膜,其特征在于,所述硅胶薄膜是经由固化一可固化硅树脂组成物而形成,该可固化硅树脂组成物包含:
10至25重量份的一线性聚硅氧烷,其平均单元结构式至少具有一个与硅原子键结之芳基与二个与硅原子键结之烯基;
40至55重量份的一第一硅树脂,其平均单元结构式至少具有R1SiO3/2单体以及R2 2SiO2/2单体,其中R1及R2为经取代的或未取代之烷基、经取代的或未取代之烯基或经取代的或未取代之芳基,在此平均单元结构式中,该R1SiO3/2单体所占的摩尔分率是介于0.60至0.75之间,且硅原子键结之烯基相对于所有与硅键结之官能基之摩尔数比值为0.03至0.15;
15至30重量份的一第二硅树脂,其平均单元结构式至少具有R3SiO3/2以及R4 3SiO1/2之单体,其中R3及R4为经取代的或未取代之烷基、经取代的或未取代之烯基或经取代的或未取代之芳基;
15至25重量份的至少一含硅氢键之聚硅氧烷,其化学结构式为:HR5 2SiO(SiR6 2O)nSiR5 2H,其中,R5为经取代的或未取代的烷基或氢原子,R6为经取代或未取代的芳基或经取代的或未取代的烷基,n为大于等于0之整数;
10至40重量份的微层片(microsheet);以及
一铂族金属是催化剂;
其中,该具阻水气特性的硅胶薄膜之水气穿透率(WVTR)小于40gm-2day-1,可见光穿透率大于92%且雾度小于4%。
2.如权利要求1之具阻水气特性的硅胶薄膜,其特征在于,其中该微层片之一长径比是介于10至200之间。
3.如权利要求1之具阻水气特性的硅胶薄膜,其特征在于,其中该微层片之一长度是介于0.1微米(μm)至25微米(μm)之间。
4.如权利要求1之具阻水气特性的硅胶薄膜,其特征在于,其中该微层片是选自由云母、黏土、层状双氢氧化合物、磷酸氢钙以及氮化硼所组成之群组之至少之一或其组合。
5.如权利要求1之具阻水气特性的硅胶薄膜,其特征在于,其中该具阻水气特性的硅胶薄膜之25℃-50℃热膨胀系数(CTE)是介于20ppm至60ppm之间,80℃-100℃热膨胀系数(CTE)是介于50ppm至150ppm之间,且中心线平均粗糙度(Ra)是介于0.01微米(μm)至0.15微米(μm)间。
6.如权利要求1之具阻水气特性的硅胶薄膜,其特征在于,其中该可固化硅树脂成物进一步包括抑制剂、触变剂、抗沉降剂、无机填料、荧光粉或其组合。
7.如权利要求6之具阻水气特性的硅胶薄膜,其特征在于,其中于可固化硅树脂成物中的无机填料包括一气相二氧化硅。
8.如权利要求1之具阻水气特性的硅胶薄膜更包括一无机镀膜层,其特征在于,其位于该具阻水气特性的硅胶薄膜之一表面上。
9.如权利要求8之具阻水气特性的硅胶薄膜,其特征在于,其中该无机镀膜层是通过溅镀法(Sputter Deposition)或原子层沉积法(Atomic Layer Deposition,ALD)形成于该具阻水气特性的硅胶薄膜之一表面上。
10.如权利要求8之具阻水气特性的硅胶薄膜,其特征在于,其中该无机镀膜层之厚度是介于10纳米(nm)至300纳米(nm)之间。
11.如权利要求8之具阻水气特性的硅胶薄膜,其特征在于,其中该无机镀膜层包括二氧化硅(SiO2)、三氧化二铝(Al2O3)或二氧化铪(HfO2)。
12.如权利要求8之具阻水气特性的硅胶薄膜,其中该具阻水气特性的硅胶薄膜之水气穿透率WVTR小于0.5gm-2day-1
13.一种光学半导体装置,其特征在于,其中该光学半导体装置是由权利要求1至权利要求12中任一项具阻水气特性的硅胶薄膜封装而成。
CN201911305926.0A 2019-12-04 2019-12-18 具阻水气特性的硅胶薄膜 Withdrawn CN112898780A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW108144308 2019-12-04
TW108144308 2019-12-04

