CN112174667A - 一种y2o3窗口材料的制备方法 - Google Patents

一种y2o3窗口材料的制备方法 Download PDF

Info

Publication number
CN112174667A
CN112174667A CN202011002192.1A CN202011002192A CN112174667A CN 112174667 A CN112174667 A CN 112174667A CN 202011002192 A CN202011002192 A CN 202011002192A CN 112174667 A CN112174667 A CN 112174667A
Authority
CN
China
Prior art keywords
biscuit
preparation
temperature
sintering
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011002192.1A
Other languages
English (en)
Other versions
CN112174667B (zh
Inventor
刘孟寅
李霄鹏
王跃忠
张高峰
荣景颂
李兴旺
甘硕文
张荣实
刘华松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Jinhang Institute of Technical Physics
Original Assignee
Tianjin Jinhang Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Jinhang Institute of Technical Physics filed Critical Tianjin Jinhang Institute of Technical Physics
Priority to CN202011002192.1A priority Critical patent/CN112174667B/zh
Publication of CN112174667A publication Critical patent/CN112174667A/zh
Application granted granted Critical
Publication of CN112174667B publication Critical patent/CN112174667B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本申请提供有一种Y2O3窗口材料的制备方法,包括:基于球磨制备的方法获得Y2O3复合粉体;将球磨制备的Y2O3复合粉体置于石墨模具内,在常温下使用2‑10MPa的压力预先冷压,获得一定的初始密度;将经过预先冷压的石墨模具置于真空热压炉内,2‑4h升温至800‑1300℃;保温30‑60min后,施加20‑70MPa的压力,并保压10‑120min;得到素坯,取出后将素坯表面石墨去除;将处理后的素坯置于BN坩埚内,并用包埋粉完全覆盖,再将BN坩埚置于高温烧结炉内,在惰性气体气氛下,1500‑1700℃下烧结10‑50h,获得陶瓷坯体;而后自然冷却,取出陶瓷坯体,打磨抛光后得到Y2O3透明陶瓷。

Description

一种Y2O3窗口材料的制备方法
技术领域
本公开具体公开一种Y2O3窗口材料的制备方法。
背景技术
Y2O3窗口材料的热障温度可达400℃,远高于蓝宝石的100℃,是目前报道的唯一可在400℃高温下使用的光学窗口材料;其具备较低的声子能量使得由其制作的窗口在0.25μm-6μm波段都能达到80%左右的透过率,且在400℃高温下,其长波截止波长仍能保持在6μm以上。此外,对于波长5μm的红外光的透过率而言,Y2O3窗口材料的透过率仅从室温时的83%下降到400℃时的82%,而蓝宝石在400℃时对于波长5μm光的透过率则下降到48%;同时,纯相Y2O3在3-5μm的发射率在400℃时最低仅为~0.02,是相同条件下蓝宝石的1/10,因而是一种理想的可应用于高温环境的红外窗口材料。
但是,采用传统在室温条件下干压冷等成形的素坯,由于冷态下粉体流动性较差,制备的素坯不同位置的致密度难以保持一致,最终导致烧结制备后的样品的光学均匀性较差,且由于密度不均导致的烧结过程中收缩程度不一致还会导致样品开裂,亟待改进。同时传统高温热压烧结(1400℃以上)过程中,由于还原气氛存在,在高温高压的作用下,Y2O3粉体易于石墨模具发生反应,导致烧结的样品发黑,难于直接制备出透过率较高的样品。
发明内容
鉴于现有技术中的上述缺陷或不足,本申请旨在提供一种相较于现有技术而言,能够有效抑制氧缺陷产生,并能够提升样品光学均匀性的Y2O3窗口材料的制备方法。
一种Y2O3窗口材料的制备方法,包括以下步骤:制备Y2O3复合粉体并预处理:基于球磨制备的方法获得Y2O3复合粉体;将球磨制备的Y2O3复合粉体置于石墨模具内,在常温下使用2-10MPa的压力预先冷压,获得一定的初始密度;低温热压下制备素坯:将经过预先冷压的石墨模具置于真空热压炉内,2-4h升温至800-1300℃;保温30-60min后,施加20-70MPa的压力,并保压10-120min;得到素坯,取出后将素坯表面石墨去除;高温烧结制备陶瓷坯体并得到Y2O3透明陶瓷:将处理后的素坯置于BN坩埚内,并用包埋粉完全覆盖,再将BN坩埚置于高温烧结炉内,在惰性气体气氛下,1500-1700℃下烧结10-50h,获得陶瓷坯体;而后自然冷却,取出陶瓷坯体,打磨抛光后得到Y2O3透明陶瓷。
根据本申请实施例提供的技术方案,制备Y2O3复合粉体的步骤如下:以Y2O3和烧结助剂为原料,并分别按照质量分数为60~99ωt%、1~40ωt%的比例称取;以耐磨氧化铝或氧化锆球为球磨介质,无水乙醇为分散介质,球、料、无水乙醇比为4:1:2~12:1:4,加入预定量的分散剂,球磨时间为10~100h,得到浆料;将所得浆料经50~80℃真空干燥处理去除分散介质后,将去除分散介质的粉体进行研磨并过100目筛后,获得粉状坯料,经球磨处理,得到含有烧结助剂的Y2O3复合粉体。
根据本申请实施例提供的技术方案,所述烧结助剂为La2O3、Sc2O3、ZrO2中的至少一种。
根据本申请实施例提供的技术方案,所述包埋粉包括:BN和ZrO2,其中ZrO2质量分数大于等于50%。
根据本申请实施例提供的技术方案,在高温烧结制备陶瓷坯体的步骤过程中,烧结升、降温速率为5-10℃/min。
根据本申请实施例提供的技术方案,所述惰性气体为氮气。
综上所述,本申请公开有一种Y2O3窗口材料的制备方法的具体步骤。为解决素坯不同位置的致密度难以保持一致而导致的烧结制备后的样品的光学均匀性较差的技术问题,在上述技术方案中,制备Y2O3复合粉体并预处理的步骤中,在常温下预冷压获得具备初始密度的冷压模体,然后将预先冷压的石墨模具置于真空热压炉内,在低温热压的环境下制备素坯,最终得到致密度为50-80%的素坯;然后在高温烧结制备致密度大于99%的陶瓷坯体并经冷却、打磨、抛光后得到Y2O3透明陶瓷。
基于上述具体地制备步骤,采用低温热压的环境初步烧结得到素坯的过程,相较于冷压制备的过程而言,在低温热压的环境下,粉体的流动性得以显著提高,能够得到致密度达到50-80%的素坯,然后,基于该致密度达到50-80%素坯,进行高温烧结后即能够得到致密度大于99%的陶瓷坯体。
此外,在低温热压的环境下,Y2O3复合粉体中有机物可以一定程度的挥发,挥发的有机物能够有效地避免高温热压烧结过程中Y2O3复合粉体与石墨模具发生反应而导致烧结的样品出现发黑的情况,进而能够制备出透过率较高的样品。
本申请的技术方案进一步地给出了Y2O3复合粉体的具体步骤,以及具体地优化参数。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1所示的经过实施例一或实施例二或实施例三制备说得的Y2O3透明陶瓷;
图2所示的经过对比例制备说得的Y2O3透明陶瓷。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
实施例一:
一种Y2O3窗口材料的制备方法,包括以下步骤:
制备Y2O3复合粉体并预处理:基于球磨制备的方法获得Y2O3复合粉体;将球磨制备的Y2O3复合粉体置于石墨模具内,在常温下使用2MPa的压力预先冷压,获得一定的初始密度。
具体地,制备Y2O3复合粉体的步骤如下:以Y2O3和烧结助剂为原料,并分别按照质量分数为60ωt%、40ωt%的比例称取。
以耐磨氧化铝或氧化锆球为球磨介质,无水乙醇为分散介质,球、料、无水乙醇比为4:1:2,加入预定量的分散剂,球磨时间为10h,得到浆料;将所得浆料经80℃真空干燥处理去除分散介质后,将去除分散介质的粉体进行研磨并过100目筛后,获得粉状坯料,经球磨处理,得到含有烧结助剂的Y2O3复合粉体。
低温热压下制备素坯:将经过预先冷压的石墨模具置于真空热压炉内,2h升温至800℃;保温30min后,施加20MPa的压力,并保压10min;得到致密度为55%素坯,取出后将素坯表面石墨去除。
高温烧结制备陶瓷坯体并得到Y2O3透明陶瓷:将处理后的素坯置于BN坩埚内,并用包埋粉完全覆盖,再将BN坩埚置于高温烧结炉内,在惰性气体气氛下,1500℃下烧结50h,获得致密度为99.3%陶瓷坯体;而后自然冷却,取出陶瓷坯体,打磨抛光后得到Y2O3透明陶瓷。
请参考图1所示的经过本实施例制备说得的Y2O3透明陶瓷,以Φ70mm样品为例,其中:a、b、c、d为致密度测试点,经测试,各测试点的透过率如下表1所示:
表1各测试点在不同波长下透过率
Figure BDA0002694714870000041
实施例二:
一种Y2O3窗口材料的制备方法,包括以下步骤:
制备Y2O3复合粉体并预处理:基于球磨制备的方法获得Y2O3复合粉体;将球磨制备的Y2O3复合粉体置于石墨模具内,在常温下使用10MPa的压力预先冷压,获得一定的初始密度。
具体地,
制备Y2O3复合粉体的步骤如下:以Y2O3和烧结助剂为原料,并分别按照质量分数为99ωt%、1ωt%的比例称取;以耐磨氧化铝或氧化锆球为球磨介质,无水乙醇为分散介质,球、料、无水乙醇比为12:1:4,加入预定量的分散剂,球磨时间为100h,得到浆料;将所得浆料经50℃真空干燥处理去除分散介质后,将去除分散介质的粉体进行研磨并过100目筛后,获得粉状坯料,经球磨处理,得到含有烧结助剂的Y2O3复合粉体。
低温热压下制备素坯:将经过预先冷压的石墨模具置于真空热压炉内,4h升温至1300℃;保温60min后,施加70MPa的压力,并保压120min;得到致密度为80%素坯,取出后将素坯表面石墨去除。
高温烧结制备陶瓷坯体并得到Y2O3透明陶瓷:将处理后的素坯置于BN坩埚内,并用包埋粉完全覆盖,再将BN坩埚置于高温烧结炉内,在惰性气体气氛下,1700℃下烧结10h,获得致密度为99.6%陶瓷坯体;而后自然冷却,取出陶瓷坯体,打磨抛光后得到Y2O3透明陶瓷。
请参考图1所示的经过本实施例制备说得的Y2O3透明陶瓷,以Φ70mm样品为例,其中:a、b、c、d为致密度测试点,经测试,各测试点的透过率如下表2所示:
表2各测试点在不同波长下透过率
Figure BDA0002694714870000051
实施例三:
一种Y2O3窗口材料的制备方法,包括以下步骤:
制备Y2O3复合粉体并预处理:基于球磨制备的方法获得Y2O3复合粉体;将球磨制备的Y2O3复合粉体置于石墨模具内,在常温下使用6MPa的压力预先冷压,获得一定的初始密度。
具体地,制备Y2O3复合粉体的步骤如下:以Y2O3和烧结助剂为原料,并分别按照质量分数为79.5ωt%、20.5ωt%的比例称取。
以耐磨氧化铝或氧化锆球为球磨介质,无水乙醇为分散介质,球、料、无水乙醇比为6:1:3,加入预定量的分散剂,球磨时间为55h,得到浆料;将所得浆料经65℃真空干燥处理去除分散介质后,将去除分散介质的粉体进行研磨并过100目筛后,获得粉状坯料,经球磨处理,得到含有烧结助剂的Y2O3复合粉体。
低温热压下制备素坯:将经过预先冷压的石墨模具置于真空热压炉内,3h升温至1050℃;保温45min后,施加45MPa的压力,并保压65min;得到致密度为70%素坯,取出后将素坯表面石墨去除。
