CN112242295A - 形成拓扑受控的无定形碳聚合物膜的方法 - Google Patents

形成拓扑受控的无定形碳聚合物膜的方法 Download PDF

Info

Publication number
CN112242295A
CN112242295A CN202010667639.0A CN202010667639A CN112242295A CN 112242295 A CN112242295 A CN 112242295A CN 202010667639 A CN202010667639 A CN 202010667639A CN 112242295 A CN112242295 A CN 112242295A
Authority
CN
China
Prior art keywords
film
carbon
flowable
based film
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010667639.0A
Other languages
English (en)
Inventor
T.J.V.布兰考特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASM IP Holding BV
Original Assignee
ASM IP Holding BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASM IP Holding BV filed Critical ASM IP Holding BV
Publication of CN112242295A publication Critical patent/CN112242295A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/048Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76825Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明总体上涉及一种形成拓扑受控的无定形碳聚合物膜的方法,示例性实施例提供了一种在具有由顶表面、侧壁和底部限定的凹部的衬底上使用可流动碳基膜进行顶部选择性沉积的方法,其包括步骤:(i)在反应空间中在衬底的凹部中沉积可流动碳基膜直至凹部中可流动碳基膜的厚度达到预定的厚度,然后停止沉积步骤;和(ii)在基本上没有氢和氧的气氛中暴露碳基膜于氮等离子体以便选择性地在顶表面上重新沉积碳基膜。

Description

形成拓扑受控的无定形碳聚合物膜的方法
技术领域
本发明总体上涉及一种在衬底的图案化凹部上形成拓扑控制的碳基膜的方法,特别是在图案化凹部上使用可流动碳基膜的顶部选择性沉积的方法。
背景技术
在制造集成电路如用于浅沟槽隔离、金属间介电层、钝化层等的那些的工艺中,常常有必要用绝缘材料填充沟槽(通常具有为一或更高的纵横比的任何凹部)。然而,随着大规模集成(LSI)装置的布线间距的小型化,由于现有沉积工艺的限制,高纵横比空间(例如,AR≥3)的无空隙填充变得越来越困难。
鉴于上述情况,本发明人开发了用于沉积可流动膜的间隙填充技术并在2018年7月3日提交的美国专利申请号16/026,711和2019年5月30日提交的美国专利申请号16/427,288中公开了该技术,其在其中不需要氮、氧或氢等离子体的条件下通过使用烃前体的等离子体辅助沉积来提供完全的间隙填充而基本上不形成空隙,该专利申请的每项公开内容以引用的方式整体并入本文。
然而,如果其中牺牲蚀刻停止层或保护层例如仅在凹部的顶表面上必要的某些应用需要在衬底上使用上述间隙填充技术仅在顶部沉积无定形碳,而不在衬底的沟槽中例如在沟槽的底部处沉积无定形碳,则可能存在以下问题:i)通过间隙填充技术进行的沉积基本上是自下而上的沉积,并因此会不可避免地在凹部的底部处沉积一定量的膜;ii)在凹部是用于应用如3D NAND中的超深孔(纵横比例如大于10,通常为15-100)的情况下,间隙填充技术可能是无底沉积(因为尽管其会向下流动但可流动材料不能到达凹部的底部),但由于材料沿凹部的侧壁流动,故会不可避免地在凹部的侧壁上沉积一定量的膜;iii)在(ii)中,在顶表面上沉积膜。但由于凹部的上部开口小,故开口可能被封闭,最终在顶表面上均匀地沉积和积聚膜,和iv)在凹部的上部开口足够宽以让可流动材料流入凹部中的情况下,可能难以在顶表面上沉积厚膜,即,可能难以控制沉积在顶表面上的膜的厚度。本发明人在本文中使用间隙填充技术为上述问题提供了具有里程碑意义的解决方案。
对相关领域中涉及的问题和解决方案的任何讨论已仅出于为本发明提供背景的目的而包括在本公开内容中,并且不应该视为承认讨论中的任何或全部在制备本发明时是已知的。
发明内容
鉴于上述情况,一些实施例提供了一种在具有由顶表面、侧壁和底部限定的凹部的衬底上使用可流动碳基膜的顶部选择性沉积的方法,其包括步骤:(i)在反应空间中在衬底的凹部中沉积可流动碳基膜直至凹部中可流动碳基膜的厚度达到预定的厚度,然后停止沉积步骤;和(ii)在基本上没有氢和氧的气氛中暴露碳基膜于氮等离子体以便选择性地在顶表面上重新沉积碳基膜。在上文中,完全令人惊奇的是,作为一种现象,可流动材料一旦积聚在凹部中,如流体积聚在容器中,即可被向上移动并积聚在顶表面上,就好像用虹吸管抽出流体一样。在一个实施例中,通过膜的流动性与氮等离子体的组合,可从凹部的底部选择性地向顶表面重新沉积碳基膜。在一些实施例中,由于可流动膜需要通过自下而上的沉积而积聚在凹部的底部处,故凹部需要具有2至30(通常3至20)的纵横比。用于沉积可流动膜的间隙填充技术在例如2018年7月3日提交的美国专利申请号16/026,711和2019年5月30日提交的美国专利申请号16/427,288中有公开,其每项公开内容以引用的方式整体并入本文,并且这样的技术可应用于本发明的一些实施例。
在一些实施例中,为了重新沉积碳基膜于顶表面上,将在凹部的底部处积聚的碳基可流动膜暴露于氮等离子体,其中所述等离子体基本上没有H2和O2,例如,反应空间的气氛中H2和O2总共的浓度小于5%、优选小于1%。当气氛中H2和O2的浓度超过上述浓度时,等离子体更多地显示出灰化功能,而不是有助于膜的重新沉积。此外,在一些实施例中,在暴露凹部底部处的碳基可流动膜于等离子体时,反应空间的气氛中可含有稀有气体如Ar和He至稀有气体的添加不会实质性地影响碳基膜的重新沉积的程度,例如,稀有气体(例如,Ar和/或He)总共的浓度小于50%,优选小于30%,更优选小于20%,最优选小于15%。在一些实施例中,气氛基本上由氮气组成或由氮气组成。在一些实施例中,为了实现沉积碳基膜时碳基膜的流动性或自下而上的沉积,可调节沉积温度,其中膜的流动性与沉积温度成反比,沉积温度根据前体的类型来调节,例如在低于约100℃的温度下,例如约75℃。
出于概述本发明的各方面和所实现的优于相关技术的优势的目的,在本公开中描述本发明的某些目的和优势。当然,应理解,未必所有这些目标或优点都可以根据本发明的任何特定实施例来实现。因此,举例来说,本领域技术人员将认识到,本发明可以按照实现或优化如本文所传授的一个优点或一组优点的方式实施或进行,而不必实现如本文中可能传授或表明的其它目标或优点。
本发明的其他方面、特征和优势将从之后的详细描述变得显而易见。
附图说明
现将参照优选实施例的附图来描述本发明的这些和其他特征,这些优选实施例意图说明而非限制本发明。各图出于说明性目的而被大大简化并且未必按比例。
图1A是可用于本发明的一个实施例中的用于沉积介电膜的PEALD(等离子体增强原子层沉积)设备的示意图。
图1B示意了可用于本发明的一个实施例中的使用流通系统(FPS)的前体供应系统的示意图。
图2为示意沟槽的示意性横截面图的图,示出了根据本发明的实施例的顶部选择沉积的工艺((a)→(b)→(c))。
图3为示意沟槽的示意性横截面图的图,示出了根据本发明的实施例的顶部选择沉积的预期机制((a)→(b)→(c)→→(d))。
图4为示出暴露于不同气体的等离子体的膜的收缩率的图。
图5示出了沟槽的横截面图的STEM照片,其中原始的(a)代表进行了可流动膜的完全填充沉积的沟槽,原始的(b)代表(a)中所示的沟槽在O2/Ar灰化之后,原始的(c)代表(a)中所示的沟槽在N2/H2灰化之后,列(1)代表在高放大倍数下的沟槽(比例尺代表60nm),列(2)代表在低放大倍数下的沟槽(比例尺代表300nm)。
图6示出:(a)根据本发明的一个实施例在75℃下进行了可流动膜沉积、接着暴露于N2等离子体的沟槽的横截面图的STEM照片,和(b)在100℃下进行了几乎不可流动的膜沉积、接着暴露于N2等离子体的沟槽的横截面图的STEM照片。
图7示出根据本发明的一个实施例:(a)进行了可流动膜沉积、接着暴露于N2等离子体10秒的沟槽的横截面图的STEM照片,和(b)进行了可流动膜沉积、接着暴露于N2等离子体60秒的沟槽的横截面图的STEM照片。
图8示出了根据本发明的一个实施例进行了顶部选择沉积的沟槽的横截面图的STEM照片。
图9示出了沉积状态的可流动无定形碳聚合物膜(“STD”)和根据本发明的一个实施例的经用N2等离子体处理的重新沉积的无定形碳聚合物膜(“N2-CK”)的傅里叶变换红外(FTIR)光谱。
图10为示意根据本发明的一个实施例的顶部选择成膜的工艺序列的图,其中每一列的宽度不一定表示实际时长,每一行中的线的抬高表示开启状态,而每一行中的线的下沉表示关闭状态。
具体实施方式
在本公开中,取决于上下文,“气体”可包括气化固体和/或液体并可由单一气体或气体的混合物构成。同样,取决于上下文,冠词“一”是指一个物种或包括多个物种的属。在本公开中,通过喷淋头引入到反应腔室的工艺气体可包含无硅烃前体和添加剂气体、基本上由无硅烃前体和添加剂气体组成或由无硅烃前体和添加剂气体组成。添加剂气体可以包括等离子体生成气体,用于在将RF功率施加于添加剂气体时,激发前体以形成无定形碳聚合物。添加剂气体可为惰性气体,其可作为载气和/或稀释气体进料到反应腔室。添加剂气体可不含用于氧化或氮化前体的反应气体。或者,添加剂气体可含有用于氧化或氮化前体的反应气体,程度为不干扰等离子体聚合形成基于无定形碳的聚合物。此外,在一些实施例中,添加剂气体仅含有等离子体生成气体(例如,稀有气体)。前体和添加剂气体可以混合气体引入到反应空间或分别引入到反应空间。可利用载气如稀有气体引入前体。可使用非工艺气体的气体,即不经过喷淋头而引入的气体,来例如密封反应空间,这包括密封气体,如稀有气体。在一些实施例中,术语“前体”一般指参与产生另一种化合物的化学反应的化合物,并且特别指构成膜基质或膜主要骨架的化合物,而术语“反应物”指除前体外的化合物,其活化前体、修饰前体或催化前体的反应,其中所述反应物可以为膜基质提供元素(例如O、C、N),并且当处于激发态时,变成膜基质的一部分。术语“等离子体生成气体”指除前体和反应物外的化合物,当暴露于电磁能时,所述化合物生成等离子体,其中所述等离子体生成气体可能不为膜基质提供元素(例如O、C、N),所述元素变成膜基质的一部分。术语“等离子体灰化气体”是指当处于直接激发(直接等离子体)或远程激发(远程等离子体)的状态时灰化膜的气体。在一些实施例中,“等离子体灰化气体”为单一气体或者两种或更多种气体的混合气体。术语“灰化”是指使用等离子体去除有机物质,留下矿物组分作为残余物(灰分),其通常用真空泵去除。
在一些实施例中,“膜”是指在垂直于厚度方向的方向上连续延伸的基本上无小孔的覆盖整个目标或相关表面的层,或仅仅是指覆盖目标或相关表面的层。在一些实施例中,“层”是指在表面上形成的具有某一厚度的结构,或膜或非膜结构的同义词。膜或层可由具有某些特征的离散单个膜或层构成或由多个膜或层构成,并且相邻膜或层之间的边界可以透明或可以不透明,并且可基于物理、化学和/或任何其它特征、形成工艺或序列和/或相邻膜或层的功能或目的而建立。此外,在本公开中,由于可工作范围可基于常规工作而确定,因此变量的任何两个数字可构成变量的可工作范围,且所指示的任何范围可包括或排除端点。另外,任何所指示的变量值(无论它们是否用“约”指示)都可指精确值或近似值并包括等效值,并且在一些实施例中可指平均值、中位数、代表性值、多数值等。此外,在本公开中,在一些实施例中,术语“由…构成”和“具有”独立地指“典型地或广泛地包括”、“包括”、“基本上由…组成”或“由…组成”。在本公开中,在一些实施例中,任何定义的含义不一定排除普通和惯用的含义。
在本公开中,在一些实施例中,“连续地”指不破坏真空、不随时间轴中断、无任何材料介入步骤、其后不立即改变处理条件作为下一步骤、或者在两个结构之间除了所述两个结构之外无介于之间的离散的物理或化学结构。
在本公开中,术语“填充能力”(也称为“流动性”)是指基本上无空隙(例如,无具有直径大约5nm或更大的尺寸的空隙)或接缝(例如,无具有大约5nm或更长长度的接缝)地填充间隙的能力,其中当在纵横比为约1或更大的宽沟槽中沉积膜时,观察到层的无接缝/无空隙的自下而上生长。
流动性常常在填充沟槽之前在宽沟槽的底部处表现为凹形膜表面,并还在完全填充沟槽之后被连续沉积时表现为基本上平面的膜顶表面(平面化)。这种沉积被称为“自下而上的沉积”。
当沟槽窄且深时,即使膜是可流动的,膜也可能到达不了沟槽的底部。在这种情况下,流动性常常沿沟槽的侧壁表现为大致或基本上保形的膜,在沟槽的底部处基本上没有膜而沟槽的顶部开口通常被膜封闭。由于膜是可流动的,故侧壁膜流动并沿着侧壁向下延伸,从而形成薄膜,其中膜的基本上保形的部分的平均厚度(除了封闭沟槽的顶部开口的顶部部分外,其随后通过灰化去除)与沟槽中膜的深度(沿着侧壁朝向底部延伸的长度)的比率可在0.1%至10%(通常0.5%至5%)的范围内。这种沉积被称为“无底沉积”。
在本公开中,邻近的突起结构之间的凹部与任何其他凹部图案被称为“沟槽”。即,沟槽为包含孔/通孔的任何凹部图案。对于自下而上的沉积,在一些实施例中,沟槽具有约20nm至约100nm(通常约30nm至约50nm)的宽度(其中当沟槽具有与宽度基本上相同的长度时,其可被称作孔/通孔)、约30nm至约100nm(通常约40nm至约60nm)的深度以及约2至约10(通常约2至约5)的纵横比。沟槽的适当尺寸可随工艺条件、膜的流动性、膜组成、既定应用等而异。通过例如调整膜的流动性,可在具有不同于上述那些的尺寸的沟槽中实现自下而上的沉积。
在本公开中,术语“基本上没有沉积”、“基本上没有膜”等是指功能上等价于零的量,无关紧要或可忽略的量,不会实质性干扰后续工艺(例如,灰化)的量,低于可检测量或可观察量的量,等。
在本公开中,在一些实施例中,任何定义的含义不一定排除普通和惯用的含义。而且,在本公开中,“本发明”是指本文明确地、必要地或固有地公开的实施例或方面中的至少一个。
将参照优选实施例来阐述实施例。然而,本发明不旨在局限于这些优选实施例。
一些实施例提供了一种在具有由顶表面、侧壁和底部限定的凹部的衬底上使用可流动碳基膜的顶部选择性沉积的方法,其包括步骤:(i)在反应空间中在衬底的凹部中沉积可流动碳基膜直至凹部中可流动碳基膜的厚度达到预定的厚度,然后停止沉积步骤;和(ii)在基本上没有氢和氧的气氛中暴露碳基膜于氮等离子体以便选择性地在顶表面上重新沉积碳基膜。碳基膜通常可以是为可流动膜的无定形碳聚合物膜,但碳基膜可以是任何其他合适的碳基膜,其可源自前体并等离子体聚合,并可以可流动方式沉积。碳基膜可含有Si(例如,聚碳硅烷聚合物)或可不含Si(例如,源自环戊烯的烃聚合物)。
当通过使用等离子体辅助方法形成无定形碳聚合物膜时,所得的无定形碳聚合物膜由氢化的无定形碳聚合物构成。在本公开中,氢化的无定形碳聚合物可简称为无定形碳聚合物,其也可被称为“aC:H”或简称为缩写“aC”。此外,在本公开中,除非另有说明,否则SiC、SiCO、SiCN、SiCON等等是以非化学计量的方式指示膜类型(简单地由主要构成元素指示)的缩写。
在一些实施例中,将步骤(i)和(ii)重复多次(例如,1至100次,通常2至20次)直至顶表面上的碳基膜的厚度达到所需的最终厚度(例如,1至100nm,通常2至20nm),所需的最终厚度可随其预期用途和应用而异。当碳基膜达到最终厚度并停止步骤(i)和(ii)时,可根据需要将凹部底部处的可流动碳基膜完全去除,虽然其厚度已通过步骤(ii)减小了;然而,优选地,顶表面上碳基膜的最终厚度大于底部处可流动碳基膜的厚度,从而在进行等离子体灰化(各向异性)以进一步或完全去除底部碳基膜时,顶部碳基膜的一些厚度可得到保留。
在一些实施例中,步骤(i)中的预定厚度大于单层厚度,但为15nm或更小(优选7.5nm或更小,更优选5nm或更小),并且步骤(i)和(ii)重复多次。
可流动膜的沉积是本领域已知的;然而,可流动膜的常规沉积使用化学气相沉积(CVD)伴随RF功率的持续施加,因为脉冲等离子体辅助沉积如PEALD众所周知用于沉积保形膜,所述保形膜是具有与可流动膜的那些完全相反的特征的膜。在一些实施例中,可流动膜是由无定形碳聚合物构成的无硅含碳膜,并且尽管任何合适的一种或多种烃前体都可以是候选物,但在一些实施例中,前体包括在25℃下具有1,000Pa或更高的蒸气压的不饱和或环状烃。在一些实施例中,前体是选自以下的至少一种:C2-C8炔烃(CnH2n-2)、C2-C8烯烃(CnH2n)、C2-C8二烯(CnHn+2)、C3-C8环烯烃、C3-C8轮烯(CnHn)、C3-C8环烷烃和前述的取代烃。在一些实施例中,前体为乙烯、乙炔、丙烯、丁二烯、戊烯、环戊烯、苯、苯乙烯、甲苯、环己烯和/或环己烷。
在一些实施例中,作为用于沉积可流动膜的间隙填充技术,可使用美国专利申请号16/026,711和16/427,288中公开的方法,其在其中不需要氮、氧或氢等离子体的条件下,通过使用烃前体的等离子体辅助沉积来提供完全的间隙填充,而基本上不形成空隙,所述美国专利申请的公开内容以引用的方式整体并入本文。上述参考文献中公开的沉积工艺使用ALD样工作程序(例如,进料/吹扫/等离子体撞击/吹扫),其中在进料之后的吹扫被自愿地严重缩短以在等离子体撞击期间保留前体的高分压。这明显区别于ALD化学或机制。上述过程可基于脉冲等离子体CVD,它也赋予所得膜良好填充能力,但如稍后所论述,ALD样工作程序可更有益。在一些实施例中,步骤(i)通过循环氮等离子体沉积如ALD样沉积或脉冲等离子体CVD使用氮等离子体进行。
在一些实施例中,步骤(ii)中的气氛在步骤(i)中使用的反应空间中,即步骤(i)和步骤(ii)在同一反应空间中连续进行。可替代地,在其他实施例中,步骤(ii)中的气氛在与步骤(i)中使用的反应空间不同的另一个反应空间中。
在一些实施例中,步骤(ii)包括:向气氛中进料N2而不进料氢和氧;并以生成氮等离子体的方式向气氛施加RF功率。向气氛施加RF功率可使用导电耦合等离子体(CCP)反应器或电感耦合等离子体(ICP)反应器来实现,并且在一些实施例中,氮等离子体可使用远程等离子体单元作为远程等离子体生成。在一些实施例中,RF功率在每单位面积衬底0.14W/cm2至1.41W/cm2(优选地0.3至0.9W/cm2)的范围内,并且步骤(ii)的持续时间在10秒至300秒(优选地30秒至120秒)的范围内。
在一些实施例中,所述方法还包括在步骤(ii)之后通过O2、H2、O2/Ar或N2/H2等离子体灰化来去除底部处的可流动碳基膜,从而可完全实现目标拓扑,其中在凹部的顶表面、侧壁和底部中,碳基膜主要或基本上仅沉积在衬底的顶表面上。在一些实施例中,使用直接或远程氧或氢等离子体进行等离子体灰化。在一些实施例中,直接或远程氧或氢等离子体为选自以下的气体的直接或远程等离子体:完全为H2;Ar和H2的混合物(Ar/H2流量比为0.005至0.995,通常0.05至0.75);He和H2的混合物(He/H2流量比为0.005至0.995,通常0.05至0.75);N2和H2的混合物(N2/H2流量比为0.005至0.995,通常0.05至0.75);完全为O2;O2和Ar的混合物(O2/Ar流量比为0.005至0.995,通常0.05至0.75);O2和He的混合物(O2/He流量比为0.005至0.995,通常0.05至0.75);O2和N2的混合物(O2/N2流量比为0.005至0.995,通常0.05至0.75)。在一些实施例中,碳基膜被重新沉积于其上的衬底顶表面由硅构成。
在一些实施例中,衬底具有纵横比为2至30(通常3至20)的多个凹部,其中所述凹部在步骤(i)中以自下而上的方式填充膜,其中由于负载效应,表面拓扑存在变化。然而,在一些实施例中,不管沟槽的宽度如何,在顶表面上重新沉积的碳基膜的高度大约相同(无负载效应)。这可能归因于生长的体积性质,即,在N2处理之前沉积在每个沟槽中的材料的量大约相同,而与沟槽的宽度无关(前提条件是宽度的差异不大)。
将结合附图来说明实施例。然而,本发明不旨在局限于这些附图。
图2为示意沟槽的示意性横截面图的图,基于现象示出了根据本发明的实施例的顶部选择沉积的工艺((a)→(b)→(c))。首先,在图2的(a)中,在具有沟槽的衬底上进行自下而上的沉积,其中衬底21具有沟槽20,所述沟槽具有足够宽以允许可流动膜流入沟槽中的宽度,并具有足够小以允许可流动膜到达沟槽20的底部的深度。因此,可流动膜主要以底部可流动膜23沉积在沟槽20的底部处并部分以顶部可流动膜22沉积在沟槽20的顶表面上。举例来说,合适的沟槽尺寸在本公开中描述并可根据例如膜的流动性来选择。应指出,图2被过度简化并且没有按比例缩放。
接下来,在(b)中的重新沉积过程中,将底部可流动膜23暴露于氮等离子体,其在沟槽20中生成气态物种。气态物种被截留在沟槽20中并占据沟槽20,从而到达沟槽20的顶表面(更详细的说明参见图3)。在(c)中,气态物种沉积(或重新沉积)在沟槽20的顶表面上并在其上积聚为顶部膜24。这以类似于分子束外延生长的方式实现。应指出,上述理论是重新沉积的非限制性理论,并且不一定对该重新沉积过程施加任何限制。
图3为示意沟槽的示意性横截面图的图,基于预期机制进一步示出了根据本发明的实施例的顶部选择沉积的预期机制((a)→(b)→(c)→→(d))。此图中的步骤(a)与图2的步骤(a)相同。
在(b)中,当底部可流动膜23暴露于氮等离子体(各向异性)时,对底部可流动膜23(以及顶部膜22)的蚀刻和气态CxNyHz物种(x、y和z中的每一个都为非零整数,构成化学计量的化学形式)的形成会瞬时发生,从而在沟槽20中经蚀刻的底部可流动膜23’上方形成高密度气态CxNyHz物种25,同时在顶表面上方形成低密度气态CxNyHz物种25’。由于构成可流动膜的未经处理可流动材料是相对易碎/低质量的,故发生上述现象。
在(c)中,氮等离子体引起离子束样沉积,因为氮等离子体在一定的压力制度中例如在100至1000Pa、优选地200至800Pa、更优选地300至700Pa的范围内是非常定向的(引起离子辅助效应)。离子束样沉积瞬时发生,使得在顶表面上重新沉积顶部膜24’,留下底部可流动膜23”。发生顶部选择重新沉积很可能是因为(a)在顶表面上留下的沉积层非常少或无沉积层留下,而由于CxNyHz物种在图案材料(在此情况下为硅)上的粘着系数高于在最初的可流动膜上的粘着系数,故重新沉积主要发生在顶表面上,并且(b)在沟槽20中,气态物种的密度高,因此没有足够的离子可穿过沟槽中气态物种的云至参与底部处的离子束样沉积的程度。应指出,上述理论是重新沉积的非限制性理论,并且不一定对该重新沉积过程施加任何限制。
通过重复步骤(a)至(c),获得(d)中所示的最终结构,其中在顶表面上重新沉积了最终的顶部膜24(“重新沉积膜”),而在沟槽的底部处基本上没有膜或几乎没有膜留下。重新沉积膜24的组成和性质与氮等离子体处理之前顶部可流动膜22或底部可流动膜23的组成和性质不同,其中,在一些实施例中,与可流动膜22或23的那些相比,重新沉积膜24具有较高的密度(或较高的RI)、较低的接触角、较高的压缩应力、较低的热收缩率、较低的碳含量、较高的氮含量等。因此,在一些实施例中,与由烃基膜构成的可流动膜相比,重新沉积膜由氮碳基膜构成。
图10为示意根据本发明的一个实施例的顶部选择成膜的工艺序列的图,其中每一列的宽度不一定表示实际时长,每一行中的线的抬高表示开启状态,而每一行中的线的下沉表示关闭状态。
此工艺序列包括沉积工艺“a x(aC depo)”(“进料”→“吹扫1”→“RF”(等离子体聚合)→“吹扫2”;进行a次,即重复(a-1)次),重新沉积工艺“N2处理”(“N2-进入”(稳定化)→“N2处理”(重新沉积)→“吹扫3”),和任选的等离子体灰化工艺“O2/Ar或N2/H2去浮渣”(“N2/H2-进入”→“修整/去浮渣”(等离子体灰化)→“吹扫4”)。在一次暴露于氮等离子体时重新沉积在顶表面上的膜的厚度是有限的,因为在一次暴露于氮等离子体时从可流动膜生成的气态物种的量是有限的,这归因于如图3中所示含氮等离子体的离子通过沟槽中的气态物种云到达可流动膜的深度有限(例如,不超过15nm、7.5nm或5nm)和/或归因于由于重新沉积性质故生成气态物种的可流动膜的深度有限。由于在连续暴露于等离子体以进行沉积和/或重新沉积时流动性会相对较快地丧失,故在暴露于氮等离子体时可流动膜不需要保持其膜的流动性(但在一些实施例中可保持流动性)。重新沉积的能力可能在于可流动膜的性质,例如,该膜是一种低聚产物,与典型的碳基膜相比,它是一种柔软/低密度的材料,并且这种性质使其易于与氮等离子体反应并允许重新沉积过程。在一些实施例中,在一次暴露于氮等离子体时重新沉积膜的厚度在2至20nm、通常5至15nm的范围内,但该范围随相邻沟槽之间顶表面的面积、储存器的尺寸即开口尺寸和沟槽中可流动膜的深度、气态物种的粘着程度和其他条件/参数而广泛变化。相应地,可重复图3中所示的步骤(a)至(c)以获得如图3(d)中所示的具有所需厚度的最终膜。在图10中,当沉积工艺、氮等离子体处理工艺和任选的等离子体灰化工艺构成一个重新沉积循环(整个循环)时,可将此循环进行b次(即,重复(b-1)次,其中b为1至100、通常2至15的整数)。无需每次重复整个循环都进行灰化工艺,而是可根据需要相对于最终膜的所需拓扑间歇性地进行灰化工艺。
在一些实施例中,等离子体聚合工艺包括使用无Si和金属、含有C的前体和等离子体生成气体通过PEALD样沉积在具有沟槽的衬底上沉积无定形碳聚合物膜,所述等离子体生成气体通过在两个电极之间施加RF功率(RF)而生成等离子体,衬底平行于两个电极放置在两个电极之间,其中在PEALD样沉积的每个亚层沉积循环中施加RF功率,其中所述等离子体生成气体和载气连续地流动并还在“吹扫1”期间和“吹扫2”期间充当吹扫气体。上述工艺为PEALD样工艺,其形成亚层(通常比一个单层厚)的一个循环被进行a次(例如,a为1至30、通常2至15的整数),直到膜的厚度达到大于单层厚度但为15nm或更小(例如,1nm至7.5nm)。
在一些实施例中,进料时间在0.3至10秒(通常0.6至2秒)的范围内,进料之后的吹扫时间在0至0.1秒(通常0至0.5秒)的范围内,RF时间在0.5至4秒(通常0.8至2秒)的范围内,RF之后的吹扫时间在0至0.5秒(通常0至0.1秒)的范围内,载气流量在0至0.8slm(通常0.1至0.3slm)的范围内,等离子体生成气体流量在0至0.5slm(通常0.1至0.3slm)的范围内,对于300-mm晶片RF功率在50至400W(通常75至200W)的范围内(对于不同尺寸的晶片,上述瓦特数按每个晶片的单位面积(cm2)的W应用)。
当例如挥发性烃前体通过等离子体聚合并沉积在衬底的表面上时,将暂时获得膜的流动性,其中气态单体(前体)通过等离子体气体放电所提供的能量活化或片段化以引发聚合,并且当所得聚合物材料沉积在衬底的表面上时,材料显示出暂时可流动行为。当沉积步骤完成时,可流动膜不再可流动,而是凝固的,并且因此不需要单独的凝固过程。
接下来,重新沉积工艺开始,其包括停止进料稀释He和开始进料氮气(“N2-进入”),同时连续地进料载体He(或者或另外,在一些实施例中可使用Ar和/或N2作为载气),这应限制为例如小于反应空间中气体混合物的50%,优选地小于30%,更优选地小于20%,通常小于15%,以实现有效的重新沉积。在一些实施例中,氮气流量在0.5至20slm(通常1至3slm)的范围内。然后向反应空间施加RF功率以生成氮等离子体并将可流动无定形碳聚合物膜暴露于此(“N2处理”),其中对于300-mm晶片RF功率在100至1,000W(优选地200至800W、更优选地300至700W)的范围内(对于不同尺寸的晶片,上述瓦特数按每个晶片的单位面积(cm2)的W应用),压力为100至1,000Pa(优选地600Pa或以下、更优选地400Pa或以下),持续时间5至300秒(优选地20至120秒、更优选地30至90秒)。其后,吹扫开始(“吹扫3”),其中氮等离子体处理之后的吹扫时间在0至60秒(优选地10至30秒)的范围内。在重新沉积工艺期间,由于向N2等离子体添加H2仅导致灰化(不会促成重新沉积和顶部选择性),故重新沉积处理期间的气体混合物基本上不含H2和O2,例如,优选地小于5%、更优选地小于1%或基本上0%。
接下来,根据最终碳基膜的目标拓扑,开始任选的等离子体灰化工艺,此工艺包括向反应空间进料灰化气体(H2或O2,或前述与N2、Ar和/或He的混合物)(“N2/H2-进入”),所述灰化气体被RF功率激发而生成等离子体并灰化无定形碳聚合物膜(“修整/去浮渣”),然后是吹扫(“吹扫4”),其中在向反应空间连续地进料载气的同时开始进料稀释He。在一些实施例中,用于等离子体灰化的RF功率在50至500W(通常50至200W)的范围内,压力为100Pa至1000Pa(通常200至600Pa),持续时间为5至200秒(通常10至100秒),稳定化时间在5至60秒(通常10至30秒)的范围内,RF之后的吹扫时间在5至60秒(通常10至30秒)的范围内,灰化气体流量在0.1至10slm(通常0.5至2slm)的范围内。
在一些实施例中,在整个工艺过程中,载气被连续地进料到反应空间。另外,调节工艺的温度以实现无定形碳聚合物膜的流动性并允许氮掺杂烃聚合物膜的重新沉积,例如,在-50℃至175℃(优选地35℃至150℃)的范围内。
载气的连续流动可使用流通系统(FPS)实现,其中载气管线提供有具有前体储罐(瓶)的绕道管线,并且在主管线和绕道管线之间切换,其中当仅意在向反应腔室进料载气时,关闭绕道管线,而当意在向反应腔室进料载气和前体气体二者时,关闭主管线,载气流经绕道管线并与前体气体一道从瓶流出。这样,载气可连续地流进反应腔室中并可通过在主管线与绕道管线之间切换而以脉冲形式携带前体气体。图1B示意了根据本发明的一个实施例的使用流通系统(FPS)的前体供应系统(黑色阀门指示该阀门是关闭的)。如图1B中(a)中所示,当向反应腔室进料前体时(未示出),第一载气如Ar(或He)流经具有阀门b和c的气体管线,并然后进入瓶(储存器)26。载气从瓶26流出,同时携带量对应于瓶26内部的蒸气压的前体气体,流过具有阀门f和e的气体管线,并然后与前体一起进料到反应腔室。在上文中,阀门a和d是关闭的。当向反应腔室仅进料载气(稀有气体)时,如图1B中(b)中所示,载气流经具有阀门a的气体管线,同时绕过瓶26。在上文中,阀b、c、d、e和f是关闭的。
工艺循环可使用任何合适的装置进行,包括例如图1A中示意的装置。图1A为PEALD装置的示意图,该装置宜与编程为进行下文所述序列的控制器结合,可用于本发明的一些实施方案中。在此图中,通过在反应腔室3的内部11(反应区)中提供一对并联且彼此面对面的导电平板电极4、2,向一侧施加HRF功率(13.56MHz-2000MHz)25,并将另一侧12电接地,在电极之间激发等离子体。在下平台2(下电极)中提供温度调节器,并使放置在其上的衬底1的温度保持恒定于给定温度下。上电极4也用作喷淋板,并分别通过气体管线27和气体管线28及通过喷淋板4向反应腔室3中引入反应物气体和/或稀释气体(如果有的话)和前体气体。另外,在反应腔室3中,提供具有排气管线7的环形管13,通过所述排气管线排出反应腔室3的内部11中的气体。另外,设置在反应腔室3下方的转移腔室5提供有密封气体管线29以经由转移腔室5的内部16(转移区)向反应腔室3的内部11中引入密封气体,转移腔室中提供有用于分离反应区和转移区的分离板14(该图中省略了通过其向转移腔室5中或自所述转移腔室转移晶片的闸阀)。转移腔室还提供有排气管线6。在一些实施例中,在同一反应空间中进行多元素膜的沉积和表面处理,使得所有步骤都可连续地进行而不将衬底暴露于空气或其他含氧气氛中。
在一些实施例中,在图1A中所描绘的装置中,图1B中示意的切换非活性气体的流量与前体气体的流量的系统(在前面描述)可用于引入脉冲形式的前体气体而基本上不使反应腔室的压力波动。
熟练技术人员应认识,所述装置包括一个或多个编程或以其他方式配置为使得沉积和本文其他地方描述的反应器清洁工艺能够进行的控制器(未示出)。如熟练技术人员应理解,所述一个或多个控制器可与各种电源、加热系统、泵、机器人装置和反应器的气体流量控制器或阀门连通。
在一些实施例中,可使用双室反应器(用于加工彼此靠近设置的晶片的两个部分或隔室),其中反应气体和稀有气体可通过共享管线供给而前体气体通过未共享管线供给。
具有填充能力的膜可应用于各种半导体装置,包括但不限于3D交叉点存储装置中的单元隔离、自对准通孔、伪栅极(替换当前的多晶Si)、反向色调图案化、PC RAM隔离、切割硬掩模和DRAM存储节点接触(SNC)隔离。
实例
在未指定条件和/或结构的以下实例中,鉴于本公开,本领域技术人员可容易地按照常规实验提供此类条件和/或结构。熟练技术人员应认识,实例中使用的装置包括一个或多个编程或以其他方式配置为使得沉积和本文其他地方描述的反应器清洁工艺能够进行的控制器(未示出)。如熟练技术人员应理解,所述一个或多个控制器可与各种电源、加热系统、泵、机器人装置和反应器的气体流量控制器或阀门连通。
参考实例1(图4)
通过美国专利申请号16/026,711和16/427,288中定义的PEALD样工艺使用环戊烯在Si衬底(具有300mm的直径和0.7mm的厚度)上沉积厚度为100-150nm的可流动无定形碳聚合物膜(a-C毯层),然后使用图1A中所示的设备和图1B中所示的气体供应系统(FPS)在下表1中示出的条件下进行图10中示意的沉积工艺。在下表1中示出的条件下对可流动无定形碳聚合物膜进行沉积后等离子体处理,其在与沉积工艺中相同的反应腔室中进行,以评估每个沉积后处理所致的膜收缩效应。
表1(数值为近似值)
Figure BDA0002581002210000161
Figure BDA0002581002210000171
此外,图10中报道的关于灰化的所有数据是对没有进行氮等离子体处理循环的层完成的。
图4为示出暴露于不同气体的等离子体的膜的收缩率结果的图。如图4中所示,沉积后等离子体处理对可流动aC的毯层的影响随如下的气体类型而异:
Ar:小的厚度减小(如果处理延长,此影响会饱和)→致密化;
H2:极大的厚度损失(如果处理延长,此影响不会饱和但会使所有膜灰化)→“正常”灰化/干蚀刻效果;
N2/H2:极大的厚度损失(如果处理延长,此影响不会饱和但会使所有膜灰化,也参见图5)→“正常”灰化/干蚀刻效果;
O2/Ar:极大的厚度损失(如果处理延长,此影响不会饱和但会使所有膜灰化,也参见图5)→“正常”灰化/干蚀刻效果;和
N2:厚度增加→与“正常”灰化/干蚀刻效果相反。
令人惊奇的是,对可流动a-C膜进行的氮等离子体处理引起了由等离子体生成的气态物种的重新沉积(粘着)。
参考实例2(图5)
除了将沉积继续直到沟槽被完全填充并且a-C膜的顶表面变为平面的以外,以与参考实例1中的那些相同的方式在相同的条件下,以自下而上的方式通过PEALD样工艺在具有沟槽的Si衬底(具有300mm的直径和0.7mm的厚度)上沉积可流动无定形碳聚合物膜(a-C膜),沟槽具有大约25至100nm的开口并具有大约85nm的深度(纵横比为大约3.4至0.85)。其后,除了将等离子体处理继续直到所有膜都被去除以外,以与参考实例1中使用O2/Ar和N2/H2的那些相同的方式在相同的条件下进行沉积后等离子体处理。
图5示出了沟槽的横截面图的STEM照片,其中原始的(a)代表进行了可流动膜的完全填充沉积的沟槽,原始的(b)代表(a)中所示的沟槽在O2/Ar灰化之后,原始的(c)代表(a)中所示的沟槽在N2/H2灰化之后,列(1)代表在高放大倍数下的沟槽(比例尺代表60nm),列(2)代表在低放大倍数下的沟槽(比例尺代表300nm)。确认O2/Ar灰化和N2/H2灰化二者均可导致膜的完全去除。
实例1和比较例1(图6)
在实例1中,除了将沉积循环进行36次(3×12沉积循环+N2等离子体处理)以外,以与参考实例1中的那些相同的方式在相同的条件下,以自下而上的方式通过PEALD样工艺在具有沟槽的Si衬底(具有300mm的直径和0.7mm的厚度)上沉积可流动无定形碳聚合物膜(a-C膜),沟槽具有大约70至100nm的开口并具有大约85nm的深度(纵横比为大约1.2至0.85)。在比较例1中,除了沉积温度(衬托器和壁的温度)为100℃而实例1中为75℃以外,以与实例1中相同的方式沉积无定形碳聚合物膜。其后,除了将氮等离子体处理进行60秒以外,以与参考实例1中使用N2作为后处理气体的那些相同的方式在相同的条件下对每个膜进行循环氮等离子体处理。
图6示出:(a)实例1中在75℃下进行了膜沉积、接着暴露于N2等离子体的沟槽的横截面图的STEM照片,和(b)比较实例1中在100℃下进行了膜沉积、接着暴露于N2等离子体的沟槽的横截面图的STEM照片。从图6可以看出,氮等离子体处理不是决定顶部选择性的唯一参数,即,尽管两个膜都接受了相同的沉积循环处理和相同的氮等离子体处理,但一个(实例1)在75℃下沉积,而另一个(比较实例1)在100℃下沉积,从而导致最终膜的显著拓扑差异。考虑到沉积膜的流动性与沉积温度成反比并且在75℃下沉积的膜是可流动的而在100℃下沉积的膜几乎不可流动,故上述拓扑差异的原因预计在于在接收N2等离子体时仅可流动(弱、易碎、低质量)层可形成将导致重新沉积和顶部选择性的气态物种。通过不仅调节沉积温度而且还调节其他工艺参数,可在保持流动性的同时沉积膜,并且当暴露于氮等离子体时,可获得最终膜的顶部选择性拓扑。鉴于本公开,本领域熟练技术人员可容易地按照常规实验提供此类条件和/或结构。
实例2和比较例2(图7)
在实例2中,以与实例1中的那些相同的方式在相同的条件下,以自下而上的方式通过PEALD样工艺在具有沟槽的Si衬底(具有300mm的直径和0.7mm的厚度)上沉积可流动无定形碳聚合物膜(a-C膜),沟槽具有大约70至100nm的开口并具有大约85nm的深度(纵横比为大约1.2至0.85)。其后,以与实例1中相同的方式在相同的条件下对膜进行沉积后氮等离子体处理。在比较例2中,除了将氮等离子体处理进行10秒而在实例2中进行60秒以外,在与实例2中相同的条件下进行相同的工艺。
图7示出:(a)比较例2中进行了可流动膜沉积、接着暴露于N2等离子体10秒的沟槽的横截面图的STEM照片,和(b)实例2中进行了可流动膜沉积、接着暴露于N2等离子体60秒的沟槽的横截面图的STEM照片。从图7可以看出,更长时间的N2等离子体处理对于顶部拓扑选择性是有益的。通过调节氮等离子体处理的持续时间,可以顶部选择性方式沉积膜。鉴于本公开,本领域熟练技术人员可容易地按照常规实验提供此类条件和/或结构。
实例3(表2,图9)
在实例3中,以与实例1中相同的方式在相同的条件下形成无定形碳聚合物膜,并然后以与实例1中相同的方式在相同的条件下进行氮等离子体处理,以在沟槽的顶表面上获得重新沉积的无定形碳聚合物膜。评估所得无定形碳聚合物膜的性质。结果示于下表2和图9中。
表2(数值为近似值)
Figure BDA0002581002210000191
如表2中所示,经用氮等离子体处理的无定形碳聚合物膜(“重新沉积膜”)的热收缩率明显低于未经等离子体处理的无定形碳聚合物膜(“STD膜”)的热收缩率,表明重新沉积膜的热稳定性改善了。此外,组成分析显示重新沉积膜为氮掺杂烃膜,而标准膜为烃膜。此外,重新沉积膜具有比标准膜更高的RI(更高的密度)、更低的接触角和更高的压缩应力。另外,图10示出了沉积状态的无定形碳聚合物膜(“STD”)和经用N2等离子体处理的重新沉积的无定形碳聚合物膜(“N2-CK”)的傅里叶变换红外(FTIR)光谱。如图9中所示,重新沉积膜产生了-NH键和-R-N-C键,并且考虑到表2中示出的结果,重新沉积膜很可能促进了膜基质的进一步聚合并掺杂了氮,从而减少热不稳定的氢相关部分,如来自无定形碳聚合物膜的甲基和/或亚甲基部分。应当注意,在每种膜中都检测到氧原子,并且这可能是因为在衬底从反应室中取出后,膜暴露于空气中。
在一些实施例中,标准膜为具有由大于50%的碳原子和大于35%但小于50%的氢原子构成的组成的氢化无定形碳聚合物(如使用例如Rutherford背散射光谱法(RBS)所测得),而重新沉积膜为具有由大于35%但小于50%的碳原子和大于35%但小于50%的氢原子及大于10%但小于20%的氮原子构成的组成的氮掺杂氢化无定形碳聚合物。
实例4(图8)
在实例4中,以与实例1中的那些相同的方式在相同的条件下,以自下而上的方式通过PEALD样工艺在具有沟槽的Si衬底(具有300mm的直径和0.7mm的厚度)上沉积可流动无定形碳聚合物膜(a-C膜),沟槽具有大约70至100nm的开口并具有大约85nm的深度(纵横比为大约1.2至0.85)。其后,以与实例1中相同的方式在相同的条件下对膜进行沉积后氮等离子体处理。然而,在实例4中,整个循环进行了25次(12个沉积循环+N2等离子体处理)。
图8示出了实例4中进行了顶部选择沉积的沟槽的横截面图的STEM照片。如图8中所示,实现了显著的膜的顶部选择性拓扑,其中顶表面上重新沉积膜的厚度为约145nm,而沟槽底部处的膜的厚度为约1至3nm。底部膜可通过等离子体灰化基本上或完全去除(尽管沉积膜也会以与底部膜中几乎相同的程度灰化,但由于顶部膜与底部膜之间的厚度差异很大,这使得顶部膜的厚度减小可忽略)。
本领域技术人员应理解,可作许多和各种修改而不偏离本发明的精神。因此,应清楚地理解,本发明的形式仅是示意性的,而非意在限制本发明的范围。

Claims (12)

1.一种使用可流动碳基膜在衬底上进行顶部选择性沉积的方法,所述衬底具有由顶表面、侧壁和底部限定的凹部,所述方法包括步骤:
(i)在反应空间中在所述衬底的凹部中沉积可流动碳基膜,直到所述凹部中所述可流动碳基膜的厚度达到预定的厚度,然后停止沉积步骤;和
(ii)在基本上不含氢和氧的气氛中将所述碳基膜暴露于氮等离子体以选择性地在所述顶表面上重新沉积碳基膜。
2.根据权利要求1所述的方法,其中将步骤(i)和(ii)重复多次,直到所述顶表面上所述碳基膜的厚度达到所需的最终厚度。
3.根据权利要求1所述的方法,其中步骤(i)中所述预定的厚度大于单层厚度但为15nm或更小。
4.根据权利要求1所述的方法,其中步骤(ii)中的所述气氛在步骤(i)中使用的反应空间中。
5.根据权利要求1所述的方法,其中步骤(ii)中的所述气氛在不同于步骤(i)中使用的反应空间的另一个反应空间中。
6.根据权利要求1所述的方法,其中步骤(ii)包括:
向所述气氛中进料N2而不进料氢和氧;和
以生成所述氮等离子体的方式向所述气氛施加RF功率。
7.根据权利要求6所述的方法,其中RF功率在每单位面积所述衬底0.14W/cm2至1.41W/cm2的范围内,并且步骤(ii)的持续时间在10秒至300秒的范围内。
8.根据权利要求1所述的方法,其中步骤(i)通过循环氮等离子体沉积进行。
9.根据权利要求1所述的方法,其中所述碳基膜被重新沉积于其上的所述衬底顶表面由硅构成。
10.根据权利要求1所述的方法,所述方法还包括在步骤(ii)之后通过O2、H2、O2/Ar、或N2/H2等离子体灰化去除所述底部处的可流动碳基膜。
11.根据权利要求1所述的方法,其中所述碳基膜为无定形碳膜。
12.根据权利要求1所述的方法,其中所述沉积的可流动碳基膜由氢化无定形碳聚合物构成,而所述重新沉积的碳基膜由氮掺杂氢化无定形碳聚合物构成。
CN202010667639.0A 2019-07-19 2020-07-13 形成拓扑受控的无定形碳聚合物膜的方法 Pending CN112242295A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962876589P 2019-07-19 2019-07-19
US62/876,589 2019-07-19

Publications (1)

Publication Number Publication Date
CN112242295A true CN112242295A (zh) 2021-01-19

Family

ID=74170506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010667639.0A Pending CN112242295A (zh) 2019-07-19 2020-07-13 形成拓扑受控的无定形碳聚合物膜的方法

Country Status (4)

Country Link
US (1) US20210020432A1 (zh)
JP (1) JP2021019199A (zh)
KR (1) KR20210010817A (zh)
CN (1) CN112242295A (zh)

Families Citing this family (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (ko) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. 기판 가공 장치 및 그 동작 방법
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
KR20180068582A (ko) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102491945B1 (ko) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
JP7206265B2 (ja) 2017-11-27 2023-01-17 エーエスエム アイピー ホールディング ビー.ブイ. クリーン・ミニエンバイロメントを備える装置
CN111316417B (zh) 2017-11-27 2023-12-22 阿斯莫Ip控股公司 与批式炉偕同使用的用于储存晶圆匣的储存装置
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TWI799494B (zh) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 沈積方法
CN111630203A (zh) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 通过等离子体辅助沉积来沉积间隙填充层的方法
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR20190128558A (ko) 2018-05-08 2019-11-18 에이에스엠 아이피 홀딩 비.브이. 기판 상에 산화물 막을 주기적 증착 공정에 의해 증착하기 위한 방법 및 관련 소자 구조
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
WO2020003000A1 (en) 2018-06-27 2020-01-02 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
KR20210024462A (ko) 2018-06-27 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 금속 함유 재료를 형성하기 위한 주기적 증착 방법 및 금속 함유 재료를 포함하는 필름 및 구조체
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (ko) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
CN110970344A (zh) 2018-10-01 2020-04-07 Asm Ip控股有限公司 衬底保持设备、包含所述设备的系统及其使用方法
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (ko) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (ja) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム
TWI819180B (zh) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
KR20200091543A (ko) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN111524788B (zh) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
KR20200102357A (ko) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. 3-d nand 응용의 플러그 충진체 증착용 장치 및 방법
JP2020136678A (ja) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材表面内に形成された凹部を充填するための方法および装置
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
TW202104632A (zh) 2019-02-20 2021-02-01 荷蘭商Asm Ip私人控股有限公司 用來填充形成於基材表面內之凹部的循環沉積方法及設備
JP2020133004A (ja) 2019-02-22 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材を処理するための基材処理装置および方法
KR20200108242A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
KR20200108243A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOC 층을 포함한 구조체 및 이의 형성 방법
KR20200108248A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOCN 층을 포함한 구조체 및 이의 형성 방법
KR20200116033A (ko) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. 도어 개방기 및 이를 구비한 기판 처리 장치
KR20200116855A (ko) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130118A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP2020188255A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
JP2020188254A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
KR20200141003A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 가스 감지기를 포함하는 기상 반응기 시스템
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP2021015791A (ja) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
KR20210010307A (ko) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
KR20210010820A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (zh) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 形成拓扑受控的无定形碳聚合物膜的方法
CN112309843A (zh) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 实现高掺杂剂掺入的选择性沉积方法
CN112309899A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
CN112309900A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (zh) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 用于化学源容器的液位传感器
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
KR20210029090A (ko) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR20210029663A (ko) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
TW202129060A (zh) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 基板處理裝置、及基板處理方法
TW202115273A (zh) 2019-10-10 2021-04-16 荷蘭商Asm Ip私人控股有限公司 形成光阻底層之方法及包括光阻底層之結構
KR20210045930A (ko) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. 실리콘 산화물의 토폴로지-선택적 막의 형성 방법
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (ko) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
KR20210050453A (ko) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (ko) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (ko) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
KR20210065848A (ko) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. 제1 유전체 표면과 제2 금속성 표면을 포함한 기판 상에 타겟 막을 선택적으로 형성하기 위한 방법
CN112951697A (zh) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 基板处理设备
CN112885693A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
CN112885692A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
JP2021090042A (ja) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210078405A (ko) 2019-12-17 2021-06-28 에이에스엠 아이피 홀딩 비.브이. 바나듐 나이트라이드 층을 형성하는 방법 및 바나듐 나이트라이드 층을 포함하는 구조
KR20210080214A (ko) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
JP2021109175A (ja) 2020-01-06 2021-08-02 エーエスエム・アイピー・ホールディング・ベー・フェー ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
KR20210095050A (ko) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TW202130846A (zh) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 形成包括釩或銦層的結構之方法
TW202146882A (zh) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
TW202203344A (zh) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 專用於零件清潔的系統
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
KR20210117157A (ko) 2020-03-12 2021-09-28 에이에스엠 아이피 홀딩 비.브이. 타겟 토폴로지 프로파일을 갖는 층 구조를 제조하기 위한 방법
KR20210124042A (ko) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TW202146689A (zh) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 阻障層形成方法及半導體裝置的製造方法
TW202145344A (zh) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
TW202146831A (zh) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法
TW202140831A (zh) 2020-04-24 2021-11-01 荷蘭商Asm Ip私人控股有限公司 形成含氮化釩層及包含該層的結構之方法
KR20210134226A (ko) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
WO2021225091A1 (ja) * 2020-05-08 2021-11-11 東京エレクトロン株式会社 成膜方法及び成膜装置
KR20210141379A (ko) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
KR20210143653A (ko) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210145078A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
TW202200837A (zh) 2020-05-22 2022-01-01 荷蘭商Asm Ip私人控股有限公司 用於在基材上形成薄膜之反應系統
TW202201602A (zh) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202218133A (zh) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 形成含矽層之方法
TW202217953A (zh) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
KR20220010438A (ko) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. 포토리소그래피에 사용하기 위한 구조체 및 방법
TW202204662A (zh) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
TW202212623A (zh) 2020-08-26 2022-04-01 荷蘭商Asm Ip私人控股有限公司 形成金屬氧化矽層及金屬氮氧化矽層的方法、半導體結構、及系統
US20220076945A1 (en) * 2020-09-08 2022-03-10 Applied Materials, Inc. Amorphous carbon for gap fill
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
KR20220053482A (ko) 2020-10-22 2022-04-29 에이에스엠 아이피 홀딩 비.브이. 바나듐 금속을 증착하는 방법, 구조체, 소자 및 증착 어셈블리
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
TW202235675A (zh) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 注入器、及基板處理設備
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
CN116918044A (zh) * 2021-03-22 2023-10-20 株式会社国际电气 半导体装置的制造方法、基板处理方法、基板处理装置和程序
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
JP2022185487A (ja) * 2021-06-02 2022-12-14 東京エレクトロン株式会社 成膜方法及び成膜装置
JP2022185488A (ja) * 2021-06-02 2022-12-14 東京エレクトロン株式会社 成膜方法及び成膜装置
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018738A1 (en) * 2002-07-22 2004-01-29 Wei Liu Method for fabricating a notch gate structure of a field effect transistor
US6750127B1 (en) * 2003-02-14 2004-06-15 Advanced Micro Devices, Inc. Method for fabricating a semiconductor device using amorphous carbon having improved etch resistance
JP2010087475A (ja) * 2008-09-03 2010-04-15 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び製造装置
CN109690735B (zh) * 2016-09-14 2023-02-21 玛特森技术公司 用于高纵横比结构的剥离方法

Also Published As

Publication number Publication date
JP2021019199A (ja) 2021-02-15
KR20210010817A (ko) 2021-01-28
US20210020432A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
CN112242295A (zh) 形成拓扑受控的无定形碳聚合物膜的方法
US11282698B2 (en) Method of forming topology-controlled amorphous carbon polymer film
CN111910175B (zh) 用于重整非晶碳聚合物膜的方法
US11646197B2 (en) Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923190B2 (en) Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11972944B2 (en) Method for depositing a gap-fill layer by plasma-assisted deposition
TWI804706B (zh) 氧化矽之拓撲選擇性膜形成之方法
CN108122739B (zh) 拓扑限制的等离子体增强循环沉积的方法
CN113249706A (zh) 用于沉积间隙填充流体的方法及相关系统和设备
CN113140503A (zh) 形成高纵横比特征的方法
CN113270310A (zh) 形成介电材料层的方法、结构和装置及形成层的系统
US20210043506A1 (en) Methods and apparatus for hybrid feature metallization
US9368448B2 (en) Metal-containing films as dielectric capping barrier for advanced interconnects
TWI839544B (zh) 形成形貌受控的非晶碳聚合物膜之方法
WO2022055732A1 (en) Amorphous carbon for gap fill

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination