JP2018056463A - 半導体装置及びその製造方法 - Google Patents
半導体装置及びその製造方法 Download PDFInfo
- Publication number
- JP2018056463A JP2018056463A JP2016193084A JP2016193084A JP2018056463A JP 2018056463 A JP2018056463 A JP 2018056463A JP 2016193084 A JP2016193084 A JP 2016193084A JP 2016193084 A JP2016193084 A JP 2016193084A JP 2018056463 A JP2018056463 A JP 2018056463A
- Authority
- JP
- Japan
- Prior art keywords
- trench
- oxide film
- gate oxide
- semiconductor device
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 116
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000758 substrate Substances 0.000 claims description 44
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 14
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 12
- 230000003647 oxidation Effects 0.000 claims description 11
- 238000007254 oxidation reaction Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 230000015556 catabolic process Effects 0.000 abstract description 24
- 239000010410 layer Substances 0.000 description 79
- 230000005684 electric field Effects 0.000 description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 9
- 108091006146 Channels Proteins 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000370 acceptor Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7813—Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66053—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
- H01L29/66068—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66674—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/66712—Vertical DMOS transistors, i.e. VDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1095—Body region, i.e. base region, of DMOS transistors or IGBTs
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrodes Of Semiconductors (AREA)
- Formation Of Insulating Films (AREA)
Abstract
【課題】スイッチング特性が良好であり、オフ時の耐圧が高い半導体装置を得る。【解決手段】トレンチTの隅側の形状は、深さP1よりも下側でR形状、すなわち曲率半径がR1の曲面形状とされる。また、トレンチTの側壁におけるゲート酸化膜21の図中左右方向に沿った厚さをT0、トレンチTの底部中央部でのゲート酸化膜21の図中上下方向に沿った厚さをT1として、T1>T0となるように形成される。ゲート酸化膜21は、深さP2よりも下側でR形状(曲率半径R2)とされる。また、R2≦R1とされる。【選択図】図2
Description
本発明は、トレンチ内にゲート電極が設けられた半導体装置の構造、その製造方法に関する。
大電流のスイッチング動作のために、パワーMOSFETが用いられており、動作電流を大きくとるために、ゲート電極を半導体基板中のトレンチ(溝)内に設けたトレンチゲート型の素子が特に好ましく用いられている。トレンチゲート型のパワーMOSFETにおいては、オン時にはトレンチ側壁に誘起されたチャネルを介してソース・ドレイン間に電流が流れる。特許文献1に記載されるように、パワーMOSFETのスイッチング特性を向上させるためには、帰還容量Crss、入力容量Cissを小さくすることと、オン抵抗(オン時のソース・ドレイン間の抵抗)を低減することとが要求される。ここで、帰還容量Crssはゲート・ドレイン間の容量となり、入力容量Cissは、ゲート・ソース間の容量と帰還容量Crssとの和となる。このため、良好なスイッチング特性を実現するためには、ゲート・ソース間の容量とゲート・ドレイン間の容量を共に低減することが要求される。ここで、ゲート・ドレイン間の容量の成分として、例えばゲート電極とトレンチ底部との間に形成される容量がある。この容量成分は、本来のMOS動作には直接関わらず、この構造において付随的に形成される寄生容量であるため、この容量成分を低減することがCrssの低減においては特に重要である。ゲート酸化膜を厚くすればこの容量成分を低減させることができるが、オン抵抗の減少のためには、ゲート酸化膜をある程度薄くすることが要求される。
このため、特許文献1に記載のパワーMOSFETにおいては、シリコンで構成された半導体基板において、トレンチ内におけるチャネル誘起と直接関係のない部分であるトレンチの底部や上部における酸化膜(ゲート酸化膜)を局所的に厚くすることによって、ゲート・ドレイン間容量とゲート・ソース間容量を低減している。一方、チャネルが形成される部分であるトレンチの側壁におけるゲート酸化膜は薄くされる。この構造によって、寄生容量を低減してCiss、Crssを低減すると共に、オン抵抗を低減することができる。
また、特にパワーMOSFETはソースとドレイン間に高電圧が印加されて動作するため、オフ時におけるソース(ゲート)・ドレイン間の耐圧が高いことも要求される。一様な膜厚のゲート酸化膜が用いられた場合には、ゲート酸化膜の絶縁破壊は、特にトレンチ底部において発生しやすいため、特許文献1に記載の技術においては、トレンチの底部における酸化膜を厚くすることによって、この耐圧も高まる。
パワーMOSFETを更に高電圧に対応させるためには、近年、シリコンよりも禁制帯幅が広く、かつ同様にMOSFETを形成することのできる炭化ケイ素(SiC)が、シリコンの代わりに用いられている。SiCで構成された半導体基板を用いて同様にトレンチ型のパワーMOSFETを構成することによって、耐圧が高く高電圧動作により適したパワーMOSFETを得ることができる。
SiCを用いた場合でも、ゲート酸化膜としてはシリコンを用いた場合と同様のSiO2が用いられ、この場合には、特にゲート酸化膜の絶縁破壊による耐圧低下の問題が顕著となった。このため、SiCが用いられ、高電圧の動作が行われる場合には、特許文献1に記載の技術のようにトレンチ底部の酸化膜を局所的に厚くした構造でも、耐圧は不十分となった。
この点について以下に説明する。まず、図6(a)は、トレンチ内のゲート酸化膜厚が一様である従来の半導体装置(パワーMOSFET)の模式的な断面を示す。ここでは、パワーMOSFETにおけるトレンチ周囲の領域についてのみが単純化して記載されている。ここで用いられる半導体基板90においては、ドレイン側と連結した低濃度のn型であるn−層91(ドリフト層)上に、p型のp層92(ボディ層)、高濃度のn型であるn+層93(ドレイン領域)が下側から順次形成されている。トレンチTは、半導体基板90の表面からn+層93及びp層92を貫通してn−層91まで達するように形成されており、その内壁にはゲート酸化膜94が一様な厚さで形成されている。ゲート電極95は、このトレンチTを埋め込むように形成されている。ここで、ゲート酸化膜94の厚さは、オン電流やゲート容量を考慮し、良好なスイッチング特性が得られる範囲で薄く設定される。チャネルはゲート電極95と対向してトレンチTの側壁を構成するp層92に誘起され、オン時にはn+層93とn−層91との間をチャネルを介した電流が流れ、かつn−層91を図中上下方向に流れる。オフ時(ゲート電圧が接地電圧あるいはソース電圧と等しい場合)においては、チャネルは形成されず、n+層93とn−層91との間は空亡層によって絶縁される。この構造、高電圧が印加されるドレイン(n−層91)側と接地電位となるゲート電極95とは近接し、これらの間の耐圧はゲート酸化膜91の絶縁破壊によって定まり、ゲート酸化膜94において電界集中が最も大きくなる箇所は図6(a)における領域Aであった。すなわち、形状が急峻に変化するトレンチT底部の隅におけるゲート酸化膜94において絶縁破壊が発生しやすかった。
一方、図6(b)は、特許文献1に記載の技術のように、トレンチT内の酸化膜(ゲート酸化膜94)を、トレンチTの側壁では図6(a)と同様に薄く、かつトレンチTの底部ではゲート・ドレイン間容量を低減するために厚く設定した場合の構造である。前記の通り、この構造によって、図6(a)の構造よりも耐圧を高めることができる。このため、図6(a)の構造よりもオフ時において高い電圧を印加し、この構造において絶縁破壊が発生する箇所を調べたところ、図6(b)における領域Bで絶縁破壊が発生した。すなわち、トレンチTの底部でゲート酸化膜を厚くしたことによって耐圧は高まるものの、やはりトレンチTの底部側におけるゲート酸化膜94の隅の部分で絶縁破壊が発生した。すなわち、図6(b)の構造においても、トレンチTの底部側で局所的に絶縁破壊が発生することは、ゲート酸化膜94が一様に薄い図6(a)の場合と同様であった。
このため、特許文献1に記載の技術においては、耐圧は改善されるものの、トレンチT内のゲート酸化膜94中において局所的に絶縁破壊が生ずるために耐圧が制限されるという点は同様であった。このため、その耐圧は、高電圧用のパワーMOSFETとしては、やはり不十分であった。
このため、スイッチング特性が良好であり、オフ時の耐圧が高い半導体装置が望まれた。
本発明は、かかる問題点に鑑みてなされたものであり、上記問題点を解決する発明を提供することを目的とする。
本発明は、上記課題を解決すべく、以下に掲げる構成とした。
本発明の半導体装置は、第1導電型の第1半導体領域と、前記第1半導体領域上に形成された前記第1導電型と逆の第2導電型の第2半導体領域と、前記第2半導体領域上に形成された前記第1導電型の第3半導体領域と、を具備する半導体基板が用いられ、前記第3半導体領域の表面から前記第3半導体領域及び前記第2半導体領域を貫通する深さで形成されるトレンチと、前記トレンチの内面に形成されたゲート酸化膜と、前記トレンチの内面との間に前記ゲート酸化膜を介して形成されたゲート電極と、を具備し、前記第1半導体領域と前記第3半導体領域との間に流れる電流のオン・オフが前記ゲート電極の電位で制御される半導体装置であって、前記トレンチの延伸方向と垂直な断面視において、前記トレンチの開口幅をDとして、前記トレンチの底部の隅の曲率半径R1がD/10≦R1≦D/2の範囲であり、前記ゲート酸化膜は、前記トレンチ内における底部側の膜厚が、前記トレンチ内の側面における膜厚よりも厚く、かつ前記トレンチの底部の隅から前記トレンチの中央に向かって徐々に厚くされたことを特徴とする。
本発明の半導体装置は、前記トレンチの底部の隅に形成される前記ゲート酸化膜の曲率半径R2が、前記曲率半径R1に対し0.1〜1.0の範囲であることを特徴とする。
本発明の半導体装置において、前記曲率半径R1によって形成されるR形状の開始点P1は、前記曲率半径R2によって形成されるR形状の開始点P2よりも前記半導体基板の深い位置に配置されたことを特徴とする。
本発明の半導体装置は、上面視における前記トレンチに隣接した領域において、前記ゲート電極は、前記側面における膜厚よりも厚く形成された前記ゲート酸化膜を介して、前記半導体基板の表面と対向する部分を具備することを特徴とする。
本発明の半導体装置は、上面視における前記トレンチに隣接した領域において、前記側面における膜厚よりも厚く形成された前記ゲート酸化膜を介して、前記半導体基板の表面と対向する部分を具備することを特徴とする。
本発明の半導体装置において、前記半導体基板は炭化ケイ素(SiC)で構成されたことを特徴とする。
本発明の半導体装置において、前記半導体基板は4H−SiCで構成され、前記半導体基板の表面は〔0001〕C面で構成されたことを特徴とする。
本発明の半導体装置の製造方法は、前記半導体装置の製造方法であって、前記半導体基板に前記トレンチを形成するトレンチ形成工程と、前記トレンチ形成工程後に、前記半導体基板を熱酸化することによって、前記底部側の膜厚が、前記側面における膜厚よりも厚い前記ゲート酸化膜を形成するゲート酸化工程と、を具備することを特徴とする。
本発明の半導体装置の製造方法は、前記トレンチ形成工程と前記ゲート酸化工程の間に、非酸化雰囲気での熱処理を行うことによって前記底部の隅の断面をR形状とするR形状形成工程を具備することを特徴とする。
本発明の半導体装置は、第1導電型の第1半導体領域と、前記第1半導体領域上に形成された前記第1導電型と逆の第2導電型の第2半導体領域と、前記第2半導体領域上に形成された前記第1導電型の第3半導体領域と、を具備する半導体基板が用いられ、前記第3半導体領域の表面から前記第3半導体領域及び前記第2半導体領域を貫通する深さで形成されるトレンチと、前記トレンチの内面に形成されたゲート酸化膜と、前記トレンチの内面との間に前記ゲート酸化膜を介して形成されたゲート電極と、を具備し、前記第1半導体領域と前記第3半導体領域との間に流れる電流のオン・オフが前記ゲート電極の電位で制御される半導体装置であって、前記トレンチの延伸方向と垂直な断面視において、前記トレンチの開口幅をDとして、前記トレンチの底部の隅の曲率半径R1がD/10≦R1≦D/2の範囲であり、前記ゲート酸化膜は、前記トレンチ内における底部側の膜厚が、前記トレンチ内の側面における膜厚よりも厚く、かつ前記トレンチの底部の隅から前記トレンチの中央に向かって徐々に厚くされたことを特徴とする。
本発明の半導体装置は、前記トレンチの底部の隅に形成される前記ゲート酸化膜の曲率半径R2が、前記曲率半径R1に対し0.1〜1.0の範囲であることを特徴とする。
本発明の半導体装置において、前記曲率半径R1によって形成されるR形状の開始点P1は、前記曲率半径R2によって形成されるR形状の開始点P2よりも前記半導体基板の深い位置に配置されたことを特徴とする。
本発明の半導体装置は、上面視における前記トレンチに隣接した領域において、前記ゲート電極は、前記側面における膜厚よりも厚く形成された前記ゲート酸化膜を介して、前記半導体基板の表面と対向する部分を具備することを特徴とする。
本発明の半導体装置は、上面視における前記トレンチに隣接した領域において、前記側面における膜厚よりも厚く形成された前記ゲート酸化膜を介して、前記半導体基板の表面と対向する部分を具備することを特徴とする。
本発明の半導体装置において、前記半導体基板は炭化ケイ素(SiC)で構成されたことを特徴とする。
本発明の半導体装置において、前記半導体基板は4H−SiCで構成され、前記半導体基板の表面は〔0001〕C面で構成されたことを特徴とする。
本発明の半導体装置の製造方法は、前記半導体装置の製造方法であって、前記半導体基板に前記トレンチを形成するトレンチ形成工程と、前記トレンチ形成工程後に、前記半導体基板を熱酸化することによって、前記底部側の膜厚が、前記側面における膜厚よりも厚い前記ゲート酸化膜を形成するゲート酸化工程と、を具備することを特徴とする。
本発明の半導体装置の製造方法は、前記トレンチ形成工程と前記ゲート酸化工程の間に、非酸化雰囲気での熱処理を行うことによって前記底部の隅の断面をR形状とするR形状形成工程を具備することを特徴とする。
本発明は以上のように構成されているので、スイッチング特性が良好でありオフ時の耐圧が高い半導体装置を得ることができる。
以下、本発明の実施の形態となる半導体装置について説明する。図1は、この半導体装置100の断面図である。この半導体装置100はトレンチゲート型のパワーMOSFETであり、高濃度にドナーが添加されたn型(第1導電型)のn+層(ドレイン層)11、低濃度にドナーが添加されたn−層(ドリフト層:第1半導体領域)12、低濃度にアクセプタが添加されたp型(第2導電型)のp層(ボディ層:第2半導体領域)13、高濃度にドナーが添加されたn+層(ソース領域:第3半導体領域)14、高濃度にアクセプタが添加されたp+層15が形成され、全体がSiCで構成された半導体基板10が用いられる。SiCの結晶型は六方晶系の4H−SiCとされ、半導体基板10表面の面方位は〔0001〕C面とされる。
また、この半導体基板10にはその表面側(n+層14側)からn−層12に達するトレンチ(溝)Tが形成されており、図1においては、トレンチTの延伸方向に垂直な断面が示されている。また、トレンチTの内面にSiO2で構成されたゲート酸化膜21が形成された状態で、ゲート電極(制御電極)22が、トレンチTの内部を埋め込むように形成される。
また、半導体基板10の上面(表面)側ではn+層14及びp+層15と接続されたソース電極(第1主電極)23が形成され、下面(裏面)側ではn+層11と裏面全体にわたり接するドレイン電極(第2主電極)24が形成される。上面側においては、ゲート電極22とソース電極23とはSiO2で構成された層間絶縁層25によって絶縁される。前記の通り、ソース電極23・ドレイン電極24間に流れる電流のオン・オフがゲート電極22に印加される電圧で制御され、この電流は、p層13におけるトレンチTの側壁となる領域、n−層(ドリフト層)12を上下方向に流れる。
また、実際にはトレンチTは半導体基板10において図1における左右方向に複数並行に形成され、各トレンチTに対応して図1の構造が複数形成される。この際、ソース電極23、ドレイン電極24はこれらの構造の間で共通とされ、各構造におけるゲート電極22は、図示の範囲外で電気的に接続される。このため、図1の構造をもつトレンチ型のパワーMOSFETが複数並列に接続され、これによって、共通のソース電極23、ドレイン電極24間に大電流を流すことができ、そのオン・オフはゲート電極22に印加された電圧で定まる。通常はソース電極23は接地電位とされ、ドレイン電極24には500V以上の高電圧が印加されて使用される。ソース電極23の電位は、オフ時には零(接地電位)、オン時には10V程度とされる。上記の点については、従来より知られるトレンチゲート型のパワーMOSFETと同様である。
この半導体装置100は、トレンチTの断面形状、及びその内面に形成されたゲート酸化膜21の断面形状に特徴を有する。図1におけるトレンチTの底部側の形状を拡大して図2に示す。この構造においては、トレンチTの断面形状における底部の両隅がR形状とされている。また、この形状のトレンチTの内面に形成されたゲート酸化膜21の底部の両隅もこれに伴ってR形状とされるが、その膜厚は一様ではなく、底面側で厚く形成される。
図2においては、トレンチTの底面左側のみについて詳細に記載されているが、実際にはトレンチT及びその内部の構造は、トレンチTの中心から左右対称である。まず、トレンチTの隅側の形状は、深さP1よりも下側でR形状、すなわち曲率半径がR1の曲面形状とされる。深さP1は、p層13よりも下側のn−層12中に位置する。また、トレンチTの側壁におけるゲート酸化膜21の図中左右方向(半導体基板10の厚さ方向と垂直な方向)に沿った厚さをT0、トレンチTの底部中央部でのゲート酸化膜21の図中上下方向(半導体基板10の厚さ方向)に沿った厚さをT1として、T1>T0となるように、すなわち、ゲート酸化膜21はトレンチT内において側壁よりも底部において厚く形成される。トレンチT側壁における厚さT0のゲート酸化膜21は、MOS構造におけるチャネル形成に直接寄与する部分であり、T0はこの特性に応じて適宜設定される。具体的には、T0は30nm以上100nm以下の範囲とされる。一方、T1はT1>T0の範囲で50nm以上400nm以下とされる。
また、上記のようにトレンチTの底面側の形状がR形状(曲率半径R1)とされていることに対応して、ゲート酸化膜21は、深さP2よりも下側でR形状(曲率半径R2)とされる。深さP2も、p層13よりも下側のn−層12中に位置するが、深さP1よりも浅い、すなわち、よりp層13に近い側にある。また、R2≦R1とされる。このため、トレンチTの底部における中央部から外れた箇所におけるゲート酸化膜21の上下方向に沿った厚さをT2とすると、T2<T1となる。ただし、T2>T0であり、T0<T2<T1となる。
このため、この半導体装置100においても、特許文献1に記載の構造と同様に、ゲート電極22とトレンチT底部のn−層12との間の容量が低減され、ゲート・ドレイン間容量を低減することができる。また、この構造においては、トレンチTの断面形状、ゲート酸化膜21の断面形状が緩やかとなるため、図6(a)(b)のような電界集中が発生しにくい。すなわち、上記の構成により、トレンチT及びその内部のゲート酸化膜21(ゲート電極22)の断面形状において、形状が急峻に変動する箇所をなくし、かつトレンチTの底部側で特にゲート酸化膜21を厚くすることができる。これによって、図6(a)(b)に示されたようなゲート酸化膜21内における電界集中が発生しやすくなる箇所が形成されることを抑制することができる。これによって、図6(b)の構造と比べて、更に耐圧を高めることができる。一方で、トレンチTの側壁におけるゲート酸化膜21は底部よりも薄く保つことができる。このため、良好なスイッチング特性と高い耐圧を得ることができる。
ここで、図2において、R1が大きいほうが上記の効果が顕著となるが、トレンチTの開口幅をDとしてR1>D/2とした場合には、トレンチT底面の中央部の形状が鋭くなる(急峻に変動する)ことがある。トレンチT内の断面形状を緩やかにしてこれを抑制するためには、底面中央部に平坦な部分が設けられるように、D/10≦R1≦D/2の範囲内とすることが好ましい。これに対応して、R2は、R1以下であり、R1の0.1〜1.0の範囲であることが好ましく、更に好ましくは0.5〜1.0、更には0.7〜1.0の範囲とすることが好ましい。また、前記の通り、深さP2は深さP1よりも浅いが、これらの間の差(深さの差)は、ゲート酸化膜21の底部における最大厚さT1の70%程度とすることが好ましい。T1を上記のように50nm以上400nm以下とした場合、P2とP1の差は30nm〜280nm程度となる。トレンチTの開口幅Dは0.2μm以上、1.5μm以下であり、典型的には1μm程度である。トレンチTの深さは上記の構造には直接関連しないが、典型的には1μm程度であり、p層13、n+層14の厚さに応じて適宜設定される。
以上の構成によって、トレンチT内における側壁のゲート酸化膜21を薄く維持したまま底面側のゲート酸化膜21を厚くし、かつトレンチT内の構造全体の形状変化を緩やかにすることにより、ゲート酸化膜21中における局所的な電界集中を抑制することができる。
また、上記の半導体装置100を、以下に説明するように、容易に製造することができる。図3、(a)〜(e)、図4(f)〜(h)は、この製造工程を示す工程断面図です。ここでは、図1の構造が2つ並列に形成された部分についての断面が示されている。
まず、図3(a)に示されるように、n+層(ドレイン層)11、n−層(ドリフト層)12、p層13、n+層14、p+層15が形成された半導体基板10を準備する。半導体基板10は4H−SiCの単結晶で構成されている。n−層12、p層13は、n+層11上にエピタキシャル成長あるいは不純物拡散又はイオン注入を順次行うことによって形成することができる。また、n+層14、p+層15は、p層13に対して不純物拡散又はイオン注入を局所的に行うことによって、半導体基板10の表面に局所的に形成することができる。なお、イオン注入で各層を形成する場合には、イオン注入の後でドナー、アクセプタの活性化のための熱処理を行う必要があるが、この段階ではイオン注入のみを行い、熱処理は、後で一括して行ってもよい。
次に、図3(b)に示されるように、トレンチTを形成する(トレンチ形成工程)。この工程は、例えばフォトレジストをマスクとしてSiCを局所的にドライエッチングすることによって行われる。ドライエッチングは異方性であるため、これによって半導体基板10は表面から垂直に掘り下げされる。この際、トレンチTの開口幅はフォトレジストの開口で定まり、その深さは、エッチング時間によって制御することができ、トレンチTの底面がn−層12中に来るように調整される。この段階では、トレンチTの断面形状は略矩形となり、図2における底部の両隅の曲率半径R1は零に近く、両隅が直角に近い形状となっている。
次に、図3(c)に示されるように、非酸化雰囲気で高温の熱処理を行うことによって、半導体基板10を構成するSiCにリフロー状態を発生させ、トレンチT底部の両隅をR形状とすることができる(R形状形成工程)。この際の曲率半径は、熱処理時間によって調整することができる。
その後、図3(d)に示されるように、酸化雰囲気での熱処理を行うことによって、トレンチTの内部を含む半導体基板10の全面にゲート酸化膜21を形成することができる(ゲート酸化工程)。この際、半導体基板10を構成する4H−SiCの熱酸化速度には面方位依存性があり、特に〔0001〕C面の熱酸化速度は他の面(例えばこれと直交する面)と比べて大きい。このため、図2に示されたような、トレンチT内部において底部側で厚く、側壁で薄くゲート酸化膜21を形成することができる。この際、トレンチTの両隅側は前記の通りR形状とされるため、この部分では面方位が〔0001〕C面から徐々に変動する。このため、これに応じてゲート酸化膜21の膜厚もトレンチTの形状に応じて徐々に変化し、底部中央側で厚く、両隅側に向かって徐々に薄くなるように変動する。これによって、図1、2に示されたゲート酸化膜21の断面形状を実現することができる。
その後、図3(e)に示されるように、高濃度に不純物が添加された導電性の多結晶シリコン層30をCVDによって半導体基板10の前面に形成する。この際、多結晶シリコン層30によってトレンチT内が埋め込まれるような条件で十分に厚く多結晶シリコン層30を成膜する。
その後、図4(f)に示されるように、平面視におけるトレンチTの周辺のみにおいて多結晶シリコン層30及びゲート酸化膜21が残存するように、これらをエッチングする。この工程は、これらを残存させるべき領域にフォトレジスト等のマスクを形成し、多結晶シリコン層30、ゲート酸化膜21を順次エッチングすることによって行われる。これによって残存した多結晶シリコン層30はゲート電極22となる。トレンチT内のゲート電極22の形状は、トレンチT内のゲート酸化膜21の形状を反映する。
その後、図4(g)に示されるように、半導体基板10の表面側において露出するゲート電極22、ゲート酸化膜21を覆うように、層間絶縁層25を局所的に形成する。層間絶縁層25は、ゲート酸化膜21と同様にSiO2で構成されるが、層間絶縁層25は、CVDによって前面に形成された後に、図4(f)の工程と同様に、不要部分をエッチング除去することによって、図4(g)の形態とすることができる。
その後、図4(h)に示されるように、半導体基板10の表面側にソース電極23、裏面側にドレイン電極24を、それぞれ全面にわたり形成する。ソース電極23、ドレイン電極24は、それぞれ、これらが接する層とオーミック接触する金属材料で構成される。なお、前記の通り、複数並行して形成されたゲート電極22は、図示の範囲外で電気的に接続される。
上記の工程により、図1の半導体装置100を製造することができる。なお、上記の例においては、トレンチ形成工程の後でトレンチT底面の両隅をR形状とするためにR形状形成工程を行ったが、トレンチ形成工程におけるドライエッチング条件を調整してR形状を実現することもできる。また、ウェットエッチング等を用いてR形状を実現することもできる。
また、上記の例では、半導体基板10の面方位を選択することによって、上記のようなゲート酸化膜21の膜厚分布(断面形状)を実現したが、例えば熱酸化と他のSiO2成膜方法(CVD等)を併用することによって、上記と同様のゲート酸化膜21の膜厚分布を実現することもできる。ただし、特にSiCを材料として用いる場合には、半導体基板10の面方位を〔0001〕C面とすることのみによって、上記の構造を特に容易に形成することができる。
なお、図1の構造においては、ゲート酸化膜21は、上向きの面においては厚く、横向きの面(トレンチTの側面)においては薄くなっている。この際、R形状形成工程においては、トレンチTの底面側だけでなくトレンチTの開口上部側もR形状となる。このため、半導体基板10における上面側のトレンチT周囲の部分、あるいはトレンチTの上端部付近においては、トレンチTの底面と同様に、ゲート酸化膜21は厚く形成される。このため、これらの部分においては、ゲート電極22は厚いゲート酸化膜21を介してn+層14と対向する。このため、このようにゲート電極22をトレンチTの上部側まで形成した場合でも、ゲート・ドレイン間の容量が増大することが抑制される。
このようにゲート電極22をトレンチTの上部側にも設けることにより、この部分を用いた配線構造を形成することができ、配線設計の自由度を高めることができる。上記の構造においては、こうした場合においてもゲート・ソース間の容量の増大を抑制することができる。
なお、このようにゲート電極22をトレンチTの上部側で形成せず、トレンチTの内部側においてのみ設けることもできる。図5は、こうした構造を具備する半導体装置200(上記の実施の形態の変形例)を図1に対応させて示す断面図である。この構造においては、ゲート電極22の下部側の構造は図1と同様であるため、ゲート・ドレイン間の容量はゲート電極22の上部の形状に関わらずゲート・ドレイン間容量は小さく、かつゲート酸化膜21における電界集中が抑制されるという点については同様である。図5の構造は、多結晶シリコン層30の形成(図3(e))後にこれをエッチバックし、図4(g)以降の工程を同様に行うことによって実現できる。
トレンチTの幅Dを1μm、ゲート酸化膜厚としてT0=50nm、T1=300nm、R1=0.35μm、R2=0.30μmとした図1の構造(実施例)と、D、T0を同様とした図6(a)の構造(比較例:T1=T0、R1=R2≒0)について、電界強度のシミュレーションを行ったところ、実施例では特定の箇所で電界集中は発生せず、オフ時におけるゲート酸化膜中の最大電界強度は3.0MV/cm(耐圧1500Vに対応)となった。一方、比較例では図6(a)に示されたような電界集中が発生し、オフ時におけるゲート酸化膜中の最大電界強度(図6(a)におけるAで発生)は5.0MV/cm(耐圧900Vに対応)となった。すなわち、上記の構造によって、耐圧が向上することが確認された。この際、チャネルが形成される部分の構造は実施例と比較例では変わりがなく、かつ実施例では比較例よりもゲート・ドレイン間容量が低下しているために、スイッチング特性は向上している。
なお、上記の例では、トレンチT内のゲート酸化膜21中の電界強度がオフ時の耐圧に与える影響が特に顕著であるSiCを用いた場合について記載されたが、半導体基板が他の材料で構成された場合であっても、同様に耐圧が要求されるトレンチゲート型の素子においては、上記の構成が有効であることは明らかである。この際、上記のようなゲート酸化膜の膜厚分布を容易に実現できる半導体基板の面方位も、材料に応じて設定することができる。
また、上記の例では、nチャネル型のパワーMOSFETについて記載されたが、pチャネル型であっても同様の構成が可能である。この場合には、上記と導電型をすべて逆転させた第1の半導体領域、第2の半導体領域、第3の半導体領域等を用いて、同様の効果を得ることができる。
10、90 半導体基板
11 n+層(ドレイン層)
12、91 n−層(ドリフト層:第1半導体領域)
13、92 p層(ボディ層:第2半導体領域)
14、93 n+層(ソース領域:第3半導体領域)
15 p+層
21、94 ゲート酸化膜
22、95 ゲート電極(制御電極)
23 ソース電極(第1主電極)
24 ドレイン電極(第2主電極)
25 層間絶縁層
30 多結晶シリコン層
100、200 半導体装置(パワーMOSFET)
T トレンチ(溝)
11 n+層(ドレイン層)
12、91 n−層(ドリフト層:第1半導体領域)
13、92 p層(ボディ層:第2半導体領域)
14、93 n+層(ソース領域:第3半導体領域)
15 p+層
21、94 ゲート酸化膜
22、95 ゲート電極(制御電極)
23 ソース電極(第1主電極)
24 ドレイン電極(第2主電極)
25 層間絶縁層
30 多結晶シリコン層
100、200 半導体装置(パワーMOSFET)
T トレンチ(溝)
Claims (9)
- 第1導電型の第1半導体領域と、
前記第1半導体領域上に形成された前記第1導電型と逆の第2導電型の第2半導体領域と、
前記第2半導体領域上に形成された前記第1導電型の第3半導体領域と、
を具備する半導体基板が用いられ、
前記第3半導体領域の表面から前記第3半導体領域及び前記第2半導体領域を貫通する深さで形成されるトレンチと、
前記トレンチの内面に形成されたゲート酸化膜と、
前記トレンチの内面との間に前記ゲート酸化膜を介して形成されたゲート電極と、
を具備し、前記第1半導体領域と前記第3半導体領域との間に流れる電流のオン・オフが前記ゲート電極の電位で制御される半導体装置であって、
前記トレンチの延伸方向と垂直な断面視において、
前記トレンチの開口幅をDとして、前記トレンチの底部の隅の曲率半径R1がD/10≦R1≦D/2の範囲であり、
前記ゲート酸化膜は、
前記トレンチ内における底部側の膜厚が、前記トレンチ内の側面における膜厚よりも厚く、かつ前記トレンチの底部の隅から前記トレンチの中央に向かって徐々に厚くされたことを特徴とする半導体装置。 - 前記トレンチの底部の隅に形成される前記ゲート酸化膜の曲率半径R2が、前記曲率半径R1に対し0.1〜1.0の範囲であることを特徴とする請求項1に記載の半導体装置。
- 前記曲率半径R1によって形成されるR形状の開始点P1は、前記曲率半径R2によって形成されるR形状の開始点P2よりも前記半導体基板の深い位置に配置されたことを特徴とする請求項2に記載の半導体装置。
- 前記トレンチの延伸方向と垂直な断面視において、
前記側面における前記ゲート酸化膜の膜厚は30nm以上100nm以下であり、
前記トレンチの底部の前記中央における前記ゲート酸化膜の膜厚は50nm以上400nm以下であることを特徴とする請求項1から請求項3までのいずれか1項に記載の半導体装置。 - 上面視における前記トレンチに隣接した領域において、
前記ゲート電極は、
前記側面における膜厚よりも厚く形成された前記ゲート酸化膜を介して、前記半導体基板の表面と対向する部分を具備することを特徴とする請求項1から請求項4までのいずれか1項に記載の半導体装置。 - 前記半導体基板は炭化ケイ素(SiC)で構成されたことを特徴とする請求項1から請求項5までのいずれか1項に記載の半導体装置。
- 前記半導体基板は4H−SiCで構成され、前記半導体基板の表面は〔0001〕C面で構成されたことを特徴とする請求項6に記載の半導体装置。
- 請求項7に記載の半導体装置の製造方法であって、
前記半導体基板に前記トレンチを形成するトレンチ形成工程と、
前記トレンチ形成工程後に、前記半導体基板を熱酸化することによって、前記底部側の膜厚が、前記側面における膜厚よりも厚い前記ゲート酸化膜を形成するゲート酸化工程と、
を具備することを特徴とする半導体装置の製造方法。 - 前記トレンチ形成工程と前記ゲート酸化工程の間に、
非酸化雰囲気での熱処理を行うことによって前記底部の隅の断面をR形状とするR形状形成工程を具備することを特徴とする請求項8に記載の半導体装置の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/283,149 US20180097102A1 (en) | 2016-09-30 | 2016-09-30 | Semiconductor device and method of manufacturing a semiconductor device |
JP2016193084A JP2018056463A (ja) | 2016-09-30 | 2016-09-30 | 半導体装置及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016193084A JP2018056463A (ja) | 2016-09-30 | 2016-09-30 | 半導体装置及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018056463A true JP2018056463A (ja) | 2018-04-05 |
Family
ID=61759082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016193084A Pending JP2018056463A (ja) | 2016-09-30 | 2016-09-30 | 半導体装置及びその製造方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20180097102A1 (ja) |
JP (1) | JP2018056463A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019239632A1 (ja) * | 2018-06-14 | 2019-12-19 | Eastwind合同会社 | パワー半導体素子及びその製造方法 |
WO2021131891A1 (ja) * | 2019-12-25 | 2021-07-01 | 株式会社ノベルクリスタルテクノロジー | トレンチ型mosfet |
JP7486453B2 (ja) | 2021-03-26 | 2024-05-17 | 三菱電機株式会社 | 半導体装置及び半導体装置の製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7061954B2 (ja) * | 2018-11-07 | 2022-05-02 | 三菱電機株式会社 | 半導体装置 |
US11563101B2 (en) * | 2020-07-07 | 2023-01-24 | Wolfspeed, Inc. | Power semiconductor devices having multilayer gate dielectric layers that include an etch stop/field control layer and methods of forming such devices |
US11640990B2 (en) * | 2020-10-27 | 2023-05-02 | Wolfspeed, Inc. | Power semiconductor devices including a trenched gate and methods of forming such devices |
TWI739653B (zh) * | 2020-11-06 | 2021-09-11 | 國立陽明交通大學 | 增加溝槽式閘極功率金氧半場效電晶體之溝槽轉角氧化層厚度的製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11251592A (ja) * | 1998-01-05 | 1999-09-07 | Denso Corp | 炭化珪素半導体装置 |
GB0312512D0 (en) * | 2003-05-31 | 2003-07-09 | Koninkl Philips Electronics Nv | Termination structures for semiconductor devices and the manufacture thereof |
JP4798119B2 (ja) * | 2007-11-06 | 2011-10-19 | 株式会社デンソー | 炭化珪素半導体装置およびその製造方法 |
-
2016
- 2016-09-30 US US15/283,149 patent/US20180097102A1/en not_active Abandoned
- 2016-09-30 JP JP2016193084A patent/JP2018056463A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019239632A1 (ja) * | 2018-06-14 | 2019-12-19 | Eastwind合同会社 | パワー半導体素子及びその製造方法 |
JP6667774B1 (ja) * | 2018-06-14 | 2020-03-18 | Eastwind合同会社 | パワー半導体素子及びその製造方法 |
WO2021131891A1 (ja) * | 2019-12-25 | 2021-07-01 | 株式会社ノベルクリスタルテクノロジー | トレンチ型mosfet |
JP2021103746A (ja) * | 2019-12-25 | 2021-07-15 | 株式会社ノベルクリスタルテクノロジー | トレンチ型mosfet |
JP7486453B2 (ja) | 2021-03-26 | 2024-05-17 | 三菱電機株式会社 | 半導体装置及び半導体装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180097102A1 (en) | 2018-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5569162B2 (ja) | 半導体装置および半導体装置の製造方法 | |
TWI374474B (en) | High voltage lateral fet structure with improved on resistance performance | |
JP2018056463A (ja) | 半導体装置及びその製造方法 | |
US11476360B2 (en) | Semiconductor device and method for manufacturing the same | |
US8299524B2 (en) | Semiconductor device with voltage sustaining region formed along a trench | |
CN105280711B (zh) | 电荷补偿结构及用于其的制造 | |
JP5840308B2 (ja) | 炭化珪素半導体装置およびその製造方法 | |
JP5298565B2 (ja) | 半導体装置およびその製造方法 | |
JP5096739B2 (ja) | 半導体装置の製造方法 | |
JP2014135494A (ja) | 二重並列チャネル構造を持つ半導体素子及びその半導体素子の製造方法 | |
TW201133650A (en) | Oxide terminated trench mosfet with three or four masks | |
JP2012204590A (ja) | 半導体装置およびその製造方法 | |
CN102769037A (zh) | 减少表面电场的结构及横向扩散金氧半导体元件 | |
JP2005116822A (ja) | 絶縁ゲート型半導体装置およびその製造方法 | |
JP2007027266A (ja) | 半導体素子及びその製造方法 | |
US11264468B2 (en) | Semiconductor device | |
US9853099B1 (en) | Double diffused metal oxide semiconductor device and manufacturing method thereof | |
JP4234586B2 (ja) | 深い注入接合を有する出力mosfet | |
JP2019519938A (ja) | 短チャネルトレンチ型パワーmosfet | |
JP2017224719A (ja) | 半導体装置 | |
CN113826213A (zh) | 碳化硅半导体装置及其制造方法 | |
JP5556863B2 (ja) | ワイドバンドギャップ半導体縦型mosfet | |
JP2015201617A (ja) | 半導体装置及びその製造方法 | |
JP5037103B2 (ja) | 炭化珪素半導体装置 | |
JP2009016480A (ja) | 半導体装置、及び半導体装置の製造方法 |