CN112808233A - 一种Fe3O4-生物炭复合纳米材料的制备方法及降解水体有机污染物的方法 - Google Patents

一种Fe3O4-生物炭复合纳米材料的制备方法及降解水体有机污染物的方法 Download PDF

Info

Publication number
CN112808233A
CN112808233A CN202011630649.3A CN202011630649A CN112808233A CN 112808233 A CN112808233 A CN 112808233A CN 202011630649 A CN202011630649 A CN 202011630649A CN 112808233 A CN112808233 A CN 112808233A
Authority
CN
China
Prior art keywords
biochar
nano material
composite nano
biochar composite
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011630649.3A
Other languages
English (en)
Inventor
倪寿清
张烁烁
张彤
高宝玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202011630649.3A priority Critical patent/CN112808233A/zh
Publication of CN112808233A publication Critical patent/CN112808233A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明涉及一种Fe3O4‑生物炭复合纳米材料的制备方法及降解水体有机污染物的方法,Fe3O4‑生物炭复合纳米材料中Fe3O4颗粒均匀分布在生物炭孔隙中,复合材料的比表面积为90‑100m2/g,孔隙体积为0.1‑0.3cm3/g。Fe3O4‑生物炭复合纳米材料应用在过氧单硫酸盐体系中降解有机污染物,Fe3O4‑生物炭复合纳米材料的吸附与催化协同作用可显著提高Fe3O4‑BC/PMS体系中有机污染物的去除效率。在pH3.0条件下,90分钟内去除有机污染物的效率达到了100%。

Description

一种Fe3O4-生物炭复合纳米材料的制备方法及降解水体有机 污染物的方法
技术领域
本发明涉及一种Fe3O4-生物炭复合纳米材料的制备方法及降解水体有机污染物的方法,属于新型材料合成、有机污染物降解技术领域。
背景技术
目前,去除水中有机污染物的方法涉及到物理、化学和生物等多种方法。例如常用的吸附技术、化学氧化技术、膜生物反应器和高级氧化技术等。
吸附技术就是通过利用多孔吸附剂巨大的表面积,利用范德华力或化学键的作用将被吸附的物质固定在吸附剂的表面,来达到降解污染物的目的。化学氧化法就是通过氧化剂的强氧化性来氧化分解有机污染物,传统的氧化剂有臭氧、过氧化氢等等。生物法即利用微生物的生命活性来降解去除水中的有机污染物,在这类方法中,常用的微生物包括活性污泥、微小小环藻等。高级氧化则是利用目前已知水中氧化能力最强的羟基自由基氧化污染物的一类氧化技术。由于羟基的强氧化性,因此它能够降解几乎所有的有机物,因此高级氧化技术受到了学术界的广泛关注,有学者利用Fenton试剂产生羟基自由基来降解双酚A,取得了良好的效果。然而,芬顿试剂只能在强酸性条件下进行,操作不够安全,因此,此方法利用率比较低。
传统的方法虽然各有其特点,却也存在一些不可忽略的缺陷。例如吸附法中,颗粒活性炭的吸附容量不够大而且粉末活性炭回收率很低,会提高处理成本;氧化法中单独采用过氧化氢氧化效果不够好;微生物不易培养和筛选,受环境条件影响较大,都限制了技术的应用和处理效率的提高。
因此,寻找一种高效、快速降解去除水体有机污染物的方法尤为重要。
发明内容
针对现存技术中的一些问题和缺陷,本发明提供一种Fe3O4-生物炭复合纳米材料的制备方法及过氧单硫酸盐(peroxymonosulfate,PMS)体系降解水体有机污染物的方法。
术语说明:
共沉淀法:是指在溶液中含有两种或多种离子,它们以均相存在于溶液中,加入沉淀剂,经沉淀反应后,可得到各种成分的均一的沉淀,它是制备含有两种或两种以上金属元素的复合氧化物超细粉体的重要方法。
本发明的技术方案如下:
一种Fe3O4-生物炭复合纳米材料,所述的复合材料为Fe3O4纳米颗粒均匀分布在生物炭孔隙中,复合材料的比表面积为90-100m2/g,孔隙体积为0.1-0.3cm3/g。
一种Fe3O4-生物炭复合纳米材料的制备方法,包括步骤如下:
1)以落叶为原生质材料,通过热解方式制备生物炭;
2)将FeSO4·7H20与FeCl3·6H20溶于盐酸溶液,溶解后加入生物炭,将机械搅拌均匀后,通入氮气连续搅拌30分钟,加入NaOH溶液,继续搅拌反应2-4h,反应产物用超纯水和无水乙醇交替洗涤至中性,真空干燥,得到Fe3O4-生物炭复合纳米材料。
根据本发明优选的,热解方式制备生物炭的具体方法如下:
收集落叶洗涤去杂,在80℃的烤箱中干燥后,将其磨成粉末,将粉末置于550-650℃的管状炉中,在氮气保护下碳化1-3小时,碳化后得到的黑色粉末去除无机成分,水洗至中性,干燥后即得生物炭。
根据本发明优选的,所述的落叶为侧柏落叶。
根据本发明优选的,N2流量为100ml/min,升温速率为4-6℃/min。
根据本发明优选的,去除无机成分为将黑色粉末浸泡在1mol/L的盐酸溶液中20-24小时。
根据本发明优选的,步骤2)中,盐酸溶液的浓度为0.01-0.03mol/L。
根据本发明优选的,步骤2)中,FeS04·7H20的加入量与盐酸溶液的摩尔体积比为:(0.001-0.003):20-30,单位:mol/mL;FeCl3·6H2O的加入量与盐酸溶液的摩尔体积比为:(0.01-0.03):20-30,单位:mol/mL。
根据本发明优选的,步骤2)中,生物炭的加入量与盐酸溶液的质量体积比为:1:10-20,单位:g/mL。
根据本发明优选的,步骤2)中,NaOH溶液的浓度为2-5mol/L,NaOH溶液的加入量与盐酸溶液的体积比为:(6-9):(2-4)。
一种基于Fe3O4-生物炭复合纳米材料的过氧单硫酸盐体系(Fe3O4-BC/PMS体系)降解水体有机污染物的方法,包括步骤如下:
将Fe3O4-生物炭复合纳米材料投加至含有机污染物的废水中,然后加入过单硫酸盐,使其浓度达到3-8mmol/L,调节pH至3-7,将体系置于30-40℃恒温摇床中,反应时间100-160min。
根据本发明优选的,Fe3O4-生物炭复合纳米材料的投加量为0.5-4.0g/L。
进一步优选的,Fe3O4-生物炭复合纳米材料的投加量为1.5-2.0g/L。
根据本发明优选的,过单硫酸盐浓度为5-6mmol/L。
根据本发明优选的,调节pH至3-5。最为优选的,调节pH至3。
根据本发明优选的,调节pH方式为加入硫酸和氢氧化钠。
本发明的技术特点及优点:
1、本发明的复合材料中Fe3O4纳米颗粒均匀分布在生物炭孔隙中,增加了复合材料的比表面积和孔隙度,增大了材料的吸附容量和活性位点,并可有效减少纳米颗粒的流失。
2、本发明的Fe3O4-生物炭复合纳米材料对外部磁铁表现出良好的磁响应,易于回收。
3、本发明的Fe3O4-生物炭复合纳米材料可多次回收使用,5次重复使用后依然保持较高的活性,说明Fe3O4-生物炭复合纳米材料剂具有良好的重复使用潜力和应用价值。
4、本发明采用一步共沉淀法合成Fe3O4-生物炭复合纳米材料,得到的材料为化学成分均一的纳米粉体材料,粒度小而且分布均匀。
5、本发明的Fe3O4-生物炭复合纳米材料应用在过氧单硫酸盐体系中降解有机污染,Fe3O4-生物炭复合纳米材料的吸附与催化协同作用可显著提高Fe3O4-BC/PMS体系中污染物的降解效率。
附图说明
图1为实施例1得到的Fe3O4-生物炭复合纳米材料的XRD谱图;
图2为实施例1得到的Fe3O4-生物炭复合纳米材料的TEM谱图;
图3为实施例1得到的Fe3O4-生物炭复合纳米材料的磁滞曲线和磁分离示意图;a为Fe3O4,b为Fe3O4-BC,c为循环利用的Fe3O4-BC;小图为水相催化剂的磁分离;
图4为对比不同材料、不同体系中双酚A的去除率图(双酚A浓度20mg/L,材料投加量2.0g/L,pH=3.0)。
具体实施方式
下面结合实施例详述本发明。为使本发明的目的、技术方案及优点更加清楚、明确,以下对本发明进一步详细说明,但本发明并不局限于这些实施例。
实施例1:
一种Fe3O4-生物炭复合纳米材料的制备方法,包括步骤如下:
1)在80℃的烤箱中干燥后,将侧柏落叶磨成粉末,将粉末置于600℃的管状炉中,用氮气吹脱碳化2小时,得到的黑色粉末浸泡在1mol/L的盐酸溶液中24小时去除无机成分,水洗至中性,干燥后即得生物炭;
2)一步共沉淀法合成Fe3O4-生物炭复合纳米材料:将0.001mol的FeSO4·7H20和0.02mol的FeCl3·6H20加入30ml浓度0.01mol/L盐酸溶液中,溶解后加入2g生物炭,机械搅拌,然后将混合物转移到一个500毫升的三颈烧瓶中,并通入氮气连续搅拌30分钟。滴加80ml 3mol/L NaOH溶液,再连续搅拌3h反应后,用超纯水和无水乙醇交替洗涤至中性pH,真空烘箱60℃干燥,得到Fe3O4-生物炭复合纳米材料。
所得复合纳米材料的XRD谱图、TEM图、磁滞曲线和磁分离示意图见附图1-3。磁滞曲线(图3)显示Fe304-BC复合材料的磁化饱和度低于纯Fe304。这种差异可能是由于复合织构中存在非磁性BC造成的。但材料本身对外部磁铁表现出良好的磁响应(图3),这意味着催化剂易于快速分离,在实际应用中可以显著降低操作成本。
实施例2:
一种基于Fe3O4-生物炭复合纳米材料的过氧单硫酸盐体系降解水体有机污染物(以双酚A为例)的方法,步骤如下:
将Fe3O4-生物炭复合纳米材料投加至含双酚A的废水中,Fe3O4-生物炭复合纳米材料的投加量1.5g/L,然后加入过单硫酸盐,使其浓度达到3mM,调节pH=3.0,将体系置于30℃恒温摇床中,反应时间120min。保持其他条件不变,仅更换Fe3O4-生物炭复合纳米材料为生物炭和Fe3O4,去除结果见图4。
为进行对比,实施例同时对比了在不加入过单硫酸盐(PMS),仅加入Fe3O4、生物炭、Fe3O4-生物炭、同时加入Fe3O4和生物炭的四种情形,投加量1.5g/L,调节pH=3.0,将体系置于30℃恒温摇床中,反应时间120min。
双酚A去除效果见图4,通过图4可以看出,仅加入Fe3O4对去除BPA无效,少量的BPA被BC、Fe3O4/BC或Fe3O4-BC纳米复合材料单独去除。这可能与BC和Fe3O4的吸附有关。经PMS分解后,BC和Fe3O4颗粒在120min内去除率分别为55.91%和60.86%。而Fe3O4-BC和PMS完全降解BPA的时间为90min。结果表明,与Fe3O4或BC相比,Fe3O4-BC纳米复合材料作为多相催化剂对BPA的去除率更高。

Claims (10)

1.一种Fe3O4-生物炭复合纳米材料的制备及其过氧单硫酸盐体系降解水体有机污染物的方法,所述的Fe3O4-生物炭复合纳米材料中Fe3O4颗粒均匀分布在生物炭孔隙中,复合材料的比表面积为90-100m2/g,孔隙体积为0.1-0.3cm3/g。
2.一种Fe3O4-生物炭复合纳米材料的制备方法,包括步骤如下:
1)以落叶为原生质材料,通过热解方式制备生物炭;
2)将FeSO4·7H20与FeCl3·6H20溶于盐酸溶液,溶解后加入生物炭,将机械搅拌均匀后,通入氮气连续搅拌30分钟,加入NaOH溶液,继续搅拌反应2-4h,反应产物用超纯水和无水乙醇交替洗涤至中性,真空干燥,得到Fe3O4-生物炭复合纳米材料。
3.根据权利要求2所述的制备方法,其特征在于,热解方式制备生物炭的具体方法如下:
收集落叶洗涤去杂,在80℃的烤箱中干燥后,将其磨成粉末,将粉末置于550-650℃的管状炉中,在氮气保护下碳化1-3小时,碳化后得到的黑色粉末去除无机成分,水洗至中性,干燥后即得生物炭。
4.根据权利要求2所述的制备方法,其特征在于,所述的落叶为侧柏落叶,N2流量为100mL/min,升温速率为4-6℃/min,去除无机成分为将黑色粉末浸泡在1mol/L的盐酸溶液中20-24小时。
5.根据权利要求2所述的制备方法,其特征在于,步骤2)中,盐酸溶液的浓度为0.01-0.03mol/L;FeSO4·7H20的加入量与盐酸溶液的摩尔体积比为:(0.001-0.003):20-30,单位:mol/mL;FeCl3·6H2O的加入量与盐酸溶液的摩尔体积比为:(0.01-0.03):20-30,单位:mol/mL。
6.根据权利要求2所述的制备方法,其特征在于,步骤2)中,生物炭的加入量与盐酸溶液的质量体积比为:1:10-20,单位:g/mL。
7.根据权利要求2所述的制备方法,其特征在于,步骤2)中,NaOH溶液的浓度为2-5mol/L,NaOH溶液的加入量与盐酸溶液的体积比为:(6-9):(2-4)。
8.一种基于Fe3O4-生物炭复合纳米材料的过氧单硫酸盐体系(Fe3O4-BC/PMS体系)降解水体有机污染物的方法,包括步骤如下:
将Fe3O4-生物炭复合纳米材料投加至含有机污染物的废水中,然后加入过单硫酸盐,使其浓度达到3-8mmol/L,调节pH至3-7,将体系置于30-40℃恒温摇床中,反应时间100-160min。
9.根据权利要求8所述的方法,其特征在于,Fe3O4-生物炭复合纳米材料的投加量为0.5-4.0g/L,优选的,Fe3O4-生物炭复合纳米材料的投加量为1.5-2.0g/L。
10.根据权利要求8所述的方法,其特征在于,过单硫酸盐浓度为5-6mmol/L,调节pH方式为加入硫酸和氢氧化钠调节pH至3-5。
CN202011630649.3A 2020-12-30 2020-12-30 一种Fe3O4-生物炭复合纳米材料的制备方法及降解水体有机污染物的方法 Pending CN112808233A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011630649.3A CN112808233A (zh) 2020-12-30 2020-12-30 一种Fe3O4-生物炭复合纳米材料的制备方法及降解水体有机污染物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011630649.3A CN112808233A (zh) 2020-12-30 2020-12-30 一种Fe3O4-生物炭复合纳米材料的制备方法及降解水体有机污染物的方法

Publications (1)

Publication Number Publication Date
CN112808233A true CN112808233A (zh) 2021-05-18

Family

ID=75855117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011630649.3A Pending CN112808233A (zh) 2020-12-30 2020-12-30 一种Fe3O4-生物炭复合纳米材料的制备方法及降解水体有机污染物的方法

Country Status (1)

Country Link
CN (1) CN112808233A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149401A (zh) * 2021-05-21 2021-07-23 广东工业大学 一种基于pms活化的污泥复合调理及高压深度脱水方法
CN113233573A (zh) * 2021-07-12 2021-08-10 生态环境部华南环境科学研究所 一种含bpa污水的处理方法及球磨改性磁性生物炭复合材料
CN113522291A (zh) * 2021-06-04 2021-10-22 南京林业大学 一种Fe3O4@BC纳米复合材料及其制备方法和应用
CN113620370A (zh) * 2021-10-14 2021-11-09 生态环境部华南环境科学研究所 一种水体中双酚类污染物高效去除方法及复配生物炭材料
CN114405517A (zh) * 2021-12-17 2022-04-29 广东建科创新技术研究院有限公司 一种磁性多孔催化载体及其合成方法和应用
CN115090295A (zh) * 2022-05-27 2022-09-23 上海勘测设计研究院有限公司 一种Fe3O4/C/MnO2/RGO材料及其制备方法与应用
CN115432899A (zh) * 2022-08-03 2022-12-06 上海勘测设计研究院有限公司 一种强化污泥热水解过程中有毒有害物质高效去除的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129405A (ja) * 1999-08-25 2001-05-15 Ngk Insulators Ltd 有機廃棄物分解用酸化鉄系触媒、その製造方法及び有機廃棄物の処理方法
CN105439238A (zh) * 2015-12-11 2016-03-30 哈尔滨工业大学宜兴环保研究院 一种磁性活性炭一体化处理印染废水的方法
CN105797693A (zh) * 2016-05-28 2016-07-27 湖南德宝恒嘉环保生物科技有限公司 一种用于去除水体中铅镉的磁性谷壳生物炭及其制备和应用方法
CN107233876A (zh) * 2017-06-07 2017-10-10 广东省农业科学院农业资源与环境研究所 一种基于废弃生物质制备磁性纳米生物质炭的方法及其应用
CN107262096A (zh) * 2017-06-22 2017-10-20 南京理工大学 一种负载型生物炭催化材料的制备方法
CN109999811A (zh) * 2019-05-07 2019-07-12 鲁东大学 一种生物质铁碳复合材料的制备及用于催化活化过硫酸钠降解双酚a
CN110142023A (zh) * 2019-04-18 2019-08-20 中国科学院南京土壤研究所 一种纳米四氧化三铁/改性生物炭复合材料及其制备方法和应用
CN110404539A (zh) * 2019-07-15 2019-11-05 上海应用技术大学 一种铁基生物炭催化剂及污染土壤的氧化修复方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129405A (ja) * 1999-08-25 2001-05-15 Ngk Insulators Ltd 有機廃棄物分解用酸化鉄系触媒、その製造方法及び有機廃棄物の処理方法
CN105439238A (zh) * 2015-12-11 2016-03-30 哈尔滨工业大学宜兴环保研究院 一种磁性活性炭一体化处理印染废水的方法
CN105797693A (zh) * 2016-05-28 2016-07-27 湖南德宝恒嘉环保生物科技有限公司 一种用于去除水体中铅镉的磁性谷壳生物炭及其制备和应用方法
CN107233876A (zh) * 2017-06-07 2017-10-10 广东省农业科学院农业资源与环境研究所 一种基于废弃生物质制备磁性纳米生物质炭的方法及其应用
CN107262096A (zh) * 2017-06-22 2017-10-20 南京理工大学 一种负载型生物炭催化材料的制备方法
CN110142023A (zh) * 2019-04-18 2019-08-20 中国科学院南京土壤研究所 一种纳米四氧化三铁/改性生物炭复合材料及其制备方法和应用
CN109999811A (zh) * 2019-05-07 2019-07-12 鲁东大学 一种生物质铁碳复合材料的制备及用于催化活化过硫酸钠降解双酚a
CN110404539A (zh) * 2019-07-15 2019-11-05 上海应用技术大学 一种铁基生物炭催化剂及污染土壤的氧化修复方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张烁烁: "铁-碳催化剂体系对有机污染物的吸附与催化协同作用的研究", 《中国优秀硕士学位论文全文数据库(工程科技Ⅰ辑)》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149401A (zh) * 2021-05-21 2021-07-23 广东工业大学 一种基于pms活化的污泥复合调理及高压深度脱水方法
CN113522291A (zh) * 2021-06-04 2021-10-22 南京林业大学 一种Fe3O4@BC纳米复合材料及其制备方法和应用
CN113233573A (zh) * 2021-07-12 2021-08-10 生态环境部华南环境科学研究所 一种含bpa污水的处理方法及球磨改性磁性生物炭复合材料
CN113620370A (zh) * 2021-10-14 2021-11-09 生态环境部华南环境科学研究所 一种水体中双酚类污染物高效去除方法及复配生物炭材料
CN113620370B (zh) * 2021-10-14 2021-12-17 生态环境部华南环境科学研究所 一种水体中双酚类污染物高效去除方法及复配生物炭材料
CN114405517A (zh) * 2021-12-17 2022-04-29 广东建科创新技术研究院有限公司 一种磁性多孔催化载体及其合成方法和应用
CN115090295A (zh) * 2022-05-27 2022-09-23 上海勘测设计研究院有限公司 一种Fe3O4/C/MnO2/RGO材料及其制备方法与应用
CN115090295B (zh) * 2022-05-27 2023-10-31 上海勘测设计研究院有限公司 一种Fe3O4/C/MnO2/RGO材料及其制备方法与应用
CN115432899A (zh) * 2022-08-03 2022-12-06 上海勘测设计研究院有限公司 一种强化污泥热水解过程中有毒有害物质高效去除的方法
CN115432899B (zh) * 2022-08-03 2023-10-31 上海勘测设计研究院有限公司 一种强化污泥热水解过程中有毒有害物质高效去除的方法

Similar Documents

Publication Publication Date Title
CN112808233A (zh) 一种Fe3O4-生物炭复合纳米材料的制备方法及降解水体有机污染物的方法
CN111790422B (zh) 一种石墨化基氮络合的Fe(III)-Fe0催化剂及其合成方法和应用
Saputra et al. α-MnO2 activation of peroxymonosulfate for catalytic phenol degradation in aqueous solutions
CN109126893B (zh) 一种碳氧化钛-金属有机框架复合材料及制备方法和应用
CN110734120B (zh) 一种纳米零价铁镍活化过硫酸盐的水处理方法
CN112892475B (zh) 铁改性生物炭及其制备方法与应用
CN112607832B (zh) 一种纳米零价铁碳材料及其制备方法和应用
CN109465010B (zh) 一种磁性三氧化二铁-石墨碳纳米复合材料的制备及应用
CN112827511A (zh) 一种环糊精修饰磁性CuO-Fe3O4-生物炭多相纳米催化剂及其修复有机污染的方法
CN111790386A (zh) 一种利用自来水厂混凝污泥制备催化剂的方法及应用
CN111617770A (zh) 一种银量子点磁性氧化锌光催化材料及制备方法
CN113368812A (zh) 一种Co3O4/埃洛石复合材料、制备方法及应用
CN111330577A (zh) 一种碳化有机骨架包覆零价铜的芬顿催化剂及其制备方法与应用
CN112607785B (zh) 一种MnFe2O4/C纳米复合微球及其制备方法
CN112090398B (zh) 一种光催化吸附剂及其制备方法和在污水处理中的应用
CN111545211B (zh) 一种氧化石墨烯-氧化镧-氢氧化钴复合材料、合成方法及其应用
CN115353189B (zh) 一种调控溶解氧处理含环丙沙星的废水的方法
CN113351218A (zh) 一种Cu2O/BiFeO3复合材料及其制备方法和应用
CN110302819B (zh) 一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用
CN112295543A (zh) 一种具有高效重金属吸附性能生物炭的制备方法及其应用
CN111569890B (zh) 一种氧化石墨烯-氧化铽-氧化铁复合材料、合成方法及其在催化降解中的应用
CN110642448A (zh) 一种养殖废水再生利用的净化方法
US20230338926A1 (en) Porous manganese-containing fenton catalytic material and preparation method and use thereof
Yang et al. Synergistic catalytic wet oxidation of ammonia over carbon-supported low-loading Ru/Cu bimetallic catalyst
CN110201719B (zh) 一种制药污水治理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210518