CN1127235A - 透氧混合导电膜 - Google Patents

透氧混合导电膜 Download PDF

Info

Publication number
CN1127235A
CN1127235A CN95117797A CN95117797A CN1127235A CN 1127235 A CN1127235 A CN 1127235A CN 95117797 A CN95117797 A CN 95117797A CN 95117797 A CN95117797 A CN 95117797A CN 1127235 A CN1127235 A CN 1127235A
Authority
CN
China
Prior art keywords
oxygen
film
less
mixture
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN95117797A
Other languages
English (en)
Inventor
T·J·马赞尼
T·L·凯博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Oil Co
Original Assignee
Standard Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Co filed Critical Standard Oil Co
Publication of CN1127235A publication Critical patent/CN1127235A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0046Inorganic membrane manufacture by slurry techniques, e.g. die or slip-casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • C01G51/68Cobaltates containing alkaline earth metals, e.g. SrCoO3 containing rare earth, e.g. La0.3Sr0.7CoO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/66Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2
    • C01G53/68Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2 containing rare earth, e.g. La1.62 Sr0.38NiO4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1035Catalyst coated on equipment surfaces, e.g. reactor walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0062Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0078Noble gases
    • C01B2210/0079Helium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structural Engineering (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及新型的固态混合导电膜以及它们在高温下从含氧物料中分离氧的应用。该膜包括在空气中和25-950℃的温度下稳定的,基本是立方钙钛矿结构的,没有相连的贯穿孔的多成分金属氧化物,其中该膜是用下列通式表示的一种组合物:
[A1-xA′x][Co1-y-zByB′z]O3-δ,式中A≡Ca,Sr,Ba,和它们的混合物;A′≡La,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Th,U,和它们的混合物;B≡Fe,Mn,Cr,V,Ti,和它们的混合物;B′≡Cu,Ni,和它们的混合物;~0.0001≤X≤~0.1;~0.002≤Y<0.05;~0.0005≤Z≤~0.3;δ由金属价态决定。

Description

透氧混合导电膜
本发明涉及由混合导电氧化物形成的新型混合物导电膜以及使用该膜的方法。这一方法是在高温下从含氧物料中分离氧。该膜是氧离子和电子导体,它是形成基本上是立方钙钛矿结构的组合物,该结构在空气中和25-950℃的温度下基本上是稳定的。
申请人已发现稳定膜中立方钙钛矿相的组合物,而这些膜所具有的组合物以前在空气中和在室温大气压力至分离氧所用条件的范围内并不能维持立方钙钛矿相稳定。特别是,微量A位阳离子和微量B位阳离子能稳定ABCoO材料中基本上是立方钙钛矿的结构。另外,加入微量A位阳离子和B位阳离子在ABCoO材料中产生了立方钙钛矿相材料,而该ABCoO材料也会产生形成低氧流量的膜的立方相材料。
由氧离子导电材料形成的固态膜开始呈现出其用于从含氧流中分离氧的工业方法的前景。所展望的应用范围可以从医学上的小型氧泵到大量的气体生产和净化设备。该技术包括两种明显不同的膜材料,固体电解质和混合导体。由于混合导体传导氧离子和电子,并且在没有外部电路如电极,插头和电源的条件下就能操作,因此在从含氧物料中分离氧的方法中,由混合导体形成的膜比固体电解质优选。相反,固体电解质只传导电子,并需要外部电路以保持电子流动从而维持膜的离子化/去离子化过程。这样的电路增加了设备成本并使电解槽的几何结构复杂化。
当在典型的约500℃以上的温度下操作时,由固体电解质和混合导电氧化物形成的膜对氧有选择性并且能传送氧离子使之通过在固体晶格中动态形成的氧阴离子空位。固态电解质的例子包括用钇稳定的二氧化锆(YSZ)和氧化铋。混合导体的例子包括用钛掺杂的YSZ,用氧化镨改性的YSZ,并且更重要的是各种混合金属氧化物,这些混合金属氧化物中有些具有钙钛矿结构。
日本专利申请61-21717公开了由具有钙钛矿结构的多成分金属氧化物形成的膜,该钙钛矿结构由此式表达:
La1-xSrxCo1-yFeyO3-d,式中,x是0.1-1.0,y是0.05-1.0,d是0.5-0。
当在膜相对的两面存在氧分压差时,就可以利用在高温下操作由混合导电氧化物形成的膜而从含氧物料中选择性地分离氧。当氧分子离解成氧离子时就会发生氧迁移,氧离子迁移到氧分压低的膜一侧并在此处重新结合形成氧分子,而电子则以与氧离子相反的方向迁移过该膜以使电荷守恒。
氧透过膜的速率主要由三个因素控制。它们是(a)物料一侧界面处的氧交换动态速率,也就是在膜物料一侧的表面上,物料中的氧分子转变成可移动的氧离子的速率;(b)膜中氧离子和电子的扩散速率;(c)渗透侧界面处的氧交换动态速率,即在膜的渗透侧膜中的氧离子转变回氧分子并释放的速率。
Thorogood等人的美国专利US5,240,480(在此引入作为参考)建议通过控制支撑无孔致密层的多孔结构的孔尺寸来控制物料侧界面处氧交换的动态速率。很多文献都描述了具有较高离子和电子导电性能的材料,如Yoshisato等人的美国专利US4,330,633,Yamaji等人的日本公开专利J56[1981]-92103,以及Teraoka和Coworkers的文章,Chem.Letters,The Chem,Soc.of Japan,P503-506(1988)。
金属氧化物膜的典型文献是上述日本专利申请61-21717。当将氧分压较高的含氧气态混合物施加到具有由列举的氧化物形成的致密层的膜的一侧时,在膜表面上将吸附和解离氧,氧变得离子化并通过固体扩散和去离子化,作为氧分压较低的氧气流而在膜的另外一侧结合并解析。
通过氧化物的电子电导性在氧化物内部维持提供该电离/去电离过程电子所必需的电路。这种分离方法被描绘成特别适合于从含有较高分压即高于或等于0.2atm的氧的气流中分离氧。经证实具有氧离子导电性和电子导电性的多成分金属氧化物,其典型的氧离子电导率是0.01ohm-1 cm-1-100ohm-1cm-1,电子电导率约是1ohm-1cm-1-100ohm-1cm-1
一些多成分金属氧化物在高温主要是或仅仅是氧离子导体。例如(Y2O3)0.1(Zr2O3)0.9,其氧离子电导率在1000℃时是10ohm-1cm-1,而氧迁移数(离子电导率与总电导率的比值)接近1。欧洲专利申请EP0399833A1描述了一种由该氧化物与独立的电子传导相,如铂或另一种贵金属的复合物形成的膜。在分压梯度推动力下,该电子传导相反向提供电子经过该结构,使得氧离子传导经过该复合膜。
另一类多成分金属氧化物表现出:在高温时主要是或仅仅是电子传导,并且它们的氧迁移数接近0。例如在欧洲专利申请EP0,339,833A1中所描述的PrxInyOz。这种材料可以用在具有独立的氧离子传导相,如稳定的ZrO2的复合物膜中。通过把氧分压梯度作为推动力,由这种复合物形成的膜也能用于从含氧流,如空气中分离氧。典型的是,该多成分氧化物电子导体被放置成与氧离子导体紧密接触。
有机聚合物膜也能用于氧分离。然而,由混合导电氧化物形成的膜比聚合物膜提供了显著优越的氧选择性。该改进的选择性的实用价值必须足以抵消与使用由混合导电氧化物形成的膜的建筑及操作工厂有关的较高费用,这类工厂要求有热交换器,高温密封和其它昂贵设备。典型现有的由混合导电氧化物形成的膜并不能表现出足够的透氧性(定义为渗透率与厚度之比),以证明它们可用于工业氧分离应用中。
众所周知,通过固态膜的透氧性随着膜厚的减少成比例地增加,并且人们已广泛地研究了在力学上稳定的,较薄的膜结构。
例如,Teraoka等人的第二篇文章,Jour.Ceram.Soc.Japan.internationol Ed.Vol 97,pp 458-462,(1989)和J Ceram.Soc.Japan,International Ed,Vol 97,pp 523-529,(1989),描述了由在多孔混合导电支撑体上沉积-致密无孔混合导电氧化物层(称做致密层)来形成固态分离气体膜。较厚的多孔混合导电支撑体向薄的、较易碎的致密无孔混合导电层提供了力学稳定性。由于各层膜的化学相容性,由在制造和使用中膜所经历的热力学应力所引起的结构损坏被基本上减至最小。基于要限制致密层厚度的考虑,有标准的单层致密的、经过烧结的混合导电片相比,Teraoka和Coworkers认为具有混合导电多孔层和薄混合导电致密层的膜的氧流量可以增加10倍。然而,他们所获得的增加小于2倍。
研究者们仍在对在不损失复合膜的力学和物理相容性下而表现出优异氧流量的固态导电膜进行研究。
本发明涉及在高温下能从含氧物料中分离氧的新型混合导电膜。该膜具有形成在空气中和25-950℃下基本上稳定的基本上是立方钙钛矿结构的结构和组合物,从而与现有的固态膜相比,它显示出较高的氧流量。
尽管人们已经知道膜由混合导电氧化物层组成,但本发明的膜具有形成基本上是立方钙钛矿结构的组合物。该结构表现出较高的氧流量。以较低的浓度向能形成六方相材料的混合金属氧化物中加入特殊的过渡金属稳定了最终的混合导电膜中的立方钙钛矿结构。由此材料形成的膜的氧流量得到增加。
本发明的膜由至少二种不同金属氧化物的混合物形成,其中多成分金属氧化物形成经证实在约高于500℃的温度下具有电子传导性和氧离子传导性的基本上是钙钛矿的结构。这些材料一般称为混合导电氧化物。
合适的混合导电氧化物用下列结构表示:
[A1-xA′x][Co1-y-zByB′z]O3-δ
式中,A选自Ca,Sr,Ba,和它们的混合物;
A′选自La,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Th,U,和它们的混合物;
B选自Fe,Mn,Cr,V,Ti,和它们的混合物;
B′选自于Cu,Ni和它们的混合物;
x不小于约0.0001,不大于约0.1;
y不小于约0.002,小于0.05;
z不小于约0.0005,不大于约0.3;
δ由金属价态决定。
该立方钙钛矿结构在空气中和25-950℃下基本上是稳定的。典型的是,该混合导电氧化物含有不小于约90%的立方钙钛矿结构材料,优选地是不小于约95%立方钙钛矿结构材料,最优选地是不小于约98%立方钙钛矿结构材料。
本发明还涉及由所述混合导体形成的一种或多种膜的应用。该膜合适的应用包括从含氧流体中,特别是空气,或用其它流体稀释了的空气中分离氧气的方法。
本发明涉及由混合导电氧化物形成的新型混合导电膜和使用该膜的方法。该方法中的一种是在高温下从含氧物料中分离氧。该膜是氧离子和电子导体,并且它们具有形成基本上是立方钙钛矿结构的组合物。以较低的浓度向能形成六方相材料的混合金属氧化物中加入特殊的过渡金属稳定了最终的混合导电膜中的立方钙钛矿结构。由该材料形成的膜的氧流量有所增加。更具体地说,一种混合导电膜,已经显示出具有极其高的氧迁移量,其中的膜具有下列组成:
[A1-xA′x][Co1-y-zByB′z]O3-δ,       (式1)
式中,A选自Ca,Sr,Ba,和它们的混合物;A′选自La,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Th,U,和它们的混合物;B选自Fe,Mn,Cr,V,Ti,和它们的混合物;B′选自于Cu,Ni和它们的混合物;x不小于约0.0001,不大于约0.1;y不小于约0.002,小于0.05;z不小于约0.0005,不大于约0.3;δ由金属价态决定。其中立方钙钛矿结构在空气中和25-950℃的温度下基本是稳定的。
为了叙述方便,Ca,Sr,Ba和它们的混合物以后称为“A阳离子”,La,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Th,U,和它们的混合物;称为“A′阳离子”A阳离子和A′阳离子统统称为“A位阳离子”。类似地,Fe,Mn,Cr,V,Ti和它们的混合物称为“B阳离子”;Cu,Ni,和它们的混合物称为“B′阳离子”; B阳离子和B′阳离子统统称为“B位阳离子”。
通过进一步对氧离子化地迁移经过混合导电氧化物膜的机理的了解,可以更充分地明白申请人的发现。所观察到的传统混合导电膜的氧流量由表面动力学限制和松散扩散限制所控制。表面动力学限制是对由涉及在混合导电膜物料一侧将氧分子转变成可移动的氧离子,而在混合导电膜渗透一侧将氧离子转变回氧分子的。许多步骤中的一步或多步所导致的氧流量的限制。松散扩散限制是对与氧离子扩散通过膜材料相关的氧流量的限定。
基本上由立方钙钛矿相材料组成的膜表现出较高的总氧流量。然而,立方钙钛矿相并不在所有的混合导电氧化物材料中形成,或者如果形成的话,在所要求的形成和操作条件下它们是不稳定的。由六方相材料形成的膜表现出极小的氧流量。因此,为了制造高效膜,膜组合物在操作条件下必须在该膜中保持相当高比例的稳定立方钙钛矿相。
申请人已经发现了可以稳定膜中立方钙钛矿相的组合物,这些膜所具有的组合物以前并不能在空气中和常温及大气压力至分离氧所用条件的范围内保持稳定的立方钙钛矿相。特别是,微量A位阳离子和微量B位阳离子稳定了ABCoO材料中的基本上是立方钙钛矿的结构。另外,加入微量A位阳离子和微量B位阳离子在ABCoO材料中产生了立方钙钛矿结构,否则这种ABCoO材料会产生形成低氧流量膜的六方相材料。
本发明提供了克服这些缺陷的膜,并且可以制造出基本上是立方钙钛矿相的混合导电氧化物结构。由该材料制造的膜表现出较高的总松散扩散率。
所要求的膜包括式1中所描述的组合物,它没有相连的贯穿孔,在空气中和25-950℃下它基本上是稳定的钙钛矿相,并且在操作温度下具有传导电子和氧离子的能力。
本发明的膜由至少两种不同的金属氧化物的混合物形成,其中该多成分金属氧化物经证实在高温下具有电子传导性和氧离子传导性。由于该多成分金属氧化物能在高温下传导电子和氧离子,故适合于本发明的多成分金属氧化物被称为“混合”传导氧化物。式1的组合物代表合适的混合传导氧化物,该组合物在空气中和25-950℃下产生基本是稳定的立方钙钛矿结构。现有技术中所描述的材料,以及与式1组合物极相似,但不同的材料产生主要是六方相或其它相的材料,其中只有很少的立方相存在。这类材料表现出相当低的氧流量。
通式1代表申请人发明的混合导电氧化物;优选的通式为[Sr1-x-x′LaxCax′][Co1-y-zByB′z]O3-δ,式中x′小于约0.01,x大于约0.02,小于约0.1,并且B,B′,y,z和δ如式1中所述;更优选的通式为[Sr1-x-x′LaxCax′][Co1-y-zFeyB′z]O3-δ,式中B′,x,y,z,和δ如式1中所述,并且x′小于约0.01;最优选通式为
[Sr0.95-x′La0.05Cax′][Co1-y-zFeyNiz]O3-δ
[Sr0.95-x′La0.05Cax′][Co1-y-zMnyNiz]O3-δ
[Sr0.95-x′La0.05Cax′][Co1-y-zFeyCuz]O3-δ
[Sr0.95-x′La0.05Cax′][Co1-y-zMnyCuz]O3-δ和它们的混合物,式中0.001<x′<0.01,0.0025≤y≤0.01,0.001≤z≤0.05,δ由金属价态决定。
为了确保膜具有足够的机械强度,可以改变材料的厚度。如前面所讨论的,对于一定的膜材料来说,较薄的膜增加了总的松散扩散率,为了利用这一现象,可用一个或多个多孔支撑体支撑薄膜。申请人发明的未支撑的混合导电膜的最小厚度约是0.01mm,优选地为约0.05mm,最优选地为约0.1mm。申请人发明的未支撑的混合导电膜的最大厚度是约10mm,优选地是约2mm,最优选的是约1mm。
申请人发明的带支撑的混合导电膜的最小厚度是约0.0005mm,优选地是约0.001mm,最优选地是约0.01mm。申请人发明的带支撑的混合导电膜的最大厚度是约2mm,优选地是约1mm,最优选的是约0.1mm。
除了氧流量增加外,本发明的膜在温度为25℃-950℃和氧分压为1-约1×10-6大气压(绝对)的条件下是稳定的,它不会发生相变。基本稳定的立方钙钛矿结构包括所有具有不少于90%的立方钙钛矿相材料,优选地是不少于95%的立方钙钛矿相材料,最优选是不少于98%的立方钙钛矿相材料的结构,这些结构在25℃-950℃的温度和氧分压为1-约1×10-6大气压下没有表现出恒定的相变。
立方钙钛矿相的稳定可以认为是由于申请人发现的独特的组合物所引起。相反,以前报道的材料的相变使它们不适合用于经历温度和压力周期变化,或承受在制备和使用它们过程中的条件的设备。例如,具有极相似的组合物的膜,在25-950℃的温度下主要形成六方相结构,并且该材料的氧流量明显比本发明材料低。
通过把含氧物料送入用本膜与第二腔室隔离的第一腔室内;通过在第一腔室内产生过量的氧分压和/或在第二腔室内产生降低的氧分压在第一和第二腔室之间建立正氧分压差;在高于约500℃的温度下使含氧物料与该膜接触以便把含氧物料分离成富氧渗透流和缺氧废流并回收富氧渗透流,本发明膜可用于从含氧物料中回收氧。
当把工艺温度提高到足够高的温度时,第一腔室和第二腔室之间的氧分压差提供了进行分离的推动力,从而使存在于第一腔室内的含氧物料中的氧吸附在膜的第一个表面上,经膜变成离子化并以离子形式迁移经过该膜。把富氧渗透物收集在第二腔室内,在此处通过在第二腔室内的膜第二表面上释放电子将离子氧转变成中性。
通过压缩空气或其它含氧流体可以在第一和第二腔室间产生正氧分压差,使第一腔内达到足够的压力以便在高于或等于约1个大气压的压力下回收富氧渗透流。典型的压力范围为约15psia-250psia,最佳的压力将随含氧物料中的氧含量而变化。为了达到必需的氧分压可以使用传统的压缩机。另外,通过把第二腔室抽真空也能在第一和第二腔室之间产生正氧分压差,从而达到足够的压力以便回收富氧渗透物。第二腔室的抽真空可以用机械方法,用压缩机,泵,等等;化学方法,通过使富氧渗透物反应;热学方法,通过冷却富氧渗透物;或现有技术的其它方法来实现。另外,本发明也可以通过上述手段,采用在减少第二腔室中的氧分压的同时增加第一腔室中的氧分压。在操作过程中,如有必要,或采用向二个腔室供应物料或从二个腔室中抽出产物流的方法。也可以改变相对压力达到最佳地分离氧。
通过将基本上是富氧的渗透物储存在一合适容器中或将其移送至另一工艺可以实现富氧渗透物的回收。富氧渗透物典型地包括纯氧或一般定义为含有至少约90vol%O2,优选地是多于95vol%O2,特别是多于99vol%O2的高纯氧。
提供以下实施例以进一步说明本发明。这些实施例仅用于说明而不是对所附权利要求的限制。
                      实施例
例1
由4.28g La(C2H3O2)3·1.5H2O(来自Alfa,ward Hill,MA),48.85gSr(C2H3O2)2(来自Aesar,Seabrook NH)和20.07g Co3O4(Aesar)的混合物制备材料组成为[La0.05Sr0.95]CoO3-δ的一混合导电膜。向有800g ZrO2介质,200ml丙酮的500ml聚乙烯振动磨中装入该混合物,并转动70小时。慢慢倒出所得的料浆并在室温下对之真空蒸馏到干燥。在空气中和900℃下于蒸发皿上煅烧该固体达12小时,并在1100℃下再煅烧6小时。向振动磨中加入一份46.47g所得粉末,0.949g聚乙烯醇缩丁醛树脂(Monsanto,st.Louis Mo),75ml n-己烷和35ml乙醇,以及400g ZrO2介质,并粉磨大约70小时。干燥产物粉末并使之通过325目泰勒筛。对粉末的X射线衍射(XRD)表明该材料是100%的立方钙钛矿相。组成分析表明该材料的组成为[A0.946A′0.054][Co0.99B0.002B′0.003]O3-δ
用32,000PSi的压力将一份4.06g过筛了的粉末压成一1-3/8″直径的园片。在空气中和405℃下煅烧该园片15分钟,用13个小时将温度提高到1200℃并保持1小时,之后将之冷却到常温。
用500Sic研磨砂将园片的两面抛光至最终厚度为0.97mm。所测得的园片的电阻大约是40ohms。用一1/8″厚的pyrex环把该园片连接在外直径为1英寸的莫来石管上,该园片裸露的表面积为大约2cm2
将莫来石管,园片,气体处理设备安置在热稳定控制的电加热器上。通过用距管/片结合处大约1cm的连接在莫来石管上的热电偶指示,将该园片在静止空气中加温到960℃,并保持20分钟,然后以1℃/分的速率冷却到850℃。在园片的一侧启动速率为1.0L/min的空气流,并在园片的另一侧启动205cm3/min的氦渗透物料流。用联机的气相色谱仪分析氦渗透物废料,并且调整氦渗透物料流的流量以便使渗透物中的氧含量保持在大约1%。对渗透物进行氮分析以便可能校准漏入渗透流中的任何空气。
用此公式计算膜的氧流量:
qO2=[qP*(XO2P-0.256*XN2P)*Po/760*273/To]/100
式中qO2=氧流量(cm3/min);
    qP=渗透物抽出流流量(cm3/min);
    XO2P=渗透物抽出物中的氧浓度(%);
    XN2P=渗透物抽出物中的氮浓度;
    Po=大气压(mmHg,bs.);
    To=常温(度K)。
用此公式将氧流量材料化以便校准膜片厚度的变化
q′O2=qO2*L
式中,q′O2=用厚度标准化了的氧流量
             cm3/min-mm
      qO2=氧流量(cm3/min)
      L=膜片厚度(mm)
通过用测量的园片面积(cm2)除以用厚度标准化了的氧流量(q′O2)来计算单元面积的氧流量。
在不同的温度和气体流量下对该片的操作性能检测500小时以上。检测数据提供在下面的表1中。对所有的数据点,室温(To)都保持在293°K。空气物料流量保持在1000sccm,530和534小时的检测除外,它们的空气物料流量分别为0和2000sccm。
表1中的数据表明在高温和空气中该材料具有优异的长期稳定性和较高的氧流量。在宽广的空气流范围内(0-2000sccm)保持较高的氧流量。530小时的检测结果特别明显,它表现出从静止空气极快的氧扩散。1和512小时的实验还表明甚至当渗透氧含量较高,而且因此材料上的氧分压差较低时,该材料也具有较高的氧流量。
比较例1(a)
用不同的A位阳离子和B位阳离子量制备标准组成为[La0.05Sr0.95]CoO3-δ的不同,但相似的混合导电膜,该膜不可能形成基本上是立方钙钛矿相材料。
用与在US5,061,682(在此引入做为参考)中所描述的实施例相类似的方法制备该材料。向1.7升去离子水中加入1206.21gSr(NO3)2(Mallinckrodt),24.44g La2O3(Alfa)和353.76g金属钴粉(Aldrich)。
                            表1时间       膜温         Po    渗透物    渗透物分析            qO2         q′O2hours       Deg.c      mm Hg    sccm       XO2P    XN2P     cc/min     cc/cm2/min1          850      740.2     212        3.354    0.024      6.247       3.1242.5        850      740.2     758        1.259    0.000      8.400       4.2006.5        850      740.2     1010       1.001    0.000      8.899       4.45024         850      744.4     1030       0.970    0.000      8.844       4.42232         850      744.4     1050       0.941    0.000      8.747       4.37347         850      743.7     1050       0.922    0.000      8.562       4.28151         800      743.7     675        0.954    0.000      5.695       2.84853         800      743.7     680        0.937    0.000      5.635       2.81855         750      743.7     473        0.821    0.008      3.426       1.71356         750      743.7     389        0.966    0.009      3.315       1.65872         700      743.4     228        0.885    0.017      1.775       0.88874         800      743.4     663        0.893    0.000      5.234       2.61775         800      743.4     671        0.897    0.000      5.321       2.66076         900      743.4     1070       0.993    0.000      9.393       4.69779         900      742.0     1120       0.976    0.000      9.646       4.82396         900      738.9     1100       1.090    0.009      10.513      5.25798         900      738.9     1130       1.068    0.009      10.582      5.291100        850      738.9     1140       0.850    0.008      8.494       4.247144        850      739.0     990        0.971    0.013      8.419       4.210168        850      743.6     976        0.957    0.013      8.231       4.115192        850      745.0     972        0.959    0.013      8.230       4.115216        850      743.7     988        0.965    0.016      8.396       4.198240        850      740.6     981        0.945    0.016      8.129       4.065264        850      734.4     990        0.948    0.015      8.163       4.082336        850      734.0     996        0.944    0.015      8.174       4.087360        850      734.8     986        0.963    0.012      8.271       4.135384        850      735.6     992        0.978    0.016      8.451       4.226408        850      737.4     992        0.978    0.016      8.472       4.236432        850      732.4     996        0.978    0.009      8.464       4.232504        850      742.0     972        1.008    0.016      8.610       4.305507        850      742.0     1130       0.881    0.015      8.746       4.373509        850      742.0     761        1.248    0.025      8.337       4.169510        850      742.0     447        1.923    0.034      7.550       3.775512        850      742.0     147        4.338    0.133      5.583       2.791528        850      743.6     968        1.008    0.019      8.587       4.293530        850      743.6     973        0.982    0.015      8.416       4.208532        850      743.6     977        1.004    0.015      8.641       4.320534        850      743.6     974        0.978    0.019      8.382       4.191535        850      743.6     972        0.955    0.021      8.162       4.081552        850      740.9     977        0.985    0.020      8.435       4.217557        850      745.3     2040       0.483    0.010      8.687       4.343558        850      745.3     1520       0.637    0.014      8.533       4.267560        850      745.3     504        1.696    0.033      7.538       3.769577        900      750.3     505        1.810    0.024      8.128       4.064579        900      750.3     999        1.070    0.012      9.510       4.755581        900      750.3     1510       0.754    0.009      10.128      5.064583        900      750.3     2040       0.590    0.000      10.739      5.370
用一轻便的喷雾干燥器对上述陶瓷前体溶液喷雾干燥。合适的轻便喷雾干燥器是Columbia,Md的Niro雾化器。该喷雾干燥器包括一个转速能达到40,000rpm的离心雾化器。该雾化器位于干燥室的顶部,该干燥室内径为2英尺7英寸,柱体高度为2英尺,锥底为60°。离心雾化器和干燥室用不锈钢制做。干燥室与空气电加热器相连以便向干燥室内提供干燥空气。干燥空气由位于干燥室下游的鼓风机抽过干燥室。喷雾干燥器包括容纳来自于干燥室底部的干燥空气和干燥产物的旋风分离器。该旋风分离器从排出的干燥空气中分离出干燥产物。该旋风分离器的底部包括能使干燥粒子重力沉降到垂直取向的使空气温度保持在大约300°-450℃的管式炉中的一个出口。干燥粒子在该管式炉中热分解。管式炉具有足够的高度以便向自由降落的粒子提供大约为0.5-2.0秒的停留时间。管式炉的底部与收集陶瓷粒子的收集室相连。
将上述的陶瓷前体溶液以大约1.8升/小时的流量引入喷雾干燥室中。以大约30,000RPM旋转的离心雾化器将该前体溶液分散成直径大约为20-50微米的液滴。通过干燥室和旋风器的空气流大约是35-40标准立方英尺/分钟。进入干燥室的空气被预热到约375℃。当小液滴被迫对着干燥室的底部对流时,它们完全脱水达到脱水的临界状态,结果它们的直径减少到大约10.0微米或更小。在干燥室底部的干燥气体的温度大约是125℃,它确保基本上所有的水从喷雾干燥器中的粒子中除去。然后在旋风分离器中干燥粉末与干燥空气相互分离。分离后的粉末由于重力降落到被预热到约490℃的管式炉中。在炉中的粒子停留时间大约是0.5-2秒。管式炉中的温度促使硝酸根离子和各个粒子中的氧化物间发生阴离子氧化还原放热反应。燃烧的副产品(CO2和水蒸汽)通过系统并排放,同时反应后的粒子落入收集罐中,收集到大约60.0g的粒子,其平均粒子尺寸大约是5.0微米。
分析最终的产物,XRD结果表明该材料在结构上是六方的,所具有的组成是[A0.976A′0.024][Co0.999B0.0002B′0.001]O3-δ。用该粉末压制成二块园片,并用前述的方法制备和测试。测试结果包括在下面的表2中。如实例1那样,室温保持在293°K,对于实施例1(a)(i),空气物料流量是500sccm,对于实施例1(a)(ii),它是510sccm。
                      表2实施例1(a)(i)  膜厚=1.020mm时间  温度  大气压P  渗透物    渗透物分析        qO2        q′O2小时   ℃     mmHg    sccm    %O2   %N2    cc/分钟    cc/cm2/分钟1    800    740.0    492    0.234    0.817     0.113      0.0574    800    740.0    314    0.354    1.238     0.108      0.054实施例1(a)(ii)  膜厚=1.000mm时间  温度  大气压P  渗透物     渗透物分析       qO2     q′O2小时  ℃     mmHg     sccm     %O2    %N2  cc/分钟   cc/cm2/分钟1    800    740.0     310     0.536    1.847    0.178      0.0894    800    740.0     310     0.840    2.826    0.328      0.164
实施例2和2(a)
利用不同数量的A位阳离子和B位阳离子制备标准组成为[La0.05Sr0.95]CoO3-δ的二种混合导电粉末以证实组成对立方钙钛矿结构形成的影响。除了将起始材料的比例稍微调整外,用与实例1和1(a)相类似的方法制备该材料。用XRO分析该最终过筛后的粉末。
用实例1中所述的方法制备实施例2的产品,它的组成为[A0.945A′0.055][Co0.97B0.021B′0.003]O3-δ,并是立方钙钛矿结构。
用实例1(a)中所述的方法制备对比实施例2(a)的产品,它的组成为[A0.944A′0.056][Co0.999B0.0002B′0.001]O3-δ,并且是六方结构。

Claims (10)

1.一种包括在空气和25-950℃的温度下基本稳定的,基本上是立方钙钛矿结构的组合物的膜,该组合物用下列经验通式表示:
[A1-xA′x][Co1-y-zByB′z]O3-δ
式中,
A选自Ca,Sr,Ba,和它们的混合物;
A′选自La,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Th,U,和它们的混合物;
B选自Fe,Mn,Cr,V,Ti,和它们的混合物;
B′选自于Cu,Ni和它们的混合物;
x不小于约0.0001,不大于约0.1;
y不小于约0.002,小于0.05;
z不小于约0.0005,不大于约0.3;
δ由金属价态决定。
2.根据权利要求1的膜,其中所说的组合物含有不少于90%(的立方钙钛矿相材料。
3.根据权利要求1的膜,其中A位阳离子用下列经验通式表示:
[Sr1-x-x′LaxCax′],式中,x大于约0.02,小于约0.1;x′小于约0.01。
4.根据权利要求3的膜,其中,B包括Fe。
5.根据权利要求1的膜,其中所说的组合物选自
[Sr0.95-x′La0.05Cax′][Co1-y-zFeyNiz]O3-δ
[Sr0.95-x′La0.05Cax′][Co1-y-zMnyNiz]O3-δ
[Sr0.95-x′La0.05Cax′][Co1-y-zFeyCuz]O3-δ
[Sr0.95-x′La0.05Cax′][Co1-y-zMnyCuz]O3-δ,以及它们的混合物,式中
x′大于约0.001,小于约0.01;
y不小于0.0025,不大于0.01;
z不小于0.001,不大于约0.05;
δ由金属价态决定。
6.一种膜的应用,所说的膜包括基本是立方钙钛矿结构的用下例经验通式表示的组合物
[A1-xA′x][Co1-y-zByB′z]O3-δ
式中
A选自Ca,Sr,Ba,和它们的混合物;
A′选自La,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Th,U,和它们的混合物;
B选自Fe,Mn,Cr,V,Ti,和它们的混合物;
B′选自于Cu,Ni和它们的混合物;
x不小于约0.0001,不大于约0.1;
y不小于约0.002,小于0.05;
z不小于约0.0005,不大于约0.3;
δ由金属价态决定。
7.一种分离氧的方法,该方法包括在25-950℃之间的温度下让包括基本是立方钙钛矿结构的用下列经验通式表示的组合物的膜与合适的含氧流体接触,
[A1-xA′x][Co1-y-zByB′z]O3-δ
式中
A选自Ca,Sr,Ba,和它们的混合物;
A′选自La,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Th,U,和它们的混合物;
B选自Fe,Mn,Cr,V,Ti,和它们的混合物;
B′选自Cu,Ni和它们的混合物;
x不小于约0.0001,不大于约0.1;
y不小于约0.002,小于0.05;
z不小于约0.0005,不大于约0.3;
δ由金属价态决定。
8.根据权利要求7的方法,其中所说的流体包括空气。
9.一种流体分离设备采用至少一种权利要求1的膜。
10.权利要求9的流体分离设备用于从含氧流体中分离氧。
CN95117797A 1994-09-23 1995-09-22 透氧混合导电膜 Pending CN1127235A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31129594A 1994-09-23 1994-09-23
US311295 1994-09-23

Publications (1)

Publication Number Publication Date
CN1127235A true CN1127235A (zh) 1996-07-24

Family

ID=23206269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95117797A Pending CN1127235A (zh) 1994-09-23 1995-09-22 透氧混合导电膜

Country Status (12)

Country Link
US (3) US5788748A (zh)
EP (1) EP0705790B1 (zh)
JP (1) JPH08173776A (zh)
KR (1) KR960010059A (zh)
CN (1) CN1127235A (zh)
AU (1) AU706663B2 (zh)
BR (1) BR9504113A (zh)
CA (1) CA2158607A1 (zh)
DE (1) DE69515586T2 (zh)
ES (1) ES2145224T3 (zh)
PL (1) PL310614A1 (zh)
TW (1) TW308552B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311755B2 (en) 2004-09-17 2007-12-25 Air Products And Chemicals, Inc. Control of differential strain during heating and cooling of mixed conducting metal oxide membranes
US7468092B2 (en) 2004-09-17 2008-12-23 Air Products And Chemicals, Inc. Operation of mixed conducting metal oxide membrane systems under transient conditions
CN105118854A (zh) * 2015-07-01 2015-12-02 京东方科技集团股份有限公司 金属氧化物半导体薄膜、薄膜晶体管、制备方法及装置

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592782B2 (en) 1993-12-08 2003-07-15 Eltron Research, Inc. Materials and methods for the separation of oxygen from air
US6355093B1 (en) 1993-12-08 2002-03-12 Eltron Research, Inc Two component-three dimensional catalysis
US6165431A (en) * 1993-12-08 2000-12-26 Eltron Research, Inc. Methods for separating oxygen from oxygen-containing gases
US6033632A (en) 1993-12-08 2000-03-07 Eltron Research, Inc. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
US5681373A (en) * 1995-03-13 1997-10-28 Air Products And Chemicals, Inc. Planar solid-state membrane module
BR9601078A (pt) * 1995-05-18 1998-01-06 Praxair Technology Inc Processo para a remoção de oxigênio a partir de uma corrente de alimentação para a obtenção de uma corrente de produto empobrecida em oxigênio
US6332964B1 (en) * 1996-12-31 2001-12-25 Praxair Technology, Inc. Multi-phase solid ion and electron conducting membrane with low volume percentage electron conducting phase and methods for fabricating
US5938822A (en) * 1997-05-02 1999-08-17 Praxair Technology, Inc. Solid electrolyte membrane with porous catalytically-enhancing constituents
US5911860A (en) * 1996-12-31 1999-06-15 Praxair Technology, Inc. Solid electrolyte membrane with mechanically-enhancing constituents
US6187157B1 (en) 1996-12-31 2001-02-13 Praxair Technology, Inc. Multi-phase solid electrolyte ionic transport membrane and method for fabricating same
US6235187B1 (en) * 1996-12-31 2001-05-22 Praxair Technology Inc. Oxygen separation method using a mixed conducting cubic perovskite ceramic ion transport membrane
US5980840A (en) * 1997-04-25 1999-11-09 Bp Amoco Corporation Autothermic reactor and process using oxygen ion--conducting dense ceramic membrane
US5820654A (en) * 1997-04-29 1998-10-13 Praxair Technology, Inc. Integrated solid electrolyte ionic conductor separator-cooler
US5820655A (en) * 1997-04-29 1998-10-13 Praxair Technology, Inc. Solid Electrolyte ionic conductor reactor design
US6077323A (en) * 1997-06-06 2000-06-20 Air Products And Chemicals, Inc. Synthesis gas production by ion transport membranes
US6165553A (en) * 1998-08-26 2000-12-26 Praxair Technology, Inc. Method of fabricating ceramic membranes
US6059858A (en) * 1997-10-30 2000-05-09 The Boc Group, Inc. High temperature adsorption process
US6132573A (en) * 1997-12-05 2000-10-17 Igr Enterprises, Inc. Ceramic composite electrolytic device and methods for manufacture thereof
CA2256801C (en) * 1997-12-23 2002-05-28 Air Products And Chemicals, Inc. Utilization of synthesis gas produced by mixed conducting membranes
US6056807A (en) * 1998-01-26 2000-05-02 Air Products And Chemicals, Inc. Fluid separation devices capable of operating under high carbon dioxide partial pressures which utilize creep-resistant solid-state membranes formed from a mixed conducting multicomponent metallic oxide
NO312342B1 (no) * 1998-05-20 2002-04-29 Norsk Hydro As En tett enfase membran med bade hoy ionisk og hoy elektronisk ledningsevne og anvendelse derav
US6017646A (en) * 1998-06-03 2000-01-25 Praxair Technology, Inc. Process integrating a solid oxide fuel cell and an ion transport reactor
US6010614A (en) * 1998-06-03 2000-01-04 Praxair Technology, Inc. Temperature control in a ceramic membrane reactor
US6153163A (en) * 1998-06-03 2000-11-28 Praxair Technology, Inc. Ceramic membrane reformer
US6139810A (en) * 1998-06-03 2000-10-31 Praxair Technology, Inc. Tube and shell reactor with oxygen selective ion transport ceramic reaction tubes
DE19826496B4 (de) * 1998-06-13 2006-05-18 Hermsdorfer Institut Für Technische Keramik E.V. Sauerstoffionen- und elektronenleitende Keramikmembran, Verfahren zu deren Herstellung sowie deren Verwendung
JP4708515B2 (ja) * 1998-11-13 2011-06-22 日本特殊陶業株式会社 LaGaO3系焼結体を用いた酸素透過膜
US6296687B2 (en) * 1999-04-30 2001-10-02 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Hydrogen permeation through mixed protonic-electronic conducting materials
US6471921B1 (en) 1999-05-19 2002-10-29 Eltron Research, Inc. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing
US6146445A (en) * 1999-06-01 2000-11-14 Praxair Technology, Inc. Stabilized perovskite for ceramic membranes
US6146549A (en) * 1999-08-04 2000-11-14 Eltron Research, Inc. Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties
NO313493B1 (no) * 1999-09-28 2002-10-14 Norsk Hydro As Fast flerkomponent membran omfattende et blandet metalloksid for bruk i en reaktor for produksjon av varme eller syntesegass
US6361584B1 (en) * 1999-11-02 2002-03-26 Advanced Technology Materials, Inc. High temperature pressure swing adsorption system for separation of oxygen-containing gas mixtures
US6909024B1 (en) * 1999-11-22 2005-06-21 The Dow Chemical Company Process for the conversion of ethylene to vinyl chloride and novel catalyst compositions useful for such process
US6264811B1 (en) * 2000-03-21 2001-07-24 Praxair Technology, Inc. Ion conducting ceramic membrane and surface treatment
US6453893B1 (en) 2000-06-14 2002-09-24 Caterpillar Inc Intake air separation system for an internal combustion engine
US6289884B1 (en) 2000-06-14 2001-09-18 Caterpillar Inc. Intake air separation system for an internal combustion engine
US6543428B1 (en) 2000-06-14 2003-04-08 Caterpillar Inc. Intake air separation system for an internal combustion engine
US6638575B1 (en) 2000-07-24 2003-10-28 Praxair Technology, Inc. Plasma sprayed oxygen transport membrane coatings
US6406518B1 (en) 2000-08-21 2002-06-18 Praxair Technology, Inc. Gas separation process using ceramic membrane and regenerators
AU2001284479B2 (en) * 2000-09-08 2005-05-12 Nippon Steel Corporation Ceramic/metal composite article, composite structure for transporting oxide ion, and composite article having sealing property
US6539719B2 (en) 2000-11-02 2003-04-01 Praxair Technology, Inc. Integration of ceramic oxygen transport membrane combustor with boiler furnace
US6527828B2 (en) * 2001-03-19 2003-03-04 Advanced Technology Materials, Inc. Oxygen enhanced CDA modification to a CDO integrated scrubber
US20030039601A1 (en) * 2001-08-10 2003-02-27 Halvorson Thomas Gilbert Oxygen ion transport membrane apparatus and process for use in syngas production
US6783750B2 (en) 2001-08-22 2004-08-31 Praxair Technology, Inc. Hydrogen production method
US6516787B1 (en) * 2002-05-08 2003-02-11 Caterpillar Inc Use of exhaust gas as sweep flow to enhance air separation membrane performance
US7125528B2 (en) * 2002-05-24 2006-10-24 Bp Corporation North America Inc. Membrane systems containing an oxygen transport membrane and catalyst
US7279027B2 (en) * 2003-03-21 2007-10-09 Air Products And Chemicals, Inc. Planar ceramic membrane assembly and oxidation reactor system
FR2857355B1 (fr) * 2003-07-11 2007-04-20 Air Liquide Materiau perovskite, procede de preparation et utilisation dans un reacteur catalytique membranaire
US7160357B2 (en) * 2003-08-14 2007-01-09 Praxair Technology, Inc. Oxygen transport membrane reactor and method
US7122072B2 (en) * 2003-11-17 2006-10-17 Air Products And Chemicals, Inc. Controlled heating and cooling of mixed conducting metal oxide materials
US7347887B2 (en) 2003-12-22 2008-03-25 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
US20050176588A1 (en) * 2003-12-22 2005-08-11 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
US20050226798A1 (en) * 2003-12-22 2005-10-13 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
US7338549B2 (en) * 2003-12-22 2008-03-04 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
US7736599B2 (en) 2004-11-12 2010-06-15 Applied Materials, Inc. Reactor design to reduce particle deposition during process abatement
FR2879185B1 (fr) 2004-12-10 2007-03-09 Air Liquide Reacteur catalytique membranaire
US20060196327A1 (en) * 2005-03-03 2006-09-07 Larsen Consuelo N One-step method and means for cutting and embossing die cuts
US7472443B2 (en) * 2005-09-28 2009-01-06 The Boppy Company Body support pillow and methods
KR101036734B1 (ko) 2005-10-31 2011-05-24 어플라이드 머티어리얼스, 인코포레이티드 공정 저감 반응로
DE102005060171A1 (de) * 2005-12-14 2007-06-21 Uhde Gmbh Oxidationsreaktor und Oxidationsverfahren
CN100467419C (zh) * 2006-06-21 2009-03-11 中国科学院大连化学物理研究所 一种复合透氧陶瓷膜及制备方法和应用
US7556676B2 (en) * 2006-08-22 2009-07-07 Praxair Technology, Inc. Composite oxygen ion transport membrane
US8590490B2 (en) * 2010-02-18 2013-11-26 King Fahd Univ. Of Petroleum & Minerals Carbon-free fire tube boiler
EP2374526A1 (en) 2010-03-29 2011-10-12 Centre National de la Recherche Scientifique (C.N.R.S) Solid composite membrane exhibiting both oxygen conductivity and a substrate catalyst interface
US8117822B2 (en) * 2010-04-19 2012-02-21 King Fahd University Of Petroleum & Minerals Carbon-free gas turbine
US8834604B2 (en) 2010-09-16 2014-09-16 Volt Research, Llc High temperature gas processing system and method for making the same
US20130020049A1 (en) 2011-07-18 2013-01-24 Architectural Applications P.C. Architectural heat and moisture exchange
US9383096B2 (en) 2013-12-23 2016-07-05 King Fahd University Of Petroleum And Minerals Carbon-free low-NOx liquid fuel oxygen transport reactor for industrial water tube boilers
DE202015009384U1 (de) 2014-10-20 2017-05-10 Architectural Applications P.C. Regenschutz mit integriertem Wärme- und Feuchtigkeitsaustauscher
US10215402B2 (en) 2016-03-31 2019-02-26 King Fahd University Of Petroleum And Minerals Gas-assisted liguid fuel oxygen reactor
CN109761594A (zh) * 2018-12-28 2019-05-17 中山大学 一种含钙无钴的耐co2的双相混合导体透氧膜材料及其制备方法
RU2751917C1 (ru) * 2020-10-07 2021-07-20 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук Металлокерамический композит на основе серебра для селективных кислородных мембран и способ его получения
CN116789445B (zh) * 2022-03-18 2024-04-26 中国科学院大连化学物理研究所 一系列用于制备高纯氧的稳定的高熵钙钛矿材料及其制备方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2444222A (en) * 1943-08-18 1948-06-29 Invex Inc Oxygen enrichment system for gas engines
GB1113273A (en) * 1964-05-16 1968-05-08 Kinzoku Zairyo Kenkyusho A dispersion type metallic oxide silver alloy membrane for use in a device for separating and purifying oxygen
US3400054A (en) * 1966-03-15 1968-09-03 Westinghouse Electric Corp Electrochemical method for separating o2 from a gas; generating electricity; measuring o2 partial pressure; and fuel cell
US3359705A (en) * 1966-10-27 1967-12-26 Union Carbide Corp Oxygen permeable membranes
FR2550953B1 (fr) * 1977-04-12 1987-02-20 Commissariat Energie Atomique Procede de fabrication de membranes minerales permeables
DE2738756A1 (de) * 1977-08-27 1979-03-01 Bbc Brown Boveri & Cie Elektrochemische messzelle
US4151060A (en) * 1978-02-01 1979-04-24 Westinghouse Electric Corp. Solid state filter for gas sensors
US4272336A (en) * 1979-07-27 1981-06-09 Massachusetts Institute Of Technology Method and apparatus for forming nitric oxide from ammonia
US4253925A (en) * 1979-10-22 1981-03-03 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for catalytic dissociation of NO
JPS5692103A (en) 1979-12-27 1981-07-25 Teijin Ltd Separation of oxygen
US4330633A (en) 1980-08-15 1982-05-18 Teijin Limited Solid electrolyte
JPS57145069A (en) * 1981-03-04 1982-09-07 Teijin Ltd Separation of metal oxide composite body and oxygen
US4483694A (en) * 1982-06-24 1984-11-20 Tokyo Shibaura Denki Kabushiki Kaisha Oxygen gas permselective membrane
JPS612548A (ja) * 1984-02-10 1986-01-08 小宮山 宏 酸素イオン透過性を有する複合体とこの複合体の製造方法
DE3573493D1 (en) * 1984-02-24 1989-11-09 Toshiba Kk Oxygen permeable membrane
JPS6121717A (ja) 1984-07-10 1986-01-30 Toyo Soda Mfg Co Ltd 酸素の分離方法
US4885142A (en) * 1985-10-28 1989-12-05 California Institute Of Technology Apparatus in the form of a disk for the separation of oxygen from other gases and/or for the pumping of oxygen and the method of removing the oxygen
US4791079A (en) * 1986-06-09 1988-12-13 Arco Chemical Company Ceramic membrane for hydrocarbon conversion
US4827071A (en) * 1986-06-09 1989-05-02 Arco Chemical Technology, Inc. Ceramic membrane and use thereof for hydrocarbon conversion
US4851303A (en) * 1986-11-26 1989-07-25 Sri-International Solid compositions for fuel cells, sensors and catalysts
JPS63156515A (ja) * 1986-12-19 1988-06-29 Matsushita Electric Ind Co Ltd 酸素選択透過膜
JPS63156516A (ja) * 1986-12-19 1988-06-29 Matsushita Electric Ind Co Ltd 酸素選択透過装置
IL87977A (en) * 1988-10-07 1993-07-08 Yeda Research And Dev Co Ltd R Separation of paramagnetic and diamagnetic gases
NO304808B1 (no) 1989-05-25 1999-02-15 Standard Oil Co Ohio Fast multikomponent membran, fremgangsmaate for fresmtilling av en slik membran samt anvendelse av denne
DE3921390A1 (de) * 1989-06-29 1991-01-17 Merck Patent Gmbh Verfahren und vorrichtung zur gewinnung von reinem sauerstoff
EP0766330B1 (en) * 1989-12-27 2002-06-05 The Standard Oil Company Components for use in electrochemical cells and their use in oxygen separation
US5061682A (en) * 1990-01-17 1991-10-29 The Washington Technology Center Ceramic precursor mixture and technique for converting the same to ceramic
US5174866A (en) * 1990-05-24 1992-12-29 Air Products And Chemicals, Inc. Oxygen recovery from turbine exhaust using solid electrolyte membrane
US5118395A (en) * 1990-05-24 1992-06-02 Air Products And Chemicals, Inc. Oxygen recovery from turbine exhaust using solid electrolyte membrane
US5169415A (en) * 1990-08-31 1992-12-08 Sundstrand Corporation Method of generating oxygen from an air stream
US5160713A (en) * 1990-10-09 1992-11-03 The Standard Oil Company Process for separating oxygen from an oxygen-containing gas by using a bi-containing mixed metal oxide membrane
GB2257054A (en) * 1991-07-04 1993-01-06 Normalair Garrett Oxygen generating system
US5240473A (en) * 1992-09-01 1993-08-31 Air Products And Chemicals, Inc. Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture
US5261932A (en) * 1992-09-01 1993-11-16 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs ion transport membranes
US5240480A (en) * 1992-09-15 1993-08-31 Air Products And Chemicals, Inc. Composite mixed conductor membranes for producing oxygen
US5516359A (en) * 1993-12-17 1996-05-14 Air Products And Chemicals, Inc. Integrated high temperature method for oxygen production
US5447555A (en) * 1994-01-12 1995-09-05 Air Products And Chemicals, Inc. Oxygen production by staged mixed conductor membranes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311755B2 (en) 2004-09-17 2007-12-25 Air Products And Chemicals, Inc. Control of differential strain during heating and cooling of mixed conducting metal oxide membranes
CN100393667C (zh) * 2004-09-17 2008-06-11 气体产品与化学公司 瞬变条件下混合导电金属氧化物膜系统的操作
US7468092B2 (en) 2004-09-17 2008-12-23 Air Products And Chemicals, Inc. Operation of mixed conducting metal oxide membrane systems under transient conditions
CN105118854A (zh) * 2015-07-01 2015-12-02 京东方科技集团股份有限公司 金属氧化物半导体薄膜、薄膜晶体管、制备方法及装置
CN105118854B (zh) * 2015-07-01 2019-03-01 京东方科技集团股份有限公司 金属氧化物半导体薄膜、薄膜晶体管、制备方法及装置

Also Published As

Publication number Publication date
KR960010059A (ko) 1996-04-20
AU706663B2 (en) 1999-06-17
PL310614A1 (en) 1996-04-01
TW308552B (zh) 1997-06-21
EP0705790B1 (en) 2000-03-15
BR9504113A (pt) 1997-04-01
CA2158607A1 (en) 1996-03-24
US5702999A (en) 1997-12-30
DE69515586D1 (de) 2000-04-20
DE69515586T2 (de) 2001-04-26
JPH08173776A (ja) 1996-07-09
ES2145224T3 (es) 2000-07-01
US5788748A (en) 1998-08-04
EP0705790A1 (en) 1996-04-10
US5648304A (en) 1997-07-15
AU3045295A (en) 1996-04-04

Similar Documents

Publication Publication Date Title
CN1127235A (zh) 透氧混合导电膜
CN1498128A (zh) Cdo一体化涤气器的富氧cda改进
US20010002990A1 (en) Materials and methods for the separation of oxygen from air
US20120094214A1 (en) Production of self-supporting ceramic materials having a reduced thickness and containing metal oxides
CN103638826A (zh) 一种非对称陶瓷分离膜及其制备方法
EP1183092A1 (en) Catalytic membrane reactor materials for the separation of oxygen from air
CN1263791A (zh) 用于陶瓷离子传输膜的混合式导电立方钙钛矿
JPS6121717A (ja) 酸素の分離方法
CN1219502A (zh) 蒸汽吹扫固体电解质离子导体制备氧的方法
CN101302121A (zh) 一种表面纳米包覆改性陶瓷透氧膜及其制法
CN101948303A (zh) 一种A位Ba、Sr、Ca三离子共掺杂的SrCo0.8Fe0.2O3-δ基钙钛矿透氧膜材料及其应用
CN1258557A (zh) 一种钙钛矿型含Bi系列混合导体透氧膜制备及应用
KR101288530B1 (ko) Lstf 산화물로 코팅된 bscf 관형 산소 분리막 및 이의 제조방법
KR100953155B1 (ko) 페롭스카이트형 이온전도성 산소 분리막의 제조방법 및 그산소분리막을 이용한 산소분리공정
CN102389723A (zh) 一种用于油气回收的有机/无机复合膜及其制备方法
CN106861602A (zh) 一种氧吸附剂
KR20150114711A (ko) 산소 분리막
CN111205079A (zh) 一种镧掺杂钇铝石榴石陶瓷及其制备方法
KR101460986B1 (ko) 바륨크롬계 산화물로 코팅된 산소 분리막 및 이의 제조방법
JPH1192961A (ja) 被覆膜
JP2010269237A (ja) 酸素水製造装置および酸素水の製造方法
CN1305864A (zh) 电子传导相比例低的多相固体离子和电子传导膜及其制法
CN108854582A (zh) 一种高稳定性高渗透性双相复合氧分离膜及其制备方法
CN117563432B (zh) 一种氮化碳基二维复合膜的制备及在气体分离中的应用
JP2002097083A (ja) 多孔質体及び複合材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication