CN1123957A - 半导体器件及其制造方法 - Google Patents

半导体器件及其制造方法 Download PDF

Info

Publication number
CN1123957A
CN1123957A CN95115080A CN95115080A CN1123957A CN 1123957 A CN1123957 A CN 1123957A CN 95115080 A CN95115080 A CN 95115080A CN 95115080 A CN95115080 A CN 95115080A CN 1123957 A CN1123957 A CN 1123957A
Authority
CN
China
Prior art keywords
oxide film
grid
doped oxide
silicon substrate
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95115080A
Other languages
English (en)
Other versions
CN1041471C (zh
Inventor
赵炳珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of CN1123957A publication Critical patent/CN1123957A/zh
Application granted granted Critical
Publication of CN1041471C publication Critical patent/CN1041471C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66484Unipolar field-effect transistors with an insulated gate, i.e. MISFET with multiple gate, at least one gate being an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28114Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor characterised by the sectional shape, e.g. T, inverted-T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明的半导体器件是这样形成的:形成T形栅极;在T形栅极两侧下方的潜挖部位形成与T形栅极容性耦合的辅助栅极;利用掺杂氧化膜在硅衬底中辅助栅极之下形成轻掺杂区;并形成连至轻掺杂区的重掺杂区。
因此,本发明可形成高速集成电路器件所需的短沟道长度,并通过降低LDD结构的轻掺杂区的沟道电阻,大大提高器件的工作速度。

Description

半导体器件及其制造方法
本发明涉及一种半导体器件及其制造方法,更具体地讲是涉及一种具有超高速集成电路器件所要求的短沟道长度和高电流驱动能力的半导体器件。
对于诸如千兆的DRAM之类的超高速集成电路器件而言,要求MOS晶体管具有0.1μm以下的沟道长度。为满足这种要求,栅极宽度应等于沟道长度。但是,通过现有的I线(I-Line)分步器或准分子激光刻图技术不可能形成具有0.1μm的尺寸的图形。此外,LDD(轻掺杂漏极)结构的轻掺杂区(n-区或P-区)要求0.01-0.03μm的极浅结深度。在半导体器件工作时,浅结突然增大了沟道区的串联电阻,由此降低了电流驱动能力。另外,也降低了器件的工作速度。
因此,本发明的目的是要提供一种半导体器件及其制造方法,它可形成高速集成电路器件所需的短沟道长度,减小LDD结构中的轻掺杂区的沟道电阻,从而提高器件的工作速度。
为实现上述目的,根据本发明的半导体器件包括具有栅极及LDD结构的源和漏区的半导体器,其中还形成有辅助栅极,它们对轻掺杂区是电悬浮的,以便在电学上控制轻掺杂区的电阻。
根据本发明的制造半导体器件的方法包括下列各步骤:
在硅衬底上形成栅氧化膜和T形栅极;在包括T形栅极在内的硅衬底的整体结构的顶部依次形成掺杂氧化膜和厚的多晶硅层,然后,通过采用敷层蚀刻方法蚀刻多晶硅层和掺杂氧化膜而在T形栅极两侧下面潜挖的部分处形成辅助栅极;通过高浓度杂质注入方法在T形栅极两侧的硅衬底中形成重掺杂区;以及在包括T形栅极在内的硅衬底的整体结构上淀积中间绝缘层之后进行为表面平整而采取的热处理,并通过在热处理过程中掺杂氧化膜中所含的掺杂剂向硅衬底的扩散形成轻掺杂区。
为更好地理想本发明的本质和目的,下面将结合附图做详细描述,附图中:
图1是根据本发明制造的半导体器件的剖面图;
图2A-2F是半导体器件的剖面图,用于描绘根据本发明的第一实施例的制造半导体器件的各步骤;
图3A-3E是半导体器件的剖面图,用于描绘根据本发明的第二实施例的制造半导体器件的各步骤;
在各图中相同参考符号表示相同部分。
参照图1,在硅衬底1上形成有具有很小宽度的栅氧化膜10。在栅氧化膜10上形成具有垂直部分20A和水平部分20B的T形栅极20。在水平部分20B的底表面、垂直部分20A的表面以及硅衬底的选择部分上形成掺杂的或非掺杂的氧化膜30。在T形栅极20的潜挖部位的氧化膜30上形成有辅助栅极40,以使辅助栅极40电容性耦合至T形栅极20并与轻掺杂区50电悬浮。轻掺杂区50在辅助栅极40之下的硅衬底1中具有浅的深度,重掺杂区60连至轻掺杂区50。因此,LDD结构的源和漏区70由轻掺杂区50和重掺杂区60组成,由此形成一个存储单元。在包括存储单元在内的硅衬底1的整体结构上形成中间绝缘膜3。由金属接触工艺形成的金属布线4连接至T形栅极20和源及漏区70。
图2A-2F是显示根据本发明的第一实施例的制造具有上述结构的半导体器件的步骤的剖面图。
参照图2A,在硅衬底1上形成一个场氧化膜2,以限定一有源区。在整体结构上形成栅氧化膜10。在栅氧化膜10上依次形成掺杂的多晶硅层20A和未掺杂的多晶硅层20B。依次进行使用一栅极掩模的干法蚀刻工艺和湿法蚀刻工艺,从而形成具有潜挖部位的T形栅极20。通过清洗工艺除去栅氧化膜10的暴露部分。
在制造本发明的有NMOS结构的半导体器件的情况下,T形栅极20是连续地淀积掺有n-型杂质的硅和非掺杂的硅形成的,淀积条件是:在600℃下淀积非晶硅,以抑制掺杂物从掺杂硅层扩散至非掺杂硅层,经栅极掩模操作,通过现有曝光系统的I线分步器和准分子激光刻图使非掺杂硅层和掺杂硅层构成图形,此后,在600-750℃范围内通过0.5-5小时热处理激活掺杂硅层中的杂质,同时,在杂质不致扩散至非掺杂层的条件下使掺杂层多晶化,并在组分比为HNO3∶CH3COOH∶HF∶H2O=21∶3∶0.25-1.0∶10-16的聚湿性蚀刻溶液中进行蚀刻处理。在采用曝光系统将多晶栅极刻成0.25-0.3μm的厚度的图形情况下,由于在聚湿性蚀刻溶液中掺杂多晶硅20A与非掺杂多晶硅20B的蚀刻比率为60-80∶1,这是一个很大的比值,因此,可以在保持上层非掺杂多晶层20B具有0.25-0.3μm的宽度的情况下,制备具有0.05-0.1μm的很小宽度的下层掺杂多晶硅层20A。
在制造本发明的有PMOS结构的半导体器件的情况下,制造工艺之差异仅在于以P型杂质替代n型杂质。
在上述工艺中,Sb.P和As等用作n型杂质,而硼(B)用作P型杂质。
图2B示出在包括T形栅极20在内的硅衬底1的整体表面上淀积形成薄的掺杂氧化膜30A。
掺杂氧化膜30A的厚度大致为100-200,对于NMOS结构而言,它是通过淀积PSG形成的,对于PMOS结构而言,它是通过淀积BSG或BPSG形成的。
图2C示出在掺杂氧化膜30上形成厚的多晶硅层40A。
多晶硅层40A的厚度大约为1000-2000,并可在不掺杂条件下形成,但是,对于NMOS结构最好采用n+型多晶硅,对于PMOS结构最好采用P+型多晶硅。
图2D示出通过依次蚀刻多晶硅层40A和掺杂氧化膜30A,在T形栅极20的潜挖部位形成辅助栅极40。
由于辅助栅极40通过掺杂的氧化膜30A而悬浮于T形栅极20和硅衬底1,因此它与T形栅极是电容耦合的。
图2E示出通过高浓度杂质注入工艺,在硅衬底1中形成重掺杂区60。同时,T形栅极20的上层即非掺杂的多晶硅层20B,通过此高浓度杂质注入工艺而转变成掺杂的多晶硅层20BB。
在杂质注入过程中,通过注入高浓度的As离子(对于NMOS结构)或硼(B)离子(对于PMOS结构),重掺杂区60变成n+区或P+区。
图2F示出在包括T形栅极20在内的硅衬底1的整体结构上形成中间绝缘膜3,并在形成中间绝缘膜3时,通过栅极40之下的掺杂氧化膜部位30A所含的掺杂剂向硅衬底1的扩散而形成了与重掺杂区60相连的轻掺杂区50。
中间绝缘膜3通常是在淀积TEOS和BPSG之后,通过为平面化而进行的热处理工艺形成的。在用于形成中间绝缘膜3的热处理过程中,通过含在辅助栅极40之下的掺杂氧化膜部位30中的掺杂剂向硅衬底1的扩散,而形成了轻掺杂区50。也就是说,由于掺杂的氧化膜30A在NMOS情况下由PSG构成,而在PMOS情况下由BSG或BPSG构成,在为平面化而进行的热处理过程中,含在PSG中的P或含在BSG和BPSG中的B会使轻掺杂区50变成n-区或P-区。
此后,通过金属接触工艺形成如图1所示的分别连至T形栅极20以及源和漏区70的金属布线4,这样便制成了本发明的半导体器件。
图3A-3E是描绘根据本发明的第二实施例的制造半导体器件的各步骤的剖面图。
图3A示出在硅衬底1的表面上形成轻掺杂区50,这是通过与图2A所示工艺相同的工艺固相扩散形成的,在包括T形栅极20在内的衬底1的整体结构的顶部淀积厚的掺杂氧化膜100,其厚度在1000-2000的量级,并在820-900℃温度下热处理。
同时,作为T形栅极20的上层的非掺杂多晶硅层20B,由于掺杂剂从作为下层的掺杂多晶硅20A的扩散,而转变成掺杂的多晶硅层20BB。
掺杂的氧化膜100由PSG、BSG或BPSG构成,PSG、BSG或BPSG为制造半导体器件的工艺中所用的绝缘材料。在以NMOS结构制造本发明的半导体器件的情况下,掺杂的氧化膜100通过淀积PSG形成,通过含在PSG中的P的扩散形成的轻掺杂区50变成n-区。在以PMOS结构制造本发明的半导体器件的情况下,掺杂的氧化膜100通过淀积BSG或BPSG形成,通过含有BSG或BPSG中的硼(B)的扩散形成的轻掺杂区50变成P-区。
图3B示出在除去掺杂的氧化层100之后,在包括T形栅极20在内的硅衬底1的整体结构上淀积薄的非掺杂氧化膜30B。
非掺杂氧化膜30B由MTO(中温氧化物)或ONO(氧化物-氮化物-氧化物)形成,其厚度为100-200A。非掺杂氧化膜30B必须在800℃以下形成,以防止含在轻掺杂区50中的掺杂剂(P或B)的额外扩散。
图3C示出在非掺杂氧化膜30B的顶部形成厚的多晶硅层40A。
多晶硅层40A形成1000-2000的厚度,虽然它可在非掺杂状态下形成,但对于NMOS结构采用n-多晶硅,对于PMOS结构采用p-多晶硅。
图3D示出的T形栅极20的潜控部位形成辅助栅极40,这是通过敷层蚀刻工艺依次蚀刻多晶硅层40A和非掺杂氧化膜30B实现的。
由于辅助栅极40与T形栅极20和硅衬底1之间有非掺杂的氧化膜30B,辅助栅极40对T形栅极20和硅衬底1是电悬浮的,因而实现了它们间的电容性耦合。
图3E示出通过高浓度杂质注入工艺形成重掺杂区60。
在杂质注入工艺中,通过注入P、As的离子(在NMOS结构情况下)或B的离子(在PMOS结构情况下),重掺杂区60变成n+区或P+区。
此后,通过金属接触工艺形成图1中所示的分别连至T形栅极20以及源和漏区70的金属布线4,这样便形成了本发明的半导体器件。
虽然第一和第二实施例描述了制造NMOS和PMOS结构的步骤,但采用本发明的上述原理也可制备CMOS器件。
采用上述方法制造半导体器件具有以下效果:
1)即使采用现有的I线分步器或准分子激光刻图技术,也可形成具有小于0.1μm的沟道长度的千兆级的DRAM晶体管。
2)栅极的上部宽度大,由此可降低接触电阻,而栅极的下部宽度小,由此可增强短沟道效应,从而可提高器件的工作速度。
3)通过形成耦合的多晶硅辅助栅极,可增加轻掺杂区的载流子浓度,在此处沟道串联电阻大为降低,从而增强了电流驱动能力。
4)在漏区边缘因轻掺杂区载流子的积累所产生峰值横向电场的区域,由于采用了耦合的多晶硅辅助栅极而移至真正的沟道中,因此由热载流子引起的间隔诱发变劣(spacer-induced-degradation)现象得以消除,从而可提高器件可靠性。
5)由于采用耦合的多晶硅辅助栅极降低了轻掺杂区的电阻,器件的工作不受进一步降低物理掺杂和结深度的影响,因此可大大改善极点0.1μm级器件的短沟道效应。
虽然已在其优选实施例中对本发明做了一定详细程度的说明,但本领域的技术人员可以理解,这里公开的优选实施例只是一个例子,在不脱离本发明的精神和范围的情况下,本发明的各组成部分的构造,组合及排列关系是可以改变的。

Claims (15)

1.一种半导体器件,具有栅极以及LDD结构的源和漏区,其中形成有辅助栅极,这些辅助栅极电性悬浮于轻掺杂区,在电学上控制所述轻掺杂区的电阻。
2.根据权利要求1的半导体器件,其中所述辅助栅极形成在T形栅极两侧下方的潜挖部位。
3.根据权利要求1的半导体器件,其中以PSG、BSG、BPSG、MTO和ONO中的一种形成一层薄的氧化膜。
5.根据权利要求3的半导体器件,其中所述的掺杂氧化膜形成100-200的厚度。
6.一种制造半导体器件的方法,包括以下步骤:
在硅衬底上形成栅氧化膜和T形栅极;
在包括所述的T形栅极在内的所述硅衬底的整体结构上依次形成薄的掺杂氧化膜和厚的多晶硅层,此后,通过按敷层蚀刻方法蚀刻所述多晶硅层和掺杂氧化膜,在所述T形栅极两侧下方的潜挖部位形成辅助栅极;
通过高浓度杂质注入方法,在所述硅衬底上所述T形栅极两侧形成重掺杂区;和
在包括所述T形栅极在内的所述硅衬底的整体结构上淀积中间绝缘膜之后,为表面平整化进行热处理,且在所述热处理过程中,通过含在所述掺杂氧化膜中的掺杂剂向所述硅衬底的扩散形成轻掺杂区。
7.根据权利要求6的方法,其中所述T形栅极是这样形成的:依次淀积掺杂硅和处于非晶态的非掺杂硅,进行栅极掩蔽操作和热处理,以及用聚湿性蚀刻溶液进行蚀刻。
8.根据权利要求7的方法,其中所述热处理是在600-750℃温度范围内进行0.5-5小时。
9.根据权利要求7的方法,其中所述聚湿性蚀刻溶液是按下列组分比组成的:NHO3∶CH3COOH∶HF∶H2O=21∶3∶0.25-1.0∶15-16。
10.根据权利要求6的方法,其中在NMOS情况下所述掺杂氧化膜由PSG形成,在PMOS情况下所述掺杂氧化膜由BSG或BPSG形成。
11.根据权利要求6的方法,其中所述掺杂氧化膜形成至100-200的厚度。
12.根据权利要求6的方法,在NMOS情况下用n+多晶硅形成所述辅助栅极的多晶硅层,PMOS情况下用P+多晶硅形成所述辅助栅极的多晶硅层。
13.一种制造半导体器件的方法,包括下列步骤:
在硅衬底上形成栅氧化膜和T形栅极;
在包括所述T形栅极在内的所述硅衬底的整体结构的顶部淀积厚的掺杂氧化膜;
通过高温热处理过程中含于所述掺杂氧化膜中的杂质向所述硅衬底的扩散,形成轻掺杂区;
除去所述掺杂氧化膜,此后,在包括所述T形栅极在内的所述硅衬底的整体结构上依次形成薄的非掺杂氧化膜和厚的多晶硅层,并通过按敷层蚀刻方法蚀刻所述多晶硅层和非掺杂氧化膜,在所述T形栅极两侧下方的潜挖部位形成辅助栅极;和
通过高浓度杂质注入方法,在所述硅衬底中所述T形栅极的两侧形成重掺杂区。
14.根据权利要求13的方法,在NMOS情况下所述掺杂氧化膜由PSG形成,在PMOS情况下所述掺杂氧化膜由BSG或BPSG形成。
15.根据权利要求13的方法,其中所述非掺杂氧化膜由MTO或ONO形成。
16.根据权利要求13的方法,其中所述非掺杂氧化膜形成至100-200的厚度。
CN95115080A 1994-07-25 1995-07-25 半导体器件及其制造方法 Expired - Fee Related CN1041471C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR17957/94 1994-07-25
KR1019940017957A KR960006004A (ko) 1994-07-25 1994-07-25 반도체 소자 및 그 제조방법

Publications (2)

Publication Number Publication Date
CN1123957A true CN1123957A (zh) 1996-06-05
CN1041471C CN1041471C (zh) 1998-12-30

Family

ID=19388729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95115080A Expired - Fee Related CN1041471C (zh) 1994-07-25 1995-07-25 半导体器件及其制造方法

Country Status (6)

Country Link
US (1) US5559049A (zh)
JP (1) JP2774952B2 (zh)
KR (1) KR960006004A (zh)
CN (1) CN1041471C (zh)
DE (1) DE19527131B4 (zh)
GB (1) GB2291741B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100367463C (zh) * 2002-07-08 2008-02-06 因芬尼昂技术股份公司 短沟道场效晶体管制造方法
CN101414563B (zh) * 2004-09-28 2011-04-13 瑞萨电子株式会社 形成半导体器件的方法
CN110379851A (zh) * 2019-06-17 2019-10-25 宁波大学 一种基于tfet的三输入多数逻辑器件
CN110534563A (zh) * 2019-07-16 2019-12-03 北京大学 一种具有自对准反馈栅的晶体管及其制备方法

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274555B1 (ko) * 1991-06-26 2000-12-15 윌리엄 비. 켐플러 절연 게이트 전계 효과 트랜지스터 구조물 및 이의 제조 방법
DE19548058C2 (de) 1995-12-21 1997-11-20 Siemens Ag Verfahren zur Herstellung eines MOS-Transistors
US5953626A (en) * 1996-06-05 1999-09-14 Advanced Micro Devices, Inc. Dissolvable dielectric method
US6376330B1 (en) 1996-06-05 2002-04-23 Advanced Micro Devices, Inc. Dielectric having an air gap formed between closely spaced interconnect lines
US5814555A (en) 1996-06-05 1998-09-29 Advanced Micro Devices, Inc. Interlevel dielectric with air gaps to lessen capacitive coupling
US5710054A (en) * 1996-08-26 1998-01-20 Advanced Micro Devices, Inc. Method of forming a shallow junction by diffusion from a silicon-based spacer
US5994209A (en) * 1996-11-13 1999-11-30 Applied Materials, Inc. Methods and apparatus for forming ultra-shallow doped regions using doped silicon oxide films
US5756384A (en) * 1997-05-20 1998-05-26 Vanguard International Semiconductor Corporation Method of fabricating an EPROM cell with a high coupling ratio
US5869379A (en) * 1997-12-08 1999-02-09 Advanced Micro Devices, Inc. Method of forming air gap spacer for high performance MOSFETS'
US6160316A (en) * 1998-03-04 2000-12-12 Advanced Micro Devices, Inc. Integrated circuit utilizing an air gap to reduce capacitance between adjacent metal linewidths
KR100540477B1 (ko) * 1998-06-30 2006-03-17 주식회사 하이닉스반도체 반도체 소자의 게이트 전극 형성방법
US6107667A (en) * 1998-09-10 2000-08-22 Advanced Micro Devices, Inc. MOS transistor with low-k spacer to suppress capacitive coupling between gate and source/drain extensions
IT1302282B1 (it) * 1998-09-29 2000-09-05 St Microelectronics Srl Cella di memoria eeprom comprendente transistore di selezione contensione di soglia regolata mediante impianto, e relativo processo di
US6037228A (en) * 1999-02-12 2000-03-14 United Microelectronics Corp. Method of fabricating self-aligned contact window which includes forming a undoped polysilicon spacer that extends into a recess of the gate structure
US6274446B1 (en) 1999-09-28 2001-08-14 International Business Machines Corporation Method for fabricating abrupt source/drain extensions with controllable gate electrode overlap
TW543102B (en) * 2000-01-04 2003-07-21 Taiwan Semiconductor Mfg Manufacturing method of metal-oxide-semiconductor device
US6596598B1 (en) * 2000-02-23 2003-07-22 Advanced Micro Devices, Inc. T-shaped gate device and method for making
US6326290B1 (en) * 2000-03-21 2001-12-04 Taiwan Semiconductor Manufacturing Company Low resistance self aligned extended gate structure utilizing A T or Y shaped gate structure for high performance deep submicron FET
US6309933B1 (en) 2000-06-05 2001-10-30 Chartered Semiconductor Manufacturing Ltd. Method of fabricating T-shaped recessed polysilicon gate transistors
US6399469B1 (en) * 2000-07-10 2002-06-04 Advanced Micro Devices, Inc. Fabrication of a notched gate structure for a field effect transistor using a single patterning and etch process
US7008832B1 (en) 2000-07-20 2006-03-07 Advanced Micro Devices, Inc. Damascene process for a T-shaped gate electrode
US6255202B1 (en) * 2000-07-20 2001-07-03 Advanced Micro Devices, Inc. Damascene T-gate using a spacer flow
US6319802B1 (en) * 2000-07-20 2001-11-20 Advanced Micro Devices, Inc. T-gate formation using modified damascene processing with two masks
US6580136B2 (en) * 2001-01-30 2003-06-17 International Business Machines Corporation Method for delineation of eDRAM support device notched gate
US6734510B2 (en) * 2001-03-15 2004-05-11 Micron Technology, Ing. Technique to mitigate short channel effects with vertical gate transistor with different gate materials
US6482688B2 (en) * 2001-03-30 2002-11-19 Texas Instruments Incorporated Utilizing amorphorization of polycrystalline structures to achieve T-shaped MOSFET gate
DE10247529A1 (de) 2001-10-15 2003-06-05 I2 Technologies Inc Anpassbare Zustandsmaschine und Zustandsaggregationstechnik zur Verarbeitung von Zusammenarbeits- und Transaktionsgeschäftsobjekten
KR100454132B1 (ko) * 2002-09-09 2004-10-26 삼성전자주식회사 비휘발성 기억소자 및 그 형성방법
US6780694B2 (en) * 2003-01-08 2004-08-24 International Business Machines Corporation MOS transistor
US6841826B2 (en) * 2003-01-15 2005-01-11 International Business Machines Corporation Low-GIDL MOSFET structure and method for fabrication
US6806517B2 (en) * 2003-03-17 2004-10-19 Samsung Electronics Co., Ltd. Flash memory having local SONOS structure using notched gate and manufacturing method thereof
US6710416B1 (en) * 2003-05-16 2004-03-23 Agere Systems Inc. Split-gate metal-oxide-semiconductor device
US6846740B2 (en) * 2003-06-14 2005-01-25 Intel Corporation Wafer-level quasi-planarization and passivation for multi-height structures
US7176041B2 (en) 2003-07-01 2007-02-13 Samsung Electronics Co., Ltd. PAA-based etchant, methods of using same, and resultant structures
KR100686338B1 (ko) * 2003-11-25 2007-02-22 삼성에스디아이 주식회사 박막 트랜지스터, 이의 제조 방법 및 이를 사용하는 평판표시 장치
KR100557531B1 (ko) * 2004-03-11 2006-03-03 주식회사 하이닉스반도체 반도체 소자 및 그 제조 방법
KR100629646B1 (ko) 2004-08-12 2006-09-29 삼성전자주식회사 게이트 구조물 및 그 제조방법
WO2006054148A1 (en) * 2004-11-16 2006-05-26 Acco An integrated ultra-wideband (uwb) pulse generator
US20060223293A1 (en) * 2005-04-01 2006-10-05 Raytheon Company Semiconductor devices having improved field plates
KR100590821B1 (ko) * 2005-05-13 2006-06-19 금호석유화학 주식회사 환경 친화형 창호재용 스티렌계 합성수지 조성물
KR100699843B1 (ko) 2005-06-09 2007-03-27 삼성전자주식회사 트렌치 분리영역을 갖는 모스 전계효과 트랜지스터 및 그제조방법
WO2007042850A1 (en) * 2005-10-12 2007-04-19 Acco Insulated gate field-effet transistor having a dummy gate
US7534706B2 (en) * 2006-02-06 2009-05-19 Freescale Semiconductor, Inc. Recessed poly extension T-gate
KR100788362B1 (ko) 2006-12-19 2008-01-02 동부일렉트로닉스 주식회사 모스펫 소자 및 그 형성 방법
US7981745B2 (en) * 2007-08-30 2011-07-19 Spansion Llc Sacrificial nitride and gate replacement
US7863645B2 (en) * 2008-02-13 2011-01-04 ACCO Semiconductor Inc. High breakdown voltage double-gate semiconductor device
US7969243B2 (en) * 2009-04-22 2011-06-28 Acco Semiconductor, Inc. Electronic circuits including a MOSFET and a dual-gate JFET
US9240402B2 (en) 2008-02-13 2016-01-19 Acco Semiconductor, Inc. Electronic circuits including a MOSFET and a dual-gate JFET
US8928410B2 (en) 2008-02-13 2015-01-06 Acco Semiconductor, Inc. Electronic circuits including a MOSFET and a dual-gate JFET
US8264048B2 (en) * 2008-02-15 2012-09-11 Intel Corporation Multi-gate device having a T-shaped gate structure
KR101458957B1 (ko) * 2008-06-17 2014-11-10 삼성전자주식회사 선택 트랜지스터 및 그의 제조 방법
US7808415B1 (en) * 2009-03-25 2010-10-05 Acco Semiconductor, Inc. Sigma-delta modulator including truncation and applications thereof
US7952431B2 (en) * 2009-08-28 2011-05-31 Acco Semiconductor, Inc. Linearization circuits and methods for power amplification
US8532584B2 (en) 2010-04-30 2013-09-10 Acco Semiconductor, Inc. RF switches
US9812449B2 (en) 2015-11-20 2017-11-07 Samsung Electronics Co., Ltd. Multi-VT gate stack for III-V nanosheet devices with reduced parasitic capacitance
JPWO2017163356A1 (ja) * 2016-03-24 2019-01-31 国立大学法人九州大学 レーザドーピング装置及び半導体装置の製造方法
CN112666728B (zh) * 2019-10-15 2023-06-20 苏州旭创科技有限公司 一种电光调制器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8527062D0 (en) * 1985-11-02 1985-12-04 Plessey Co Plc Mos transistor manufacture
JPS6344770A (ja) * 1986-08-12 1988-02-25 Mitsubishi Electric Corp 電界効果型トランジスタの製造方法
KR970003903B1 (en) * 1987-04-24 1997-03-22 Hitachi Mfg Kk Semiconductor device and fabricating method thereof
JPS6481268A (en) * 1987-09-22 1989-03-27 Yokogawa Electric Corp Manufacture of semiconductor device
JP2667857B2 (ja) * 1988-02-12 1997-10-27 株式会社日立製作所 半導体装置およびその製造方法
JPH07120721B2 (ja) * 1988-02-19 1995-12-20 三菱電機株式会社 不揮発性半導体記憶装置
US5272100A (en) * 1988-09-08 1993-12-21 Mitsubishi Denki Kabushiki Kaisha Field effect transistor with T-shaped gate electrode and manufacturing method therefor
US5024959A (en) * 1989-09-25 1991-06-18 Motorola, Inc. CMOS process using doped glass layer
US5172200A (en) * 1990-01-12 1992-12-15 Mitsubishi Denki Kabushiki Kaisha MOS memory device having a LDD structure and a visor-like insulating layer
JP3131436B2 (ja) * 1990-02-26 2001-01-31 株式会社東芝 半導体装置の製造方法
JP2548994B2 (ja) * 1990-03-19 1996-10-30 富士通株式会社 電界効果型トランジスタ及びその製造方法
US5210435A (en) * 1990-10-12 1993-05-11 Motorola, Inc. ITLDD transistor having a variable work function
JPH04313238A (ja) * 1991-04-10 1992-11-05 Oki Electric Ind Co Ltd 半導体素子
WO1993009567A1 (en) * 1991-10-31 1993-05-13 Vlsi Technology, Inc. Auxiliary gate lightly doped drain (agldd) structure with dielectric sidewalls

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100367463C (zh) * 2002-07-08 2008-02-06 因芬尼昂技术股份公司 短沟道场效晶体管制造方法
CN101414563B (zh) * 2004-09-28 2011-04-13 瑞萨电子株式会社 形成半导体器件的方法
CN1755945B (zh) * 2004-09-28 2012-05-30 瑞萨电子株式会社 半导体器件
CN110379851A (zh) * 2019-06-17 2019-10-25 宁波大学 一种基于tfet的三输入多数逻辑器件
CN110379851B (zh) * 2019-06-17 2023-01-10 宁波大学 一种基于tfet的三输入多数逻辑器件
CN110534563A (zh) * 2019-07-16 2019-12-03 北京大学 一种具有自对准反馈栅的晶体管及其制备方法
CN110534563B (zh) * 2019-07-16 2020-09-18 北京大学 一种具有自对准反馈栅的晶体管及其制备方法

Also Published As

Publication number Publication date
DE19527131B4 (de) 2007-04-12
US5559049A (en) 1996-09-24
KR960006004A (ko) 1996-02-23
GB2291741B (en) 1998-07-22
DE19527131A1 (de) 1996-02-01
CN1041471C (zh) 1998-12-30
JPH0846201A (ja) 1996-02-16
GB9515147D0 (en) 1995-09-20
GB2291741A (en) 1996-01-31
JP2774952B2 (ja) 1998-07-09

Similar Documents

Publication Publication Date Title
CN1041471C (zh) 半导体器件及其制造方法
US4745079A (en) Method for fabricating MOS transistors having gates with different work functions
US5328862A (en) Method of making metal oxide semiconductor field effect transistor
CN1295779C (zh) 集成电路晶体管与其形成方法
CN1088914C (zh) 制造金属氧化物半导体场效应晶体管的方法
CN1144401A (zh) 半导体器件及其制造方法
CN2743980Y (zh) 具有高介电常数栅极介电层的半导体组件
CN1093687C (zh) 晶体管及其制造方法
CN85108671A (zh) 半导体集成电路器件及其制造工艺
US5395780A (en) Process for fabricating MOS transistor
EP0741405A2 (en) Method of fabricating doped polysilicon gate electrodes
CN1684272A (zh) 半导体器件及其制造方法
CN1076520C (zh) 半导体器件及其制造方法
CN1101457A (zh) 制造金属氧化物半导体场效应晶体管的方法
KR0161885B1 (ko) 반도체 소자와 그의 제조방법
CN1118101C (zh) 具有绝缘栅极的半导体器件及其制造方法
CN1466177A (zh) 金氧半导体晶体管的制造方法
KR19980046001A (ko) 반도체 소자 및 그의 제조방법
CN1207759C (zh) 一种防止mos晶体管发生栅极贫化现象的方法
KR960006689B1 (ko) 반도체소자의 ldd 제조방법
KR100239723B1 (ko) 반도체소자 제조방법
CN1424767A (zh) 半导体装置及其制造方法
KR910009042B1 (ko) 반도체장치의 제조방법
KR970006977B1 (ko) 반도체소자 제조방법
KR940003591B1 (ko) 셀로우 접합 메모리셀 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee