CN109999811A - 一种生物质铁碳复合材料的制备及用于催化活化过硫酸钠降解双酚a - Google Patents

一种生物质铁碳复合材料的制备及用于催化活化过硫酸钠降解双酚a Download PDF

Info

Publication number
CN109999811A
CN109999811A CN201910373586.9A CN201910373586A CN109999811A CN 109999811 A CN109999811 A CN 109999811A CN 201910373586 A CN201910373586 A CN 201910373586A CN 109999811 A CN109999811 A CN 109999811A
Authority
CN
China
Prior art keywords
carbon composite
iron carbon
sodium peroxydisulfate
bisphenol
biomass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910373586.9A
Other languages
English (en)
Inventor
张升晓
张宗元
陈厚
张明明
李欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ludong University
Original Assignee
Ludong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ludong University filed Critical Ludong University
Priority to CN201910373586.9A priority Critical patent/CN109999811A/zh
Publication of CN109999811A publication Critical patent/CN109999811A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明属于水污染物处理领域,涉及一种新型的基于樱桃核的生物质铁碳复合材料。该催化材料可通过活化过硫酸钠产生活性自由基来降解水体中的有机污染物双酚A。该催化剂制备方法简单,所采用原辅材料价格低廉,容易实现批量化制备,能够快速高效的催化过硫酸钠降解双酚A,并且该铁碳复合材料具有顺磁性,催化降解完成后可以利用磁铁很容易的将材料从溶液中分离出来。结果表明,基于樱桃核的生物质铁碳复合材料活化过硫酸钠产生活性自由基降解废水中的有机污染物是一种很有前景的污染物去除技术。

Description

一种生物质铁碳复合材料的制备及用于催化活化过硫酸钠降 解双酚A
技术领域
本发明属于水污染物处理领域,制备了一种基于樱桃核的生物质铁碳复合材料,将其作为一种新型的催化剂活化过硫酸钠产生活性自由基来降解水体中的有机污染物双酚A。
背景技术
基于硫酸根自由基(SO4 ·-)的高级氧化技术是近年来发展起来的一类处理难降解有机污染物的新型技术[1-4]。SO4 ·-主要通过活化过硫酸盐产生,过硫酸盐包括过一硫酸盐(PMS)和过二硫酸盐(PDS),两者结构中均有不稳定的O-O键[5, 6],易于接收外来电子断裂。SO4 ·-的氧化还原电位(2.5-3.1 V)较高,具有很强的氧化性,并且存在寿命高于一般的活性自由基。因此,相对于其它传统水处理技术,基于SO4 ·-的高级氧化技术具有高效、快速、彻底、选择性小且反应条件温和等优点,在环境污染修复与治理领域具有广泛的应用前景。
常见活化过硫酸盐的方式包括热活化、微波活化、超声活化、紫外光活化、过渡金属离子活化、碳材料活化、碱活化等[7, 8]。光或热的物理活化方法快速、无二次污染,但通常需要复杂的设备与较高的能耗。均相过渡金属离子催化体系反应条件温和、能耗低,传质速率高,催化剂与过硫酸盐接触充分,活化效率高,但也存在分离回收困难、易造成二次污染、碱性条件下因沉淀而降低活性等缺点。基于上述不足,开发基于过渡金属的非均相催化剂具有十分重要的意义。铁材料具有价格低廉、环境友好等优点,常被用作过硫酸盐的活化材料。纳米零价铁可以缓慢释放Fe2+,从而控制过硫酸盐的活化速度,保证体系持续高效地降解污染物[9, 10]。Tan等[11]以商品化的纳米Fe3O4活化PMS降解对乙酰氨基酚。Ji等[12]以水热-煅烧法合成多孔Fe2O3颗粒活化PMS用于罗丹明B的脱色,催化剂具有高的活性和重复利用性。这些方法取得了良好的效果,然而催化材料的制备存在方法复杂、成本较高,只能在实验室进行少量的制备的应用研究。
随着工农业的发展和人民生活水平的提高,必然会产生大量的生物质废弃物。如果这些废弃物处置不当,就会对水体、大气、土壤等造成严重的环境污染。废弃生物质的主要成分包括纤维素、半纤维素和木质素,将其在隔绝空气条件下裂解或不完全燃烧可以制备性能优良的生物质活性炭。在生物质废弃物裂解的过程中,可以通过碳热还原将过渡金属还原制备复合材料。樱桃核是一种常见的食品行业的生物质废弃物,其主要成分包括苷类、黄酮、萜类、酚类、挥发油鞣质、单宁化合物、儿茶素和表儿茶素等[13]。
本文将樱桃核粉末与无水FeCl3混合均匀,在惰性气氛下高温煅烧,Fe3+可以利用其氧化性活化樱桃核粉,本身被还原为铁纳米颗粒负载到樱桃核粉生物质活性炭上,将该材料用于催化活化过硫酸钠产生活性自由基降解内分泌干扰物双酚A。
主要参考文献:
[1] 谷得明, 郭昌胜, 冯启言, 张远, 徐建, 基于硫酸根自由基的高级氧化技术及其在环境治理中的应用, 环境化学, 37 (2018) 2489-2508.
[2] 杨世迎, 陈友媛, 胥慧真, 王萍, 刘玉红, 王茂东, 过硫酸盐活化高级氧化新技术, 化学进展, (2008) 1433-1438.
[3] A.-Y. Zhang, N.-H. Huang, Y.-Y. He, P.-C. Zhao, J.-W. Feng, Sulfateradicals generation and refractory pollutants removal on defective facet-tailored TiO2 with reduced matrix effects, Chem Eng J, 358 (2019) 243-252.
[4] H. Liu, T.A. Bruton, W. Li, J.V. Buren, C. Prasse, F.M. Doyle, D.L.Sedlak, Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and TransformationProducts, Environ Sci Technol, 50 (2016) 890-898.
[5] X. Lou, L. Wu, Y. Guo, C. Chen, Z. Wang, D. Xiao, C. Fang, J. Liu, J.Zhao, S. Lu, Peroxymonosulfate activation by phosphate anion for organicsdegradation in water, Chemosphere, 117 (2014) 582-585.
[6] W.-D. Oh, S.-K. Lua, Z. Dong, T.-T. Lim, A novel three-dimensionalspherical CuBi2O4 consisting of nanocolumn arrays with persulfate andperoxymonosulfate activation functionalities for 1H-benzotriazole removal,Nanoscale, 7 (2015) 8149-8158.
[7] W.-D. Oh, T.-T. Lim, Design and application of heterogeneouscatalysts as peroxydisulfate activator for organics removal: An overview,Chem Eng J, 358 (2019) 110-133.
[8] Q. Zhao, Q. Mao, Y. Zhou, J. Wei, X. Liu, J. Yang, L. Luo, J. Zhang,H. Chen, H. Chen, L. Tang, Metal-free carbon materials-catalyzed sulfateradical-based advanced oxidation processes: A review on heterogeneouscatalysts and applications, Chemosphere, 189 (2017) 224-238.
[9] R. Li, X. Jin, M. Megharaj, R. Naidu, Z. Chen, Heterogeneous Fentonoxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfatesystem, Chem Eng J, 264 (2015) 587-594.
[10] 金晓英, 李任超, 陈祖亮, 纳米零价铁活化过硫酸钠降解2,4-二氯苯酚, 环境化学, 33 (2014) 812-818.
[11] C. Tan, N. Gao, Y. Deng, J. Deng, S. Zhou, J. Li, X. Xin, Radicalinduced degradation of acetaminophen with Fe3O4 magnetic nanoparticles asheterogeneous activator of peroxymonosulfate, J Hazard Mater, 276 (2014) 452-460.
[12] F. Ji, C. Li, X. Wei, J. Yu, Efficient performance of porous Fe2O3in heterogeneous activation of peroxymonosulfate for decolorization ofRhodamine B, Chem Eng J, 231 (2013) 434-440.
[13] 甄天元, 肖军霞, 樱桃核主要成分分析及其抗氧化性研究, 食品研究与开发,35 (2014) 112-115。
发明内容
本发明制备了一种铁纳米颗粒负载的樱桃核生物质碳材料,将该材料用作催化剂活化过硫酸钠产生活性自由基来降解水体环境中的有机污染物双酚A,取得了良好的效果。
材料的制备方法为:将5.78 g无水三氯化铁与2.0 g樱桃核粉末分散到50 mL乙醇溶液中,搅拌加热至50℃蒸干。之后将固体研磨后置于管式电阻炉,保持氩气气氛,以10℃/min的速度升温到800 ℃煅烧,保持5 h后自然冷却降温,得到基于樱桃核的生物质铁碳复合材料。
以双酚A为目标物,研究制备出的复合材料催化活化过硫酸钠对其的降解性能。实验结果证明:当双酚A浓度为20 mg/L,催化材料浓度0.1 g/L,氧化剂过硫酸钠浓度1.0 g/L时,只需要5 min时间就可以将双酚A完全降解,30 min总有机碳去除率接近40%,且整个反应受溶液pH的影响不大。因此,以基于樱桃核的生物质铁碳复合材料活化过硫酸钠产生活性自由基降解废水中的有机污染物是一种很有前景的有机污染物去除技术。
该催化材料主要有以下优点:
1.制备方法简单,易于规模化生产:只需将原材料混合均匀后隔绝空气高温裂解就可以得到复合材料,裂解过程中同步实现生物质炭的活化和铁纳米颗粒的负载。
2.催化效率高,反应速率快:催化降解双酚A所需的催化剂浓度较低,在5 min之内就可以将20 mg/L双酚A完全降解。
3.成本低廉,环境友好:主要原材料为生物质废弃物樱桃核和铁盐,价格低廉,能够实现废物的资源化,并且铁盐也属于环境友好的金属材料。
4.易于磁分离,操作方便:制备的材料具有良好的顺磁性,催化降解完成后,利用外加磁场可以很容易将催化剂从溶液中分离出来。
附图说明
图1是基于樱桃核的生物质铁碳复合材料的扫描电镜图
图2是生物质铁碳复合材料对双酚A的降解效率和TOC去除率

Claims (3)

1.制备了一种基于樱桃核的生物质铁碳复合材料。
2.权利1所述的生物质铁碳复合材料是将樱桃核粉末与无水FeCl3混合均匀,在氩气气氛下高温煅烧得到。
3.将按权利2方法制备的生物质铁碳复合材料用于催化过硫酸钠降解水中的内分泌干扰物双酚A。
CN201910373586.9A 2019-05-07 2019-05-07 一种生物质铁碳复合材料的制备及用于催化活化过硫酸钠降解双酚a Pending CN109999811A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910373586.9A CN109999811A (zh) 2019-05-07 2019-05-07 一种生物质铁碳复合材料的制备及用于催化活化过硫酸钠降解双酚a

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910373586.9A CN109999811A (zh) 2019-05-07 2019-05-07 一种生物质铁碳复合材料的制备及用于催化活化过硫酸钠降解双酚a

Publications (1)

Publication Number Publication Date
CN109999811A true CN109999811A (zh) 2019-07-12

Family

ID=67175973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910373586.9A Pending CN109999811A (zh) 2019-05-07 2019-05-07 一种生物质铁碳复合材料的制备及用于催化活化过硫酸钠降解双酚a

Country Status (1)

Country Link
CN (1) CN109999811A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110917901A (zh) * 2019-11-25 2020-03-27 南京林业大学 一种原位快速降解污水有机污染物的纤维素滤膜及其制备方法
CN111250163A (zh) * 2020-03-04 2020-06-09 中南大学 一种固废基催化剂及其制备方法和应用
CN111875028A (zh) * 2020-08-10 2020-11-03 导洁(北京)环境科技有限公司 一种安全的难降解有机物高级氧化方法
CN111906138A (zh) * 2020-08-04 2020-11-10 昆明理工大学 一种基于生物炭降解有机污染物的方法
CN112808233A (zh) * 2020-12-30 2021-05-18 山东大学 一种Fe3O4-生物炭复合纳米材料的制备方法及降解水体有机污染物的方法
CN113233573A (zh) * 2021-07-12 2021-08-10 生态环境部华南环境科学研究所 一种含bpa污水的处理方法及球磨改性磁性生物炭复合材料
CN113620404A (zh) * 2021-08-11 2021-11-09 湖南沃邦环保科技有限公司 一种有机生态污染综合废水的处理材料、制备方法和废水处理方法
CN115367858A (zh) * 2022-08-16 2022-11-22 华侨大学 一种促进单过硫酸盐热活化体系降解扑热息痛协同控制氯代有机副产物生成的水处理方法
CN115417487A (zh) * 2022-08-24 2022-12-02 重庆第二师范学院 Li2MnO3在催化活化过一硫酸盐降解BPA的用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016014505A1 (en) * 2014-07-22 2016-01-28 Corning Incorporated Method for making activated carbon-supported transition metal-based nanoparticles
CN105903436A (zh) * 2016-05-11 2016-08-31 上海应用技术学院 一种生物质碳负载纳米零价铁材料、制备方法及其应用
CN106732559A (zh) * 2016-12-26 2017-05-31 青岛大学 一种樱桃核碳负载的钯催化剂及其制备方法与应用
CN108854950A (zh) * 2018-06-05 2018-11-23 南昌大学 一步法制备生物炭纳米零价铁复合物的方法
CN108906052A (zh) * 2018-06-29 2018-11-30 南京理工大学 零价铁/碳材料催化剂及其制备方法
CN109626544A (zh) * 2018-12-07 2019-04-16 华南农业大学 一种基于四硫化三铁活化过硫酸盐降解水体中环境激素双酚a的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016014505A1 (en) * 2014-07-22 2016-01-28 Corning Incorporated Method for making activated carbon-supported transition metal-based nanoparticles
CN105903436A (zh) * 2016-05-11 2016-08-31 上海应用技术学院 一种生物质碳负载纳米零价铁材料、制备方法及其应用
CN106732559A (zh) * 2016-12-26 2017-05-31 青岛大学 一种樱桃核碳负载的钯催化剂及其制备方法与应用
CN108854950A (zh) * 2018-06-05 2018-11-23 南昌大学 一步法制备生物炭纳米零价铁复合物的方法
CN108906052A (zh) * 2018-06-29 2018-11-30 南京理工大学 零价铁/碳材料催化剂及其制备方法
CN109626544A (zh) * 2018-12-07 2019-04-16 华南农业大学 一种基于四硫化三铁活化过硫酸盐降解水体中环境激素双酚a的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴晓毅等: ""热解法制备生物炭负载纳米零价铁及其去除废水中硒的研究"", 《能源化工》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110917901A (zh) * 2019-11-25 2020-03-27 南京林业大学 一种原位快速降解污水有机污染物的纤维素滤膜及其制备方法
CN111250163A (zh) * 2020-03-04 2020-06-09 中南大学 一种固废基催化剂及其制备方法和应用
CN111906138A (zh) * 2020-08-04 2020-11-10 昆明理工大学 一种基于生物炭降解有机污染物的方法
CN111875028A (zh) * 2020-08-10 2020-11-03 导洁(北京)环境科技有限公司 一种安全的难降解有机物高级氧化方法
CN112808233A (zh) * 2020-12-30 2021-05-18 山东大学 一种Fe3O4-生物炭复合纳米材料的制备方法及降解水体有机污染物的方法
CN113233573A (zh) * 2021-07-12 2021-08-10 生态环境部华南环境科学研究所 一种含bpa污水的处理方法及球磨改性磁性生物炭复合材料
CN113620404A (zh) * 2021-08-11 2021-11-09 湖南沃邦环保科技有限公司 一种有机生态污染综合废水的处理材料、制备方法和废水处理方法
CN115367858A (zh) * 2022-08-16 2022-11-22 华侨大学 一种促进单过硫酸盐热活化体系降解扑热息痛协同控制氯代有机副产物生成的水处理方法
CN115367858B (zh) * 2022-08-16 2023-11-21 华侨大学 一种促进单过硫酸盐热活化体系降解扑热息痛协同控制氯代有机副产物生成的水处理方法
CN115417487A (zh) * 2022-08-24 2022-12-02 重庆第二师范学院 Li2MnO3在催化活化过一硫酸盐降解BPA的用途

Similar Documents

Publication Publication Date Title
CN109999811A (zh) 一种生物质铁碳复合材料的制备及用于催化活化过硫酸钠降解双酚a
Fu et al. When bimetallic oxides and their complexes meet Fenton-like process
Yang et al. Enhanced Fenton-like degradation of sulfadiazine by single atom iron materials fixed on nitrogen-doped porous carbon
US20200238268A1 (en) CoFe2O4-WTRs Composite Magnetic Catalyst, Preparation Method and Application Thereof
CN108745396A (zh) 一种纳米限域零价铁@纺锤型多孔碳催化氧化水处理方法
Wang et al. Degradation of norfloxacin wastewater using kaolin/steel slag particle electrodes: Performance, mechanism and pathway
Liu et al. Highly dispersed copper single-atom catalysts activated peroxymonosulfate for oxytetracycline removal from water: Mechanism and degradation pathway
Zhang et al. Insight into peroxymonosulfate assisted photocatalysis over Fe2O3 modified TiO2/diatomite composite for highly efficient removal of ciprofloxacin
Li et al. Activation of peroxymonosulfate by a waste red mud-supported Co3O4 quantum dots under visible light for the degradation of levofloxacin
Deng et al. The MOF/LDH derived heterostructured Co3O4/MnCo2O4 composite for enhanced degradation of levofloxacin by peroxymonosulfate activation
CN110975869A (zh) 一种磁性氧空位铁钴层状双金属氢氧化物催化剂的制备方法及其应用
CN103071493A (zh) 一种Ag/ZnO中空微球光催化剂的制备方法
Xiao et al. Microwave‐assisted heterogeneous catalytic oxidation of high‐concentration Reactive yellow 3 with CuFe2O4/PAC
Qin et al. Mechanism and kinetics of treatment of acid orange II by aged Fe-Si-B metallic glass powders
Wang et al. Highly efficient activation of peroxymonosulfate for rapid sulfadiazine degradation by Fe3O4@ Co3S4
Zhao et al. Activation of persulfate by magnetic MnFe2O4-bentonite for catalytic degradation of 2, 4-dichlorophenol in aqueous solutions
CN111974404A (zh) 光助BiFe1-xCuxO3活化过一硫酸盐处理水体残留环丙沙星的方法
CN109908926B (zh) 一种臭氧催化氧化催化剂的制备方法
Li et al. In-situ preparation of yeast-supported Fe0@ Fe2O3 as peroxymonosulfate activator for enhanced degradation of tetracycline hydrochloride
CN109465010A (zh) 一种磁性三氧化二铁-石墨碳纳米复合材料的制备及应用
Li et al. Mn-Co/ɣ-Al2O3 coupled with peroxymonosulfate as efficient catalytic system for degradation of norfloxacin
Huang et al. Effective and continuous degradation of levofloxacin via the graphite felt electrode loaded with Fe3O4
Liu et al. Fabrication of magnetic bifunctional composite via anchoring CoY on waste heating pad as a cycling material for peroxymonosulfate activation to degrade p-arsanilic acid and simultaneously eliminate secondary As (V)
CN109569648B (zh) 一种铁酸银纳米材料催化过硫酸盐处理有机废水的方法
Lv et al. High yielded Co–C derived from polyester-Cobalt carbothermal reduction for efficient activation of peroxymonosulfate to degrade levofloxacin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190712

WD01 Invention patent application deemed withdrawn after publication