CN112310195A - 一种台阶式SiC沟槽场限环终端结构、制备方法及其器件 - Google Patents
一种台阶式SiC沟槽场限环终端结构、制备方法及其器件 Download PDFInfo
- Publication number
- CN112310195A CN112310195A CN202011034646.3A CN202011034646A CN112310195A CN 112310195 A CN112310195 A CN 112310195A CN 202011034646 A CN202011034646 A CN 202011034646A CN 112310195 A CN112310195 A CN 112310195A
- Authority
- CN
- China
- Prior art keywords
- sic
- stepped
- layer
- epitaxial layer
- trenches
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 238000002161 passivation Methods 0.000 claims abstract description 4
- 239000010410 layer Substances 0.000 claims description 71
- 238000005530 etching Methods 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 27
- 238000005468 ion implantation Methods 0.000 claims description 20
- 229910052681 coesite Inorganic materials 0.000 claims description 16
- 229910052906 cristobalite Inorganic materials 0.000 claims description 16
- 239000000377 silicon dioxide Substances 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052682 stishovite Inorganic materials 0.000 claims description 16
- 229910052905 tridymite Inorganic materials 0.000 claims description 16
- 239000011241 protective layer Substances 0.000 claims description 15
- 238000000151 deposition Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 8
- 238000001259 photo etching Methods 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000003292 glue Substances 0.000 claims description 4
- 239000007943 implant Substances 0.000 claims description 2
- 238000009826 distribution Methods 0.000 claims 1
- 230000005684 electric field Effects 0.000 abstract description 11
- 238000002347 injection Methods 0.000 abstract description 2
- 239000007924 injection Substances 0.000 abstract description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 74
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 72
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 12
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004943 liquid phase epitaxy Methods 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/0619—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/0455—Making n or p doped regions or layers, e.g. using diffusion
- H01L21/046—Making n or p doped regions or layers, e.g. using diffusion using ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/0475—Changing the shape of the semiconductor body, e.g. forming recesses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/0619—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
- H01L29/0623—Buried supplementary region, e.g. buried guard ring
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
本发明公开了一种台阶式SiC沟槽场限环终端结构、制备方法及其器件,所述终端结构包括:SiC衬底层、位于所述SiC衬底层上的SiC外延层、位于所述SiC外延层表面的若干沟槽、位于所述若干沟槽内的离子注入区以及位于所述SiC外延层上的钝化层,其中,所述若干沟槽的沟槽深度从主结边缘向外呈台阶分布。本发明提供的终端结构通过将终端表面的若干个沟槽深度改成台阶状,在靠近主结一侧采用较深的沟槽,在终端外围采用结深较浅的结构,可有效降低器件终端面积;还可有效降低源区边缘终端处的峰值电场,防止器件发生提前击穿。
Description
技术领域
本发明属于微电子技术领域,具体涉及一种台阶式SiC沟槽场限环终端结构、制备方法及其器件。
背景技术
近年来,随着微电子技术的不断发展,Si基电力电子器件在一些如高温、高压、高湿度等极端环境中的应用越来越受到限制。而碳化硅(SiC)材料作为第三代半导体材料的代表,其禁带宽度约是硅材料的3倍,击穿电场是硅材料的8倍,热导率是硅的3倍,因而采用SiC材料制备的器件也具有较高的耐压容量和电流密度。基于这些优良特性,SiC器件不仅在直流、交流输电、不间断电源、开关电源、工业控制等传统工业领域具有广泛应用,而且在太阳能、风能等新能源中也具有广阔的应用前景。
现代功率器件主要是通过在源区内部并联上万个相同的单元形成的,各单元间表面电压大致相同,但最外端(终端)单元与衬底间的电压却相差很大,需要采取一些措施用以减小表面电场,提高击穿电压,这种技术便称为终端技术。现代硅功率器件一般都采用浅平面结结构,在平面型高压器件设计中,常采用场限环来降低结曲率效应引起表面电场的集中,提高击穿电压。
然而,对于SiC器件来说,由于SiC材料扩散系数极低,无法通过扩散的形式形成深结,限制了场限环终端结深的增加,且平面场限环终端往往会在注入结拐角处出现峰值电场,造成器件击穿特性退化。为了进一步提升结深,降低注入结拐角处的峰值电场,可采用沟槽场限环终端结构提升结深。但采用沟槽场限环终端结构同样有缺点,峰值电场的降低会增强场限环终端横向空间电荷区的扩展能力,导致终端面积增加。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种台阶式SiC沟槽场限环终端结构、制备方法及其器件。本发明要解决的技术问题通过以下技术方案实现:
一种台阶式SiC沟槽场限环终端结构,包括:SiC衬底层、位于所述SiC衬底层上的SiC外延层、位于所述SiC外延层表面的若干沟槽、位于所述若干沟槽内的离子注入区以及位于所述SiC外延层上的钝化层,其中,所述若干沟槽的沟槽深度从主结边缘向外呈台阶分布。
在本发明的一个实施例中,所述若干沟槽的沟槽深度从主结边缘向外依次减小。
在本发明的一个实施例中,所述若干沟槽中相邻两个或多个沟槽深度相同,且沟槽深度从主结边缘向外依次减小。
在本发明的一个实施例中,所述若干沟槽中靠近所述主结边缘的第一沟槽的宽度大于其余沟槽的宽度,且所述其余沟槽的宽度相同。
在本发明的一个实施例中,每个所述沟槽之间的间隔为1μm-10μm。
在本发明的一个实施例中,每个所述沟槽内的离子注入区注入浓度相同。
本发明的另一个实施例提供了一种台阶式SiC沟槽场限环终端结构制备方法,包括:
获取SiC衬底;
在所述SiC衬底上生长SiC外延层;
采用多次刻蚀工艺依次在所述SiC外延层上形成若干不同深度的沟槽;
对所述沟槽对应的离子注入区进行离子注入;
在整个SiC外延层表面淀积SiO2钝化层,以完成终端结构的制作。
在本发明的一个实施例中,采用多次刻蚀工艺依次在所述SiC外延层上形成若干不同深度的沟槽,包括:
在所述SiC外延层表面淀积SiO2保护层;
在所述SiO2保护层上涂胶并进行光刻,形成刻蚀掩膜窗口;
刻蚀所述SiO2保护层以形成刻蚀掩膜层;
刻蚀所述SiC外延层以形成第一深度的沟槽;
清洗整个样品表面,并重复上述步骤,依次形成其余多个沟槽。
本发明的又一个实施例提供了一种半导体器件,包括如上述实施例所述的台阶式SiC沟槽场限环终端结构。
本发明的有益效果:
1、本发明提供的终端结构通过将终端表面的若干个沟槽深度改成台阶状,在靠近主结一侧采用较深的沟槽,在终端外围采用结深较浅的结构,可有效降低器件终端面积;
2、本发明提供的终端结构可有效降低源区边缘终端处的峰值电场,防止器件发生提前击穿。
以下将结合附图及实施例对本发明做进一步详细说明。
附图说明
图1是本发明实施例提供的一种台阶式SiC沟槽场限环终端结构示意图;
图2是本发明实施例提供的另一种台阶式SiC沟槽场限环终端结构示意图;
图3是本发明实施例提供的一种台阶式SiC沟槽场限环终端结构制备方法流程图;
图4a-4i是本发明实施例提供的台阶式SiC沟槽场限环终端结构制备过程示意图;
图5是本发明实施例提供的一种具有台阶式SiC沟槽场限环终端结构的半导体器件结构示意图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例一
请参见图1,图1是本发明实施例提供的一种台阶式SiC沟槽场限环终端结构示意图,包括:SiC衬底层1、位于所述SiC衬底层1上的SiC外延层2、位于所述SiC外延层2表面的若干沟槽3、位于所述若干沟槽3内的离子注入区4以及位于所述SiC外延层2上的钝化层5,其中,所述若干沟槽3的沟槽深度从主结边缘向外呈台阶分布。
进一步地,所述若干沟槽3的沟槽深度从主结边缘向外依次减小。
更进一步地,所述若干沟槽3中靠近所述主结边缘的第一沟槽301的宽度大于其余沟槽的宽度,且所述其余沟槽的宽度相同。其中,每个沟槽之间的间隔为1μm-10μm,每个沟槽内的离子注入区注入浓度相同。
一般而言,沟槽FLRs终端结深增加会扩展空间电荷区,若采用传统的同一沟槽深度的结构会浪费器件面积,因而,本实施例将沟槽深度设计为从主结边缘向外依次减小的台阶式,在终端外围采用结深较浅的结构,可有效降低器件终端面积。
此外,对于SiC功率器件而言,峰值电场往往出现在源区边缘,采用该结构还可有效降低源区边缘终端处的峰值电场,防止器件发生提前击穿。
需要说明的是,距离终端外围最近的一个沟槽,其深度可以为零,但仍对应设置有离子注入区。也就是说,最后一个注入结的结深可以为零。
在本发明的另一个实施例中,所述若干沟槽3中相邻两个或多个沟槽深度相同,且沟槽深度从主结边缘向外依次减小。
例如,请参见图2,图2是本发明实施例提供的另一种台阶式SiC沟槽场限环终端结构示意图,其中,相邻两个沟槽的深度相同,也即如图2所示的第一沟槽和第二沟槽的深度相同,第三沟槽和第四沟槽的深度相同。
在实际当中,还可以根据场限环注入个数设定多个相邻的沟槽具有同一深度,也即多个注入结为一组共同拥有一个注入深度。
本实施例提供的终端结构通过将终端表面的若干个沟槽深度改成台阶状,在靠近主结一侧采用较深的沟槽,在终端外围采用结深较浅的结构,可有效降低器件终端面积;还可有效降低源区边缘终端处的峰值电场,防止器件发生提前击穿。
实施例二
在上述实施一的基础上,本实施例提供了一种台阶式SiC沟槽场限环终端结构的制备方法,请参见图3,图3是本发明实施例提供的一种台阶式SiC沟槽场限环终端结构制备方法流程图,包括:
S1:获取SiC衬底。
可选的,SiC衬底可以是4H-SiC、6H-SiC或者3C-SiC。
S2:在SiC衬底上生长SiC外延层。
首先,对选取的SiC衬底进行清洗,然后采用分子束外延生长(MBE)、化学气相沉积(CVD)或者液相外延生长(LPE)等工艺技术在SiC衬底上生长SiC外延层。
S3:采用多次刻蚀工艺依次在SiC外延层上形成若干不同深度的沟槽。具体包括:
S31:在SiC外延层表面淀积SiO2保护层。
首先,在淀积SiO2保护层之前,需要对步骤S2所得的样品进行清洗。具体地,采用硫酸与双氧水组成的混合溶液对样品进行第一次清洗,然后采用氨水、双氧水以及水组成的混合溶液进行第二次清洗,在采用盐酸、双氧水和水构成的混合溶液进行第三次清洗,最后依次使用丙酮、乙醇、去离子水清洗样品,并甩干。
然后,采用CVD工艺在清洗完毕的SiC外延层表面生长SiO2,以形成保护层。
S32:在SiO2保护层上涂胶并进行光刻,形成刻蚀掩膜窗口。
具体地,在SiO2保护层上旋涂光刻胶,并进行第一次光刻,以形成刻蚀掩膜窗口。
S33:刻蚀SiO2保护层以形成刻蚀掩膜层。
在本实施例中,采用RIE工艺刻蚀SiO2保护层,以形成刻蚀掩膜层。
S34:刻蚀SiC外延层以形成第一深度的沟槽。
进一步地,可继续采用RIE工艺对SiC外延层进行刻蚀,也可采用ICP刻蚀机刻蚀SiO2保护层下面的SiC外延层,以形成第一深度的沟槽。其中,刻蚀气体为SF6和O2。
S35:清洗整个样品表面,并重复上述步骤S31~S34,依次形成其余多个沟槽。
具体地,首先,去掉表面光刻胶跟SiO2保护层,并对样品进行清洗。然后,重复上述步骤,依次形成第二深度沟槽、第三深度沟槽等,直至所有沟槽刻蚀完成,以形成台阶式SiC沟槽场限环。
需要说明的是,在进行沟槽刻蚀时,可以逐一进行刻蚀,也可以经过一次光刻,同时形成同一深度的多个沟槽以节省工艺步骤。
S4:对沟槽对应的离子注入区进行离子注入。具体包括:
S41:在SiC外延层表面淀积SiO2保护层。
首先,在淀积SiO2保护层之前,需要对步骤S3所得的样品进行清洗。具体地,采用硫酸与双氧水组成的混合溶液对样品进行第一次清洗,然后采用氨水、双氧水以及水组成的混合溶液进行第二次清洗,再采用盐酸、双氧水和水构成的混合溶液进行第三次清洗,最后依次使用丙酮、乙醇、去离子水清洗样品并甩干。
然后,采用CVD工艺在清洗完毕的SiC外延层表面生长SiO2,以形成保护层。
S42:在SiO2保护层上涂胶并进行光刻,形成刻蚀掩膜窗口。
具体地,在SiO2保护层上旋涂光刻胶,并进行第一次光刻,以形成刻蚀掩膜窗口。
S43:刻蚀SiO2保护层以形成离子注入窗口。
具体地,采用RIE工艺刻蚀SiO2保护层,以形成离子注入窗口。
S44:进行离子注入形成离子注入区。
进一步地,可采用常温或高温进行离子注入,注入离子可选择Al或者B元素。
S45:在SiC外延层表面溅射C膜,并进行高温退火,以完成离子注入。
首先,在SiC外延层表面溅射C膜。然后,进行高温退火,以完成离子注入。其中,退火温度可选择1500℃~1900℃,退火时间可选择5min~1h。
S5:在整个SiC外延层表面淀积SiO2钝化层,以完成终端结构的制作。
对整个样品进行清洗,在清洗干净的SiC外延层表面淀积SiO2钝化层,以完成终端结构的制作。
实施例三
为了更清楚的说明本发明的制备方法,下面结合附图,对本发明的制备过程作一详细介绍。请参见图4a-4i,图4a-4i是本发明实施例提供的台阶式SiC沟槽场限环终端结构制备过程示意图,具体包括:
步骤1:选取SiC衬底1,如图4a所示。
步骤2:采用CVD工艺在SiC衬底1生长SiC外延层2,如图4b所示。
步骤3:采用PECVD工艺在清洗完毕的SiC外延层2表面生长SiO2,以形成SiO2保护层101,如图4c所示。
步骤4:在SiO2保护层101上旋涂光刻胶102,并进行第一次光刻,以形成刻蚀掩膜窗口,如图4d所示。
步骤5:采用RIE工艺刻蚀SiO2保护层101,以形成刻蚀掩膜层,如图4e所示。
步骤6:采用ICP工艺刻蚀SiO2保护层101下面的SiC外延层2,以形成第一深度的沟槽301,如图4f所示。
步骤7:去掉表面光刻胶和SiO2层,并重复步骤3-6,连续对所SiC外延层2进行刻蚀,依次形成其余多个沟槽,如图4g所示。
步骤8:对沟槽内对应离子注入区进行离子注入,以形成台阶式SiC沟槽场限环终端,如图4h所示。
步骤9:在整个SiC外延层表面淀积SiO2钝化层,以完成终端结构的制作,如图4i所示。
至此,完成台阶式SiC沟槽场限环终端结构的制备。
实施例四
本实施例提供了一种半导体器件,该半导体结构包括上述实施例一所述的台阶式SiC沟槽场限环终端结构,具体地,请参见图5,图5是本发明实施例提供的一种具有台阶式SiC沟槽场限环终端结构的半导体器件结构示意图,其还包括主结6,以及背电极7。
本实施例提供具有台阶式SiC沟槽场限环终端结构的半导体器件可在实施例一的终端结构上进一步制作完成。
具体地,对实施例一提供的终端结构表面进行涂胶并光刻SiO2钝化层,以暴露出源区,然后经背电极工艺、正面电极工艺等实现半导体器件的制作。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
Claims (9)
1.一种台阶式SiC沟槽场限环终端结构,其特征在于,包括:SiC衬底层(1)、位于所述SiC衬底层(1)上的SiC外延层(2)、位于所述SiC外延层(2)表面的若干沟槽(3)、位于所述若干沟槽(3)内的离子注入区(4)以及位于所述SiC外延层(2)上的钝化层(5),其中,所述若干沟槽(3)的沟槽深度从主结边缘向外呈台阶分布。
2.根据权利要求1所述的台阶式SiC沟槽场限环终端结构,其特征在于,所述若干沟槽(3)的沟槽深度从主结边缘向外依次减小。
3.根据权利要求1所述的台阶式SiC沟槽场限环终端结构,其特征在于,所述若干沟槽(3)中相邻两个或多个沟槽深度相同,且沟槽深度从主结边缘向外依次减小。
4.根据权利要求1所述的台阶式SiC沟槽场限环终端结构,其特征在于,所述若干沟槽(3)中靠近所述主结边缘的第一沟槽(301)的宽度大于其余沟槽的宽度,且所述其余沟槽的宽度相同。
5.根据权利要求1所述的台阶式SiC沟槽场限环终端结构,其特征在于,每个所述沟槽之间的间隔为1μm-10μm。
6.根据权利要求1所述的台阶式SiC沟槽场限环终端结构,其特征在于,每个所述沟槽内的离子注入区注入浓度相同。
7.一种台阶式SiC沟槽场限环终端结构的制备方法,其特征在于,包括:
获取SiC衬底;
在所述SiC衬底上生长SiC外延层;
采用多次刻蚀工艺依次在所述SiC外延层上形成若干不同深度的沟槽;
对所述沟槽内对应的离子注入区进行离子注入;
在整个SiC外延层表面淀积SiO2钝化层,以完成终端结构的制作。
8.根据权利要求7所述的台阶式SiC沟槽场限环终端结构的制备方法,其特征在于,采用多次刻蚀工艺依次在所述SiC外延层上形成若干不同深度的沟槽,包括:
在所述SiC外延层表面淀积SiO2保护层;
在所述SiO2保护层上涂胶并进行光刻,形成刻蚀掩膜窗口;
刻蚀所述SiO2保护层以形成刻蚀掩膜层;
刻蚀所述SiC外延层以形成第一深度的沟槽;
清洗整个样品表面,并重复上述步骤,依次形成其余多个沟槽。
9.一种半导体器件,其特征在于,包括如权利要求1-6任一项所述的台阶式SiC沟槽场限环终端结构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011034646.3A CN112310195B (zh) | 2020-09-27 | 2020-09-27 | 一种台阶式SiC沟槽场限环终端结构、制备方法及其器件 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011034646.3A CN112310195B (zh) | 2020-09-27 | 2020-09-27 | 一种台阶式SiC沟槽场限环终端结构、制备方法及其器件 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112310195A true CN112310195A (zh) | 2021-02-02 |
CN112310195B CN112310195B (zh) | 2022-09-30 |
Family
ID=74488791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011034646.3A Active CN112310195B (zh) | 2020-09-27 | 2020-09-27 | 一种台阶式SiC沟槽场限环终端结构、制备方法及其器件 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112310195B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115020467A (zh) * | 2022-04-28 | 2022-09-06 | 恒泰柯半导体(上海)有限公司 | 深沟槽mosfet终端结构及其制作方法 |
CN116404033A (zh) * | 2023-06-01 | 2023-07-07 | 苏州华太电子技术股份有限公司 | 半导体器件的终端结构 |
CN116454120A (zh) * | 2023-06-16 | 2023-07-18 | 通威微电子有限公司 | 一种耐压器件及其制作方法 |
CN116544268A (zh) * | 2023-07-06 | 2023-08-04 | 通威微电子有限公司 | 一种半导体器件结构及其制作方法 |
WO2023178897A1 (zh) * | 2022-03-21 | 2023-09-28 | 苏州东微半导体股份有限公司 | 碳化硅器件终端结构及其制造方法 |
CN117790537A (zh) * | 2023-12-28 | 2024-03-29 | 深圳平湖实验室 | 一种半导体器件、其制作方法及电子器件 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020100933A1 (en) * | 2001-01-30 | 2002-08-01 | Marchant Bruce D. | Field effect transistor having a lateral depletion structure |
US20060043480A1 (en) * | 2004-09-01 | 2006-03-02 | Kabushiki Kaisha Toshiba | Semiconductor device and fabrication method of the same |
WO2006046388A1 (en) * | 2004-10-29 | 2006-05-04 | Toyota Jidosha Kabushiki Kaisha | Insulated gate semiconductor device and method for producing the same |
CN102386224A (zh) * | 2010-08-30 | 2012-03-21 | 苏州博创集成电路设计有限公司 | 一种纵向超结金属氧化物场效应晶体管器件及其制备方法 |
CN103915511A (zh) * | 2012-12-28 | 2014-07-09 | 现代自动车株式会社 | 肖特基势垒二极管及其制造方法 |
CN106298866A (zh) * | 2015-05-19 | 2017-01-04 | 北大方正集团有限公司 | 超结mosfet器件及其制造方法 |
CN106298479A (zh) * | 2015-06-11 | 2017-01-04 | 北大方正集团有限公司 | 一种功率器件的结终端扩展结构及其制造方法 |
CN106356401A (zh) * | 2016-11-21 | 2017-01-25 | 电子科技大学 | 一种功率半导体器件的场限环终端结构 |
CN106783957A (zh) * | 2016-12-27 | 2017-05-31 | 西安电子科技大学 | 碳化硅多台阶沟槽结终端扩展终端结构及其制备方法 |
US20200243656A1 (en) * | 2019-01-30 | 2020-07-30 | Siliconix Incorporated | Split gate semiconductor with non-uniform trench oxide |
-
2020
- 2020-09-27 CN CN202011034646.3A patent/CN112310195B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020100933A1 (en) * | 2001-01-30 | 2002-08-01 | Marchant Bruce D. | Field effect transistor having a lateral depletion structure |
US20060043480A1 (en) * | 2004-09-01 | 2006-03-02 | Kabushiki Kaisha Toshiba | Semiconductor device and fabrication method of the same |
WO2006046388A1 (en) * | 2004-10-29 | 2006-05-04 | Toyota Jidosha Kabushiki Kaisha | Insulated gate semiconductor device and method for producing the same |
CN102386224A (zh) * | 2010-08-30 | 2012-03-21 | 苏州博创集成电路设计有限公司 | 一种纵向超结金属氧化物场效应晶体管器件及其制备方法 |
CN103915511A (zh) * | 2012-12-28 | 2014-07-09 | 现代自动车株式会社 | 肖特基势垒二极管及其制造方法 |
CN106298866A (zh) * | 2015-05-19 | 2017-01-04 | 北大方正集团有限公司 | 超结mosfet器件及其制造方法 |
CN106298479A (zh) * | 2015-06-11 | 2017-01-04 | 北大方正集团有限公司 | 一种功率器件的结终端扩展结构及其制造方法 |
CN106356401A (zh) * | 2016-11-21 | 2017-01-25 | 电子科技大学 | 一种功率半导体器件的场限环终端结构 |
CN106783957A (zh) * | 2016-12-27 | 2017-05-31 | 西安电子科技大学 | 碳化硅多台阶沟槽结终端扩展终端结构及其制备方法 |
US20200243656A1 (en) * | 2019-01-30 | 2020-07-30 | Siliconix Incorporated | Split gate semiconductor with non-uniform trench oxide |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023178897A1 (zh) * | 2022-03-21 | 2023-09-28 | 苏州东微半导体股份有限公司 | 碳化硅器件终端结构及其制造方法 |
CN115020467A (zh) * | 2022-04-28 | 2022-09-06 | 恒泰柯半导体(上海)有限公司 | 深沟槽mosfet终端结构及其制作方法 |
CN116404033A (zh) * | 2023-06-01 | 2023-07-07 | 苏州华太电子技术股份有限公司 | 半导体器件的终端结构 |
CN116404033B (zh) * | 2023-06-01 | 2023-08-22 | 苏州华太电子技术股份有限公司 | 半导体器件的终端结构 |
CN116454120A (zh) * | 2023-06-16 | 2023-07-18 | 通威微电子有限公司 | 一种耐压器件及其制作方法 |
CN116454120B (zh) * | 2023-06-16 | 2023-08-25 | 通威微电子有限公司 | 一种耐压器件及其制作方法 |
CN116544268A (zh) * | 2023-07-06 | 2023-08-04 | 通威微电子有限公司 | 一种半导体器件结构及其制作方法 |
CN116544268B (zh) * | 2023-07-06 | 2023-09-26 | 通威微电子有限公司 | 一种半导体器件结构及其制作方法 |
CN117790537A (zh) * | 2023-12-28 | 2024-03-29 | 深圳平湖实验室 | 一种半导体器件、其制作方法及电子器件 |
CN117790537B (zh) * | 2023-12-28 | 2024-10-25 | 深圳平湖实验室 | 一种半导体器件、其制作方法及电子器件 |
Also Published As
Publication number | Publication date |
---|---|
CN112310195B (zh) | 2022-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112310195B (zh) | 一种台阶式SiC沟槽场限环终端结构、制备方法及其器件 | |
JP2004529506A5 (zh) | ||
CN107331616A (zh) | 一种沟槽结势垒肖特基二极管及其制作方法 | |
JP2013062545A (ja) | 電圧吸収エッジを有するpn接合を含むSiC半導体コンポーネント | |
JP2004529506A (ja) | トレンチショットキー整流器 | |
US20090224354A1 (en) | Junction barrier schottky diode with submicron channels | |
CN108565295A (zh) | 一种碳化硅肖特基二极管及其制备方法 | |
CN115207128B (zh) | 一种沟槽侧壁栅抗负压碳化硅mosfet及其制备方法 | |
CN111192825A (zh) | 碳化硅肖特基二极管及其制造方法 | |
CN113517355B (zh) | 基于隐埋AlTiO3终端结构的4H-SiC肖特基二极管及制备方法 | |
CN108831920A (zh) | 一种SiC器件的结终端结构制作方法 | |
CN115295414B (zh) | 硅基二极管的制作方法、硅基二极管以及二极管器件 | |
CN113871489B (zh) | 一种全环绕多通道漂移区横向功率器件及其制造方法 | |
CN113161408B (zh) | 高压SiC肖特基二极管的结终端结构及其制备方法 | |
CN113517356B (zh) | 基于台阶状P型CBN与SiC混合结构的4H-SiC二极管及制备方法 | |
CN111799338B (zh) | 一种沟槽型SiC JBS二极管器件及其制备方法 | |
CN108630749A (zh) | 一种超高压碳化硅晶闸管及其制备方法 | |
CN111799336B (zh) | 一种SiC MPS二极管器件及其制备方法 | |
CN114497182A (zh) | 一种基于体内多区终端结构的功率器件及制备方法 | |
CN113555448A (zh) | 一种基于Ga2O3终端结构的4H-SiC肖特基二极管及制作方法 | |
CN106024627A (zh) | 具有低关态损耗的SiC基超结IGBT的制作方法 | |
CN220189658U (zh) | 一种碳化硅肖特基二极管结构 | |
CN106298893B (zh) | 射频横向双扩散金属氧化物半导体器件的制作方法 | |
CN110600533B (zh) | 具有高雪崩耐量的碳化硅肖特基二极管器件及其制造方法 | |
US20240204071A1 (en) | Trench Field Effect Transistor Having Improved Electrical Performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |