CN112530805A - 横向双扩散金属氧化物半导体器件及制作方法、电子装置 - Google Patents

横向双扩散金属氧化物半导体器件及制作方法、电子装置 Download PDF

Info

Publication number
CN112530805A
CN112530805A CN201910884490.9A CN201910884490A CN112530805A CN 112530805 A CN112530805 A CN 112530805A CN 201910884490 A CN201910884490 A CN 201910884490A CN 112530805 A CN112530805 A CN 112530805A
Authority
CN
China
Prior art keywords
region
ion implantation
type
area
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910884490.9A
Other languages
English (en)
Other versions
CN112530805B (zh
Inventor
何乃龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSMC Technologies Fab2 Co Ltd
CSMC Technologies Corp
Original Assignee
CSMC Technologies Fab2 Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSMC Technologies Fab2 Co Ltd filed Critical CSMC Technologies Fab2 Co Ltd
Priority to CN201910884490.9A priority Critical patent/CN112530805B/zh
Priority to PCT/CN2020/092201 priority patent/WO2021051853A1/zh
Priority to US17/639,359 priority patent/US20220302305A1/en
Publication of CN112530805A publication Critical patent/CN112530805A/zh
Application granted granted Critical
Publication of CN112530805B publication Critical patent/CN112530805B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供了一种横向双扩散金属氧化物半导体器件及制作方法、电子装置。所述方法包括:提供半导体衬底,在所述半导体衬底中形成漂移区;在所述漂移区中形成阱区和漏区,在所述阱区中形成源区和沟道;执行第一类型的离子注入,以在所述漂移区的底部形成沿所述阱区到所述漏区方向延伸的第一离子注入区;在所述第一离子注入区上方形成若干相互间隔的深沟槽隔离结构和位于相邻深沟槽隔离结构之间的鳍片结构;形成第二离子注入区,以使所述第一离子注入区和所述第二离子注入区交替设置;对鳍片结构的侧壁执行第二类型的离子注入,以在所述鳍片结构的侧壁上形成侧墙离子注入区,其中,所述第一类型的离子与第二类型的离子类型不同。

Description

横向双扩散金属氧化物半导体器件及制作方法、电子装置
技术领域
本发明涉及半导体技术领域,具体而言涉及一种横向双扩散金属氧化物半导体器件及制作方法、电子装置。
背景技术
在高压MOS管的发展过程中,主要有垂直双扩散金属氧化物半导体(VDMOS)和横向双扩散金属氧化物半导体(LDMOS)两种类型。虽然垂直双扩散金属氧化物半导体(VDMOS)导通电阻小,占用版图面积也小,但是它是纵向结构,不易和低压CMOS电路兼容。而横向双扩散金属氧化物半导体(LDMOS)具有更好的热稳定性和频率稳定性、更高的增益和耐久性、更低的反馈电容和热阻,以及恒定的输入阻抗和更简单的偏流电路,因此,在目前得到了比较广泛的应用。
在目前的高压LDMOS器件中,常规结构Single Resurf(SR,Resurf即reducesurface field降低表面电场技术)、Double Resurf(DR)、Triple Resurf(TR)以及mutiResurf LDMOS器件已经广泛的应用。想要在同等耐压基础上得到更低的导通电阻,则需要使用super-junction(SJ,超结)技术。然而,目前为止SJ技术仅被成熟应用在垂直分离晶体管(vertical discrete transistor),譬如VDMOS或IGBT中。在横向晶体管(例如LDMOS)中使用SJ技术时,会遇到很多问题,首先比如如何使导通电阻变得更低,而且工艺更加简单、兼容。
因此有必要提出一种横向双扩散金属氧化物半导体器件及其制作方法,以至少部分解决上述问题。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
为了克服目前存在的至少一个问题,本发明一方面提供一种横向双扩散金属氧化物半导体器件的制作方法,所述制作方法包括:
提供半导体衬底,在所述半导体衬底中形成漂移区;
在所述漂移区中形成阱区和漏区,在所述阱区中形成源区和沟道;
对位于所述阱区和所述漏区之间的漂移区区域执行第一类型的离子注入,以在所述漂移区的底部形成沿所述阱区到所述漏区方向延伸的第一离子注入区;
在所述第一离子注入区上方形成若干相互间隔的深沟槽隔离结构和位于相邻深沟槽隔离结构之间的鳍片结构,以露出部分所述第一离子注入区;
在所述深沟槽隔离结构中执行第二类型的离子注入,形成第二离子注入区,以使所述第一离子注入区和所述第二离子注入区交替设置;
对鳍片结构的侧壁执行第二类型的离子注入,以在所述鳍片结构的侧壁上形成侧墙离子注入区,其中,所述第一类型的离子与第二类型的离子类型不同。
可选地,所述第一类型的离子为N型,所述第二类型的离子为P型。
可选地,在形成所述第一离子注入区的过程中包括:在所述阱区和所述漏区之间的所述漂移区上形成掩膜层,以定义所述第一离子注入区的区域;
执行第一类型的离子注入,以形成所述第一离子注入区;
继续执行第一类型的离子注入,以在所述第一离子注入区的上方形成第一类型离子的阱区。
可选地,对所述鳍片结构的顶部执行第二类型的离子注入,以在所述鳍片结构的顶部形成顶部注入区或在所述鳍片结构的顶部以下形成埋层注入区。
可选地,以倾斜的注入角度对鳍片结构的侧壁执行第二类型的离子注入。
本发明还提供了一种横向双扩散金属氧化物半导体器件,包括:
半导体衬底,在所述半导体衬底中形成有漂移区;
在所述漂移区中形成有阱区和漏区,在所述阱区中有源区和沟道;
在所述漂移区中形成有位于所述阱区和所述漏区之间若干相互间隔的深沟槽隔离结构和位于相邻深沟槽隔离结构之间的鳍片结构;
位于所述鳍片结构下方的第一离子注入区;
位于所述深沟槽隔离结构下方的第二离子注入区;
位于所述鳍片结构侧壁上的侧墙离子注入区;
其中,所述第一离子注入区和所述第二离子注入区沿所述阱区到所述漏区的方向延伸,第一离子注入区的类型与所述侧墙离子注入区的离子类型相同,与第二离子注入区的离子类型不同。
可选地,第一离子注入区和所述侧墙离子注入区为N型,所述第二离子注入区为P型。
可选地,还包括位于所述鳍片结构顶部的顶部注入区或位于所述鳍片结构的顶部以下的埋层注入区,顶部注入区或埋层注入区为P型。
可选地,所述鳍片结构形成于N型的阱区中。
可选地,还包括位于所述漂移区中的场隔离结构,位于N型的阱区与沟道和漏极之间的区域。
本发明还提供了一种电子装置,所述电子装置包括权利要求5至9之一所述的横向双扩散金属氧化物半导体器件。
根据本发明的横向双扩散金属氧化物半导体器件的制作方法,在所述方法中首先执行离子注入,在形成深沟槽隔离结构和鳍片结构,并且在深沟槽隔离结构执行离子注入,在漂移区的底部形成交替设置的第一离子注入区和所述第二离子注入区,从而形成位于漂移区底部的超结。然后再斜角注入对鳍片结构的侧壁执行第二类型的离子注入,以在所述鳍片结构的侧壁上形成侧墙离子注入区,深沟槽隔离结构之间的阱区在其间耐压的时候通过两边的侧墙离子注入区来完全耗尽,阱区的浓度比漂移区高很多,使得导通电阻在超结(super junction)LDMOS的基础上进一步降低,这种结构有超结(super junction)和侧墙离子注入区(sidewall)同时作用于漂移区,降低表面电场,提升导通能力,形成为沟槽型3DRESURF LDMOS。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。
附图中:
图1A-图1D示出了根据本发明一实施方式的横向双扩散金属氧化物半导体器件的制作方法依次实施各步骤所获得器件的剖面示意图;
图2A示出了根据本发明一实施方式的横向双扩散金属氧化物半导体器件的电流流通方向的横截面示意图;
图2B示出了根据本发明另一实施方式的横向双扩散金属氧化物半导体器件的电流流通方向的横截面示意图;
图2C示出了根据本发明又一实施方式的横向双扩散金属氧化物半导体器件的电流流通方向的横截面示意图;
图3示出根据本发明另一实施方式的横向双扩散金属氧化物半导体器件的制作方法的步骤流程图。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。在附图中,为了清楚,层和区的尺寸以及相对尺寸可能被夸大自始至终相同附图标记表示相同的元件。
应当明白,当元件或层被称为“在…上”、“与…相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在…上”、“与…直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本发明教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
空间关系术语例如“在…下”、“在…下面”、“下面的”、“在…之下”、“在…之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在…下面”和“在…下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的结构及步骤,以便阐释本发明提出的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
下面结合图1A~图1D对本发明提出的横向双扩散金属氧化物半导体器件的制作方法进行说明。
需要说明的是,对于本发明的提出的横向双扩散金属氧化物半导体器件,其漂移区,阱区、栅极,源区、漏区等结构的形成均采用横向双扩散金属氧化物半导体器件的常规的制作方法,在此不再赘述。下面主要对本发明的提出的横向双扩散金属氧化物半导体器件的超结的形成过程进行说明。
如图3以及图1A~图1D所示,制作横向双扩散金属氧化物半导体器件的方法包括:
步骤S1:提供半导体衬底,在所述半导体衬底中形成漂移区;
步骤S2:在所述漂移区中形成阱区和漏区,在所述阱区中形成源区和沟道;
步骤S3:对位于所述阱区和所述漏区之间的漂移区区域执行第一类型的离子注入,以在所述漂移区的底部形成沿所述阱区到所述漏区方向延伸的第一离子注入区;
步骤S4:在所述第一离子注入区上方形成若干相互间隔的深沟槽隔离结构和位于相邻深沟槽隔离结构之间的鳍片结构,以露出部分所述第一离子注入区;
步骤S5:在所述深沟槽隔离结构中执行第二类型的离子注入,形成第二离子注入区,以使所述第一离子注入区和所述第二离子注入区交替设置;
步骤S6:对鳍片结构的侧壁执行第二类型的离子注入,以在所述鳍片结构的侧壁上形成侧墙离子注入区,其中,所述第一类型的离子与第二类型的离子类型不同。
下面结合附图图1A~图1D对所述方法作进一步详细的说明。
首先,在步骤S1中,如图1A所示,提供半导体衬底101,在所述半导体衬底中形成漂移区102。
具体地,所述半导体衬底101可以是以下所提到的材料中的至少一种:硅、绝缘体上硅(SOI)、绝缘体上层叠硅(SSOI)、绝缘体上层叠锗化硅(S-SiGeOI)、绝缘体上锗化硅(SiGeOI)以及绝缘体上锗(GeOI)等。
在本发明的一示例中,其中所述半导体衬底为P型半导体衬底。
其中,所述漂移区102为N型漂移区,所述漂移区102的形成方法可以为离子注入等。
在步骤S2中,在所述漂移区102形成阱区109和漏区104,在所述阱区中形成源区110和沟道。
具体地,如图1A所示,在所述漂移区中在源区110和漏区104之间的区域形成厚度大于0.5微米的局部氧化层隔离结构105(即场氧,field oxide或FOX),用于起到隔离作用,其具体实现方法为通过高温处理在沟道和N+漏区104之间形成厚度大于0.5微米的氧化层隔离结构105,之后通过高能注入形成N型注入区和P型注入区。
所述器件还包括栅极结构108,其中,栅极结构108可以为多晶硅栅极或者金属栅极,其制备方法可以包括沉积栅极材料层并图案化,以形成栅极。
在形成栅极结构108之后,然后执行源漏注入,进而形成源区110和漏区104。
在步骤S3中,如图1A所示,在所述漂移区102中位于所述阱区和所述漏区之间的区域执行第一类型的离子注入,以在所述漂移区的底部形成沿所述阱区到所述漏区方向延伸的第一离子注入区106。
具体地,如图1A所示,在该步骤中形成所述第一离子注入区106的方法包括以下步骤:
步骤S31:在所述漂移区102上形成掩膜层,以用于定义后续交替形成第一离子注入区和第二离子注入区的区域。
其中,所述掩膜层可以选用常规的掩膜层,例如可以选用光刻胶层,其更加容易去除。
步骤S32:以所述掩膜层为掩膜执行离子注入,以在所述漂移区的底部形成第一离子注入区106。
其中,在该步骤中,所述沿所述第一离子注入区106的延伸方向为沿阱区到所述漏区方向延伸。
在本发明的一具体实施方式中,所述第一类型的离子为N型,因此第一离子注入区106为N型。
通过控制所述第一类型的离子注入的能量来控制所述第一离子注入区106的深度,以保证所述第一离子注入区106位于所述漂移区的底部区域,例如距离漂移区的底部的长度为整个漂移区深度的三分之一以内。
可选地,继续执行第一类型的离子注入,以在所述第一离子注入区的上方形成第一类型离子的阱区107。
在步骤S4中,在所述第一离子注入区上方形成相互间隔的若干深沟槽隔离结构和位于相邻深沟槽隔离结构之间的鳍片结构,以露出所述第一离子注入区。
如图1C所示,在该步骤中首先形成掩膜层,以用于定义形成第二离子注入区的区域。
其中,所述掩膜层可以选用常规的掩膜层,例如可以选用光刻胶层,其更加容易去除。
然后以所述掩膜层为掩膜蚀刻,以形成若干深沟槽隔离结构,其中,所述若干深沟槽隔离结构沿阱区到所述漏区方向延伸,并且若干所述深沟槽隔离结构相互间隔设置。
可选地,在形成所述深沟槽隔离结构的同时,在深沟槽隔离结构之间形成了凸出的鳍片结构,其中鳍片结构的侧壁定义了所述深沟槽隔离结构轮廓。
在步骤S5中,在所述深沟槽隔离结构中执行第二类型的离子注入,形成第二离子注入区,以使所述第一离子注入区和所述第二离子注入区交替设置。
在该步骤中,以所述鳍片结构为掩膜执行离子注入,以在所述深沟槽隔离结构形成第二离子注入区111,如图1D所示。
其中,在该步骤中,所述沿所述第二离子注入区111的延伸方向为沿阱区到所述漏区方向延伸。
在本发明的一具体实施方式中,所述第二类型的离子注入的方向为竖直向下,以在所述漂移区的底部形成所述第二离子注入区111,其中,所述第一离子注入区和所述第二离子注入区的高度相同,以使所述第一离子注入区和所述第二离子注入区交替设置。
其中,第二类型的离子为P型,因此第二离子注入区111为P型,因此形成N-P-N-P交替设置的离子注入区。
在该步骤中通过控制所述第二类型的离子注入的能量来控制所述第二离子注入区111位于所述深沟槽隔离结构的底部的表面。
在本申请中执行离子注入,在形成深沟槽隔离结构和鳍片,并且在深沟槽隔离结构执行离子注入,在漂移区的底部形成交替设置的第一离子注入区和所述第二离子注入区,从而形成位于漂移区底部的超结。
在步骤S6中,对鳍片结构的侧壁执行第二类型的离子注入,以在所述鳍片结构的侧壁上形成侧壁离子注入区112,其中,第一类型的离子与第二类型的离子类型不同。
在该步骤中,对所述鳍片结构的侧壁执行第二类型的离子注入,形成额外的侧壁离子注入区112。斜角注入、对鳍片结构的侧壁执行第二类型的离子注入,以在所述鳍片结构的侧壁上形成侧墙离子注入区,深沟槽隔离结构之间的阱区在其间耐压的时候通过两边的侧墙离子注入区来完全耗尽,阱区的浓度比漂移区高很多,使得导通电阻在超结(superjunction)LDMOS的基础上进一步降低。这种结构有超结(super junction)和侧墙离子注入区(sidewall)同时作用于漂移区,降低表面电场,提升导通能力,形成为沟槽型3D RESURFLDMOS。
在发明中所述斜角注入是指以倾斜的注入角度对鳍片结构的侧壁执行第二类型的离子注入,例如在本发明的一具体实施例中所述离子注入方向与所述鳍片结构的侧壁之间的夹角为锐角,小于90度,以更有效的形成所述侧墙离子注入区。
可选地,本发明中所述LDMOS器件可以为Single Resurf(SR,Resurf即reducesurface field降低表面电场技术)、Double Resurf(DR)、Triple Resurf(TR)以及mutiResurf LDMOS器件中的一种,例如当所述器件为SR器件时,其并没有顶部注入层,其电流的流向如图2A所示,从表面到体内电流密度越来越小,电流主要在表面流动,由于电流密度由上而下越来越小,电流大部分都从表面通道流过,如果将表面做成鳍片状,相当于增加了表面通道路径,相应的减小导通阻抗。当所述器件为DR器件时,如图2B所示,所述鳍片结构的顶部形成顶部注入区,同理,电流密度由上而下越来越小,电流大部分都从表面通道流过,将表面做成鳍片状,相当于增加了表面通道路径,相应的减小导通阻抗。当所述器件为TR器件时,如图2C所示,所述鳍片结构的顶部以下形成埋层注入区,埋层注入区打入漂移区内,电流有上方和下方两个通路,同样的,电流接近一半是走Pbury上方,Pbury下方的电流也是大部分集中在离Pbury比较近的区域,将表面做成鳍片状,相当于增加了表面通道路径,相应的减小导通阻抗。
下面对本发明所述横向双扩散金属氧化物半导体器件的结构进行详细的说明。
所述横向双扩散金属氧化物半导体器件,如图1C和1D所示,包括:
半导体衬底101,在所述半导体衬底上形成有漂移区102;
在所述漂移区中形成有阱区和漏区104,在所述阱区中有源区110和沟道;
在所述漂移区中形成有位于所述阱区和所述漏区之间相互间隔的若干深沟槽隔离结构和位于相邻深沟槽隔离结构之间的鳍片结构;
位于所述鳍片结构下方的第一离子注入区106;
位于所述深沟槽隔离结构下方的第二离子注入区111;
位于所述鳍片结构侧壁上的侧壁离子注入区112;
其中,所述第一离子注入区和所述第二离子注入区沿所述阱区到所述漏区的方向延伸,第一离子注入区的类型与所述侧壁离子注入区的类型相同,与第二离子注入区的类型不同。
具体地,在半导体衬底101上形成的N型漂移区102,在N型漂移区102中形成P型阱区109,其用作P型体区(P-body)。在P型阱区109中形成的P+有源区和N+源区,P+有源区用于引出P型阱区,N+源区用于引出源极。
在N型漂移区102中还形成有与所述P型阱区间隔设置的N+漏区104,用于引出漏极。在N型漂移区102上形成有多晶硅场板,用作栅极的电极层。多晶硅场板和P型阱区102具有重叠区域,该重叠区域即为器件的沟道。
在所述漂移区中还形成有N型缓冲区103和栅极结构108。其中,栅极结构108可以为多晶硅栅极或者金属栅极。
在所述漂移区中在源区110和漏区104之间的区域形成厚度大于0.5微米的局部氧化层隔离结构105(即场氧,field oxide或FOX),用于起到隔离作用。
超结包括交替设置的第一离子注入区106和第二离子注入区111,其中,第一离子注入区106为N型注入区,第二离子注入区111为P型注入区。P型注入区和N型注入区,P型注入区和N型注入区沿源端和漏断方向延伸。器件在关断状态下,P型注入区和N型注入区互相耗尽实现耐高压,从而可以通过同时提高P型注入区和N型注入区的掺杂浓度来降低导通电阻的目的。
为了使用超结技术进一步降低导通电阻,在N型漂移区102中形成有深沟槽隔离结构(DTI)和鳍片结构,其中所述鳍片结构底部为第一离子注入区106,所述深沟槽隔离结构底部为第二离子注入区111。
其中,在所述鳍片结构的侧壁上形成有侧壁离子注入区112,其中,第一类型的离子与第二类型的离子类型不同。
在所述鳍片结构的侧壁上形成侧墙离子注入区,深沟槽隔离结构之间的阱区在其间耐压的时候通过两边的侧墙离子注入区来完全耗尽,阱区的浓度比漂移区高很多,使得导通电阻在超结(super junction)LDMOS的基础上进一步降低。这种结构有超结(superjunction)和侧墙离子注入区(sidewall)同时作用于漂移区,降低表面电场,提升导通能力,形成为沟槽型3D RESURF LDMOS。
可选地,本发明中所述LDMOS器件可以为Single Resurf(SR,Resurf即reducesurface field降低表面电场技术)、Double Resurf(DR)、Triple Resurf(TR)以及mutiResurf LDMOS器件中的一种,例如当所述器件为SR器件时,其并没有顶部注入层,其电流的流向如图2A所示,从表面到体内电流密度越来越小,电流主要在表面流动,由于电流密度由上而下越来越小,电流大部分都从表面通道流过,如果将表面做成鳍片状,相当于增加了表面通道路径,相应的减小导通阻抗。当所述器件为DR器件时,如图2B所示,所述鳍片结构的顶部形成顶部注入区,同理,电流密度由上而下越来越小,电流大部分都从表面通道流过,将表面做成鳍片状,相当于增加了表面通道路径,相应的减小导通阻抗。当所述器件为TR器件时,如图2C所示,所述鳍片结构的顶部以下形成埋层注入区,埋层注入区打入漂移区内,电流有上方和下方两个通路,同样的,电流接近一半是走Pbury上方,Pbury下方的电流也是大部分集中在离Pbury比较近的区域,将表面做成鳍片状,相当于增加了表面通道路径,相应的减小导通阻抗。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。

Claims (11)

1.一种横向双扩散金属氧化物半导体器件的制作方法,其特征在于,所述制作方法包括:
提供半导体衬底,在所述半导体衬底中形成漂移区;
在所述漂移区中形成阱区和漏区,在所述阱区中形成源区和沟道;
对位于所述阱区和所述漏区之间的漂移区区域执行第一类型的离子注入,以在所述漂移区的底部形成沿所述阱区到所述漏区方向延伸的第一离子注入区;
在所述第一离子注入区上方形成若干相互间隔的深沟槽隔离结构和位于相邻深沟槽隔离结构之间的鳍片结构,以露出部分所述第一离子注入区;
在所述深沟槽隔离结构中执行第二类型的离子注入,形成第二离子注入区,以使所述第一离子注入区和所述第二离子注入区交替设置;
对鳍片结构的侧壁执行第二类型的离子注入,以在所述鳍片结构的侧壁上形成侧墙离子注入区,其中,所述第一类型的离子与第二类型的离子类型不同。
2.根据权利要求1所述的制作方法,其特征在于,所述第一类型的离子为N型,所述第二类型的离子为P型。
3.根据权利要求1所述的制作方法,其特征在于,在形成所述第一离子注入区的过程中包括:在所述阱区和所述漏区之间的所述漂移区上形成掩膜层,以定义所述第一离子注入区的区域;
执行第一类型的离子注入,以形成所述第一离子注入区;
继续执行第一类型的离子注入,以在所述第一离子注入区的上方形成第一类型离子的阱区。
4.根据权利要求1所述的制作方法,其特征在于,对所述鳍片结构的顶部执行第二类型的离子注入,以在所述鳍片结构的顶部形成顶部注入区或在所述鳍片结构的顶部以下形成埋层注入区。
5.根据权利要求1所述的制作方法,其特征在于,以倾斜的注入角度对鳍片结构的侧壁执行所述第二类型的离子注入。
6.一种横向双扩散金属氧化物半导体器件,其特征在于,包括:
半导体衬底,在所述半导体衬底中形成有漂移区;
在所述漂移区中形成有阱区和漏区,在所述阱区中有源区和沟道;
在所述漂移区中形成有位于所述阱区和所述漏区之间若干相互间隔的深沟槽隔离结构和位于相邻深沟槽隔离结构之间的鳍片结构;
位于所述鳍片结构下方的第一离子注入区;
位于所述深沟槽隔离结构下方的第二离子注入区;
位于所述鳍片结构侧壁上的侧墙离子注入区;
其中,所述第一离子注入区和所述第二离子注入区沿所述阱区到所述漏区的方向延伸,第一离子注入区的类型与所述侧墙离子注入区的离子类型相同,与第二离子注入区的离子类型不同。
7.根据权利要求6所述的横向双扩散金属氧化物半导体器件,其特征在于,第一离子注入区和所述侧墙离子注入区为N型,所述第二离子注入区为P型。
8.根据权利要求6所述的横向双扩散金属氧化物半导体器件,其特征在于,还包括位于所述鳍片结构顶部的顶部注入区或位于所述鳍片结构的顶部以下的埋层注入区,顶部注入区或埋层注入区为P型。
9.根据权利要求6所述的横向双扩散金属氧化物半导体器件,其特征在于,所述鳍片结构形成于N型的阱区中。
10.根据权利要求9所述的横向双扩散金属氧化物半导体器件,其特征在于,还包括位于所述漂移区中的场隔离结构,位于N型的阱区与沟道和漏极之间的区域。
11.一种电子装置,其特征在于,所述电子装置包括权利要求6至10之一所述的横向双扩散金属氧化物半导体器件。
CN201910884490.9A 2019-09-19 2019-09-19 横向双扩散金属氧化物半导体器件及制作方法、电子装置 Active CN112530805B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910884490.9A CN112530805B (zh) 2019-09-19 2019-09-19 横向双扩散金属氧化物半导体器件及制作方法、电子装置
PCT/CN2020/092201 WO2021051853A1 (zh) 2019-09-19 2020-05-26 横向双扩散金属氧化物半导体器件及制作方法、电子装置
US17/639,359 US20220302305A1 (en) 2019-09-19 2020-05-26 Lateral double-diffused metal oxide semiconductor device and manufacturing method thereof, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910884490.9A CN112530805B (zh) 2019-09-19 2019-09-19 横向双扩散金属氧化物半导体器件及制作方法、电子装置

Publications (2)

Publication Number Publication Date
CN112530805A true CN112530805A (zh) 2021-03-19
CN112530805B CN112530805B (zh) 2022-04-05

Family

ID=74883911

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910884490.9A Active CN112530805B (zh) 2019-09-19 2019-09-19 横向双扩散金属氧化物半导体器件及制作方法、电子装置

Country Status (3)

Country Link
US (1) US20220302305A1 (zh)
CN (1) CN112530805B (zh)
WO (1) WO2021051853A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125013A1 (zh) * 2021-12-31 2023-07-06 无锡华润上华科技有限公司 半导体器件及其制备方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050112808A1 (en) * 2003-11-21 2005-05-26 Shibib Muhammed A. Metal-oxide-semiconductor device formed in silicon-on-insulator
CN101162697A (zh) * 2006-10-13 2008-04-16 台湾积体电路制造股份有限公司 半导体元件的制造方法
CN101246904A (zh) * 2007-02-15 2008-08-20 恩益禧电子股份有限公司 半导体器件及其制造方法
JP2010135658A (ja) * 2008-12-08 2010-06-17 Renesas Electronics Corp 半導体装置および半導体装置の製造方法
CN102097327A (zh) * 2009-12-02 2011-06-15 万国半导体股份有限公司 双通道沟槽ldmos晶体管和bcd工艺
CN102097484A (zh) * 2011-01-12 2011-06-15 深圳市联德合微电子有限公司 一种多通道ldmos及其制备方法
CN102129996A (zh) * 2010-01-18 2011-07-20 上海华虹Nec电子有限公司 Dddmos器件的制造方法
US8067800B2 (en) * 2009-12-28 2011-11-29 Force Mos Technology Co., Ltd. Super-junction trench MOSFET with resurf step oxide and the method to make the same
CN103579351A (zh) * 2013-11-22 2014-02-12 电子科技大学 一种具有超结埋层的横向扩散金属氧化物半导体器件
US8723256B1 (en) * 2012-11-07 2014-05-13 Vanguard International Semiconductor Corporation Semiconductor device and fabricating method thereof
CN104241383A (zh) * 2014-09-17 2014-12-24 中航(重庆)微电子有限公司 功率半导体器件及制造工艺
CN104377244A (zh) * 2013-08-15 2015-02-25 无锡华润上华半导体有限公司 一种降低ldmos导通电阻的器件结构
CN105006484A (zh) * 2015-06-12 2015-10-28 无锡新洁能股份有限公司 一种超结半导体器件及其制造方法
CN205606205U (zh) * 2016-03-16 2016-09-28 南京东晖光电有限公司 一种基于阵列结构的led侧发光拷贝台光学系统
CN107221561A (zh) * 2017-06-29 2017-09-29 全球能源互联网研究院 一种叠层电场调制高压mosfet结构及其制作方法
CN107342226A (zh) * 2017-07-19 2017-11-10 无锡新洁能股份有限公司 超小单元尺寸纵向超结半导体器件的制造方法
CN107359116A (zh) * 2017-07-12 2017-11-17 张正宇 一种埋层外延超结二极管及其制作方法
US9954094B2 (en) * 2015-02-16 2018-04-24 Renesas Electronics Corporation Semiconductor device manufacturing method and semiconductor device
CN109473476A (zh) * 2017-09-07 2019-03-15 无锡华润上华科技有限公司 一种横向双扩散金属氧化物半导体器件及其制作方法
CN110047918A (zh) * 2018-01-17 2019-07-23 富士电机株式会社 半导体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4326835B2 (ja) * 2003-05-20 2009-09-09 三菱電機株式会社 半導体装置、半導体装置の製造方法及び半導体装置の製造プロセス評価方法
US7230302B2 (en) * 2004-01-29 2007-06-12 Enpirion, Inc. Laterally diffused metal oxide semiconductor device and method of forming the same
CN107425046B (zh) * 2016-05-23 2020-05-12 中芯国际集成电路制造(北京)有限公司 一种ldmos器件及其制作方法
CN107564816B (zh) * 2016-06-30 2020-05-08 中芯国际集成电路制造(上海)有限公司 Ldmos晶体管及其形成方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050112808A1 (en) * 2003-11-21 2005-05-26 Shibib Muhammed A. Metal-oxide-semiconductor device formed in silicon-on-insulator
CN101162697A (zh) * 2006-10-13 2008-04-16 台湾积体电路制造股份有限公司 半导体元件的制造方法
CN101246904A (zh) * 2007-02-15 2008-08-20 恩益禧电子股份有限公司 半导体器件及其制造方法
JP2010135658A (ja) * 2008-12-08 2010-06-17 Renesas Electronics Corp 半導体装置および半導体装置の製造方法
CN102097327A (zh) * 2009-12-02 2011-06-15 万国半导体股份有限公司 双通道沟槽ldmos晶体管和bcd工艺
US8067800B2 (en) * 2009-12-28 2011-11-29 Force Mos Technology Co., Ltd. Super-junction trench MOSFET with resurf step oxide and the method to make the same
CN102129996A (zh) * 2010-01-18 2011-07-20 上海华虹Nec电子有限公司 Dddmos器件的制造方法
CN102097484A (zh) * 2011-01-12 2011-06-15 深圳市联德合微电子有限公司 一种多通道ldmos及其制备方法
US8723256B1 (en) * 2012-11-07 2014-05-13 Vanguard International Semiconductor Corporation Semiconductor device and fabricating method thereof
CN104377244A (zh) * 2013-08-15 2015-02-25 无锡华润上华半导体有限公司 一种降低ldmos导通电阻的器件结构
CN103579351A (zh) * 2013-11-22 2014-02-12 电子科技大学 一种具有超结埋层的横向扩散金属氧化物半导体器件
CN104241383A (zh) * 2014-09-17 2014-12-24 中航(重庆)微电子有限公司 功率半导体器件及制造工艺
US9954094B2 (en) * 2015-02-16 2018-04-24 Renesas Electronics Corporation Semiconductor device manufacturing method and semiconductor device
CN105006484A (zh) * 2015-06-12 2015-10-28 无锡新洁能股份有限公司 一种超结半导体器件及其制造方法
CN205606205U (zh) * 2016-03-16 2016-09-28 南京东晖光电有限公司 一种基于阵列结构的led侧发光拷贝台光学系统
CN107221561A (zh) * 2017-06-29 2017-09-29 全球能源互联网研究院 一种叠层电场调制高压mosfet结构及其制作方法
CN107359116A (zh) * 2017-07-12 2017-11-17 张正宇 一种埋层外延超结二极管及其制作方法
CN107342226A (zh) * 2017-07-19 2017-11-10 无锡新洁能股份有限公司 超小单元尺寸纵向超结半导体器件的制造方法
CN109473476A (zh) * 2017-09-07 2019-03-15 无锡华润上华科技有限公司 一种横向双扩散金属氧化物半导体器件及其制作方法
CN110047918A (zh) * 2018-01-17 2019-07-23 富士电机株式会社 半导体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG, JUNJI;LI, PING;CHEN, WEIZHEN.: "Simulation Study of a Super-Junction Deep-Trench LDMOS With a Trapezoidal Trench", 《IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125013A1 (zh) * 2021-12-31 2023-07-06 无锡华润上华科技有限公司 半导体器件及其制备方法

Also Published As

Publication number Publication date
WO2021051853A1 (zh) 2021-03-25
CN112530805B (zh) 2022-04-05
US20220302305A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
US9601334B2 (en) Semiconductor device and the method of manufacturing the same
US8890280B2 (en) Trench-type semiconductor power devices
US8097510B2 (en) Method of forming lateral trench gate FET with direct source-drain current path
TWI475614B (zh) 溝渠裝置結構及製造
JP2008516451A (ja) 低ミラーキャパシタンスのmosゲート構造トランジスタ
JP2005510881A (ja) オン抵抗が向上されたトレンチ金属酸化膜半導体電界効果トランジスタデバイス
KR20040033313A (ko) 셀 트렌치 게이트 전계 효과 트렌지스터 및 그 제조 방법
US11264468B2 (en) Semiconductor device
TWI532168B (zh) 短通道溝槽mosfet及製備方法
CN108847423A (zh) 半导体器件及其制造方法
JP2014143419A (ja) 3次元的な表面電界緩和が増強された半導体デバイス
CN112864246B (zh) 超结器件及其制造方法
US20190371884A1 (en) Mosfet and a method for manufacturing the same
JP2018056463A (ja) 半導体装置及びその製造方法
JP2001085688A (ja) 半導体装置及びその製造方法
KR20070032995A (ko) 고전압 디바이스 및 그 형성 방법
CN109473476B (zh) 一种横向双扩散金属氧化物半导体器件及其制作方法
CN104347614A (zh) 功率半导体器件及其制造方法
CN112530805B (zh) 横向双扩散金属氧化物半导体器件及制作方法、电子装置
KR20100067567A (ko) 반도체 소자 및 이의 제조 방법
KR101357620B1 (ko) 반도체 장치용 3d 채널 구조물
CN206259355U (zh) 半导体装置
US20160149032A1 (en) Power Transistor with Field-Electrode
KR20220121391A (ko) 슈퍼정션 반도체 소자 및 제조방법
KR20100136028A (ko) 고전력 반도체 소자 및 고전력 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Horizontal double diffusion metal oxide semiconductor device, manufacturing method, and electronic device

Effective date of registration: 20231007

Granted publication date: 20220405

Pledgee: Bank of China Limited Wuxi Branch

Pledgor: CSMC TECHNOLOGIES FAB2 Co.,Ltd.

Registration number: Y2023980059915

PE01 Entry into force of the registration of the contract for pledge of patent right