Publications (1)

Publication Number Publication Date
CN112898780A true CN112898780A (zh) 2021-06-04

Family

ID=76111272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911305926.0A Withdrawn CN112898780A (zh) 2019-12-04 2019-12-18 具阻水气特性的硅胶薄膜

Country Status (3)

Country Link
US (1) US20210189076A1 (zh)
CN (1) CN112898780A (zh)
TW (1) TWI780530B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112898781A (zh) * 2019-12-04 2021-06-04 明基材料股份有限公司 具阻水气特性的硅胶薄膜

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202221082A (zh) * 2020-11-17 2022-06-01 明基材料股份有限公司 一種矽膠阻氣膜

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI894148A0 (fi) * 1988-09-06 1989-09-04 Ube Industries Raomaterial, foerfarande foer dess framstaellning och dess anvaendning.
JP2004352730A (ja) * 2003-03-28 2004-12-16 Sekisui Chem Co Ltd ポリイミド樹脂組成物及び樹脂シート
CN1882748A (zh) * 2003-09-18 2006-12-20 安姆科尔国际公司 含有水可渗透涂层的、含水分不能渗入的水溶胀性粘土的“阻水”组合物
US20080070385A1 (en) * 2004-06-25 2008-03-20 Won Tae K Water-barrier performance of an encapsulating film
US20090202806A1 (en) * 2008-02-11 2009-08-13 Takeo Ebina Film made from denatured clay
US20110100458A1 (en) * 2009-11-05 2011-05-05 Korea Institute Of Machinery And Materials Multi-layer thin film for encapsulation and method thereof
WO2013019608A1 (en) * 2011-08-02 2013-02-07 Dow Global Technologies Llc Optoelectronic devices with thin barrier films with crystalline characteristics that are conformally coated onto complex surfaces to provide protection against moisture
CN104493103A (zh) * 2014-12-15 2015-04-08 滁州金诺实业有限公司 砂型铸造家电内胆模具水管预埋工艺
US20150218334A1 (en) * 2012-09-07 2015-08-06 Wacker Chemie Ag Porous membranes made of cross-linkable silicone compositions
CN106433452A (zh) * 2016-09-12 2017-02-22 明基材料有限公司 硅树脂薄膜、可固化硅树脂组成物、光学半导体装置及其封装方法
CN112898781A (zh) * 2019-12-04 2021-06-04 明基材料股份有限公司 具阻水气特性的硅胶薄膜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565545A (en) * 1978-11-13 1980-05-17 Nhk Spring Co Ltd Multilayer coating protective film board
US20090110917A1 (en) * 2006-06-05 2009-04-30 John Albaugh Electronic Package and Method of Preparing Same
JP2013095809A (ja) * 2011-10-31 2013-05-20 Nitto Denko Corp シリコーン樹脂組成物、シリコーン樹脂シート、光半導体素子装置、および、シリコーン樹脂シートの製造方法。
WO2013180259A1 (ja) * 2012-05-31 2013-12-05 コニカミノルタ株式会社 発光装置用封止材、及びこれを用いた発光装置、並びに発光装置の製造方法
WO2015079677A1 (ja) * 2013-11-29 2015-06-04 東レ・ダウコーニング株式会社 光学材料
TWI600686B (zh) * 2016-08-31 2017-10-01 明基材料股份有限公司 矽樹脂薄膜、可固化矽樹脂組成物、光學半導體裝置及光學半導體裝置之封裝方法
WO2020109954A1 (en) * 2018-11-30 2020-06-04 3M Innovative Properties Company Low dielectric constant curable compositions

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI894148A0 (fi) * 1988-09-06 1989-09-04 Ube Industries Raomaterial, foerfarande foer dess framstaellning och dess anvaendning.
JP2004352730A (ja) * 2003-03-28 2004-12-16 Sekisui Chem Co Ltd ポリイミド樹脂組成物及び樹脂シート
CN1882748A (zh) * 2003-09-18 2006-12-20 安姆科尔国际公司 含有水可渗透涂层的、含水分不能渗入的水溶胀性粘土的“阻水”组合物
US20080070385A1 (en) * 2004-06-25 2008-03-20 Won Tae K Water-barrier performance of an encapsulating film
US20090202806A1 (en) * 2008-02-11 2009-08-13 Takeo Ebina Film made from denatured clay
US20110100458A1 (en) * 2009-11-05 2011-05-05 Korea Institute Of Machinery And Materials Multi-layer thin film for encapsulation and method thereof
WO2013019608A1 (en) * 2011-08-02 2013-02-07 Dow Global Technologies Llc Optoelectronic devices with thin barrier films with crystalline characteristics that are conformally coated onto complex surfaces to provide protection against moisture
US20150218334A1 (en) * 2012-09-07 2015-08-06 Wacker Chemie Ag Porous membranes made of cross-linkable silicone compositions
CN104493103A (zh) * 2014-12-15 2015-04-08 滁州金诺实业有限公司 砂型铸造家电内胆模具水管预埋工艺
CN106433452A (zh) * 2016-09-12 2017-02-22 明基材料有限公司 硅树脂薄膜、可固化硅树脂组成物、光学半导体装置及其封装方法
CN112898781A (zh) * 2019-12-04 2021-06-04 明基材料股份有限公司 具阻水气特性的硅胶薄膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROQUE-MALHERBE, ROLANDO M.等: "Lead, copper, cobalt and nickel removal from water solutions by dynamic ionic exchange in LECA zeolite beds", 《INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112898781A (zh) * 2019-12-04 2021-06-04 明基材料股份有限公司 具阻水气特性的硅胶薄膜
CN112898781B (zh) * 2019-12-04 2022-06-21 明基材料股份有限公司 具阻水气特性的硅胶薄膜

Also Published As

Publication number Publication date
TWI780530B (zh) 2022-10-11
TW202122497A (zh) 2021-06-16
US20210189076A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
TWI500511B (zh) 矽氧積層基板及其製法、矽氧樹脂組成物以及led裝置
TWI665262B (zh) 硬化性矽酮樹脂組成物
TWI507465B (zh) A hardened resin composition, a hardened product thereof, and an optical semiconductor device using the hardened product
JP5674610B2 (ja) シリコーン樹脂シート、その製造方法、封止シートおよび発光ダイオード装置
JP6226250B2 (ja) 発光ダイオード
JP6323086B2 (ja) 熱硬化性樹脂組成物及びそれを用いた物品
WO2011148896A1 (ja) ポリシロキサン系組成物、硬化物、及び、光学デバイス
KR20130011998A (ko) 경화성 조성물
TWI780530B (zh) 一種具阻水氣特性的矽膠薄膜
JP2017119848A (ja) 有機ケイ素化合物、該有機ケイ素化合物を含む熱硬化性組成物、および光半導体用封止材料
CN110268019B (zh) 可固化的硅酮组合物
JP2020090572A (ja) 縮合硬化型樹脂組成物、硬化物、成形体、及び半導体装置
TW201536838A (zh) 可固化矽樹脂組成物
CN112898781B (zh) 具阻水气特性的硅胶薄膜
WO2020241368A1 (ja) 硬化性オルガノポリシロキサン組成物、及びその硬化物からなる光学部材
JP6480360B2 (ja) 半導体装置
JPWO2018061754A1 (ja) 架橋性オルガノポリシロキサン組成物、その硬化物及びled装置
TWI634160B (zh) 有機矽金屬複合物、包括其之可固化有機聚矽氧烷組合物及包括此組合物的光學材料
CN114507371A (zh) 一种硅胶阻气膜
KR20220016875A (ko) 경화성 오가노폴리실록산 조성물 및 그의 경화물로 이루어진 광학 부재
JP6966394B2 (ja) 発光ダイオード用リフレクター及び光半導体装置
CN113005424B (zh) 一种优化原子层沉积的方法
JP6510468B2 (ja) 硬化性シリコーン樹脂組成物及び硬化性シリコーン樹脂組成物の調製方法
WO2019017332A1 (ja) ポリシルセスキオキサン系化合物を含む組成物、その製造方法、並びに当該組成物を含む封止材及びフィルム
TW201402635A (zh) 硬化性環氧樹脂組成物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210604

WW01 Invention patent application withdrawn after publication