高温烧结制备陶瓷坯体并得到Y2O3透明陶瓷:将处理后的素坯置于BN坩埚内,并用包埋粉完全覆盖,再将BN坩埚置于高温烧结炉内,在惰性气体气氛下,1650℃下烧结30h,获得致密度为99.8%陶瓷坯体;而后自然冷却,取出陶瓷坯体,打磨抛光后得到Y2O3透明陶瓷。
请参考图1所示的经过本实施例制备说得的Y2O3透明陶瓷,以Φ70mm样品为例,其中:a、b、c、d为致密度测试点,经测试,各测试点的透过率如下表3所示:
表3各测试点在不同波长下透过率
Figure BDA0002694714870000061
对比例:
请参考图2所示的采用传统的真空无压或热压烧结方法制备的Y2O3窗口材料,其在:A、B、C、D为致密度测试点,经测试,各测试点的透过率如下表4所示:
表4各测试点在不同波长下透过率
Figure BDA0002694714870000062
经过表1、表2、表3和表4的对比可知,经过实施例一、实施例二、实施例三制备所得的Y2O3窗口材料,在各波长的测试下,透过率均高于对比例中的制备所得的Y2O3窗口材料。
即:
测试500nm波长下,实施例一中a、b、c、d处的透过率分别大于对比例中A、B、C、D处的透过率;实施例二中a、b、c、d处的透过率分别大于对比例中A、B、C、D处的透过率;实施例三中a、b、c、d处的透过率分别大于对比例中A、B、C、D处的透过率。
测试1064nm波长下,实施例一中a、b、c、d处的透过率分别大于对比例中A、B、C、D处的透过率;实施例二中a、b、c、d处的透过率分别大于对比例中A、B、C、D处的透过率;实施例三中a、b、c、d处的透过率分别大于对比例中A、B、C、D处的透过率。
测试3-5μm波长下,实施例一中a、b、c、d处的透过率分别大于对比例中A、B、C、D处的透过率;实施例二中a、b、c、d处的透过率分别大于对比例中A、B、C、D处的透过率;实施例三中a、b、c、d处的透过率分别大于对比例中A、B、C、D处的透过率。
选择实施例一中单一波长下四个测试点的进行分析比对:
以方差来对数据的均匀性进行表征:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差,记作S^2。在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。计算公式为:
S^2=1/n[(x1-x)^2+(x2-x)^2+……+(xn-x)^2]
其中:x为这组数据中的数据,n为大于0的整数。
以500nm波长下,实施例一中a、b、c、d处的均匀性,用方差来表征,其数值为:S^2=0.1875。
对比例中A、B、C、D处的均匀性,用方差来表征,其数值为:S^2=591.1875。
基于上述分析可知,对比例中方差的数值明显高于实施例一中的数值,也即对比例中的数据波动更大,更不稳定,也即:实施例一中数据的均匀性明显好于对比例中数据的均匀性。
以此类推,进行计算:
1064nm波长下,实施例一中a、b、c、d处的均匀性明显好于对比例中A、B、C、D处的均匀性。
3-5μm波长下,实施例一中a、b、c、d处的均匀性明显好于对比例中A、B、C、D处的均匀性。
选择实施例二中单一波长下四个测试点的进行分析比对可知,即:
500nm波长下,实施例二中a、b、c、d处的均匀性指标明显好于对比例中A、B、C、D处的均匀性指标。
1064nm波长下,实施例二中a、b、c、d处的均匀性明显好于对比例中A、B、C、D处的均匀性。
3-5μm波长下,实施例二中a、b、c、d处的均匀性明显好于对比例中A、B、C、D处的均匀性。
选择实施例三中单一波长下四个测试点的进行分析比对可知,即:
500nm波长下,实施例三中a、b、c、d处的均匀性明显好于对比例中A、B、C、D处的均匀性。
1064nm波长下,实施例三中a、b、c、d处的均匀性明显好于对比例中A、B、C、D处的均匀性。
3-5μm波长下,实施例三中a、b、c、d处的均匀性明显好于对比例中A、B、C、D处的均匀性。
在任一优选的实施例中,所述烧结助剂为La2O3、Sc2O3、ZrO2中的至少一种。
在任一优选的实施例中,所述包埋粉包括:BN和ZrO2,其中ZrO2质量分数大于等于50%。
在任一优选的实施例中,在高温烧结制备陶瓷坯体的步骤过程中,烧结升、降温速率为5-10℃/min。
在任一优选的实施例中,所述惰性气体为氮气。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (6)

1.一种Y2O3窗口材料的制备方法,其特征在于:包括以下步骤:
制备Y2O3复合粉体并预处理:基于球磨制备的方法获得Y2O3复合粉体;将球磨制备的Y2O3复合粉体置于石墨模具内,在常温下使用2-10MPa的压力预先冷压,获得一定的初始密度;
低温热压下制备素坯:将经过预先冷压的石墨模具置于真空热压炉内,2-4h升温至800-1300℃;保温30-60min后,施加20-70MPa的压力,并保压10-120min;得到素坯,取出后将素坯表面石墨去除;
高温烧结制备陶瓷坯体并得到Y2O3透明陶瓷:将处理后的素坯置于BN坩埚内,并用包埋粉完全覆盖,再将BN坩埚置于高温烧结炉内,在惰性气体气氛下,1500-1700℃下烧结10-50h,获得陶瓷坯体;而后自然冷却,取出陶瓷坯体,打磨抛光后得到Y2O3透明陶瓷。
2.根据权利要求1所述的一种Y2O3窗口材料的制备方法,其特征在于:
制备Y2O3复合粉体的步骤如下:
以Y2O3和烧结助剂为原料,并分别按照质量分数为60~99ωt%、1~40ωt%的比例称取;
以耐磨氧化铝或氧化锆球为球磨介质,无水乙醇为分散介质,球、料、无水乙醇比为4:1:2~12:1:4,加入预定量的分散剂,球磨时间为10~100h,得到浆料;
将所得浆料经50~80℃真空干燥处理去除分散介质后,将去除分散介质的粉体进行研磨并过100目筛后,获得粉状坯料,经球磨处理,得到含有烧结助剂的Y2O3复合粉体。
3.根据权利要求2所述的一种Y2O3窗口材料的制备方法,其特征在于:所述烧结助剂为La2O3、Sc2O3、ZrO2中的至少一种。
4.根据权利要求1至3任一项所述的一种Y2O3窗口材料的制备方法,其特征在于:所述包埋粉包括:BN和ZrO2,其中ZrO2质量分数大于等于50%。
5.根据权利要求1至3任一项所述的一种Y2O3窗口材料的制备方法,其特征在于:在高温烧结制备陶瓷坯体的步骤过程中,烧结升、降温速率为5-10℃/min。
6.根据权利要求1至3任一项所述的一种Y2O3窗口材料的制备方法,其特征在于:所述惰性气体为氮气。
CN202011002192.1A 2020-09-22 2020-09-22 一种y2o3窗口材料的制备方法 Active CN112174667B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011002192.1A CN112174667B (zh) 2020-09-22 2020-09-22 一种y2o3窗口材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011002192.1A CN112174667B (zh) 2020-09-22 2020-09-22 一种y2o3窗口材料的制备方法

Publications (2)

Publication Number Publication Date
CN112174667A true CN112174667A (zh) 2021-01-05
CN112174667B CN112174667B (zh) 2022-11-22

Family

ID=73955290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011002192.1A Active CN112174667B (zh) 2020-09-22 2020-09-22 一种y2o3窗口材料的制备方法

Country Status (1)

Country Link
CN (1) CN112174667B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880572A (zh) * 2021-11-18 2022-01-04 天津津航技术物理研究所 一种高强度低辐射透光窗口材料及制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115134A (en) * 1977-07-11 1978-09-19 Gte Laboratories Incorporated Transparent yttria ceramics and method for producing same
US5013696A (en) * 1989-09-25 1991-05-07 General Electric Company Preparation of high uniformity polycrystalline ceramics by presintering, hot isostatic pressing and sintering and the resulting ceramic
JPH11278933A (ja) * 1998-03-31 1999-10-12 Natl Inst For Res In Inorganic Materials 酸化イットリウムの焼成方法
CN103951433A (zh) * 2014-04-15 2014-07-30 山东大学 一种微波两步烧结制备MgO-Y2O3纳米陶瓷的方法
CN104529449A (zh) * 2014-12-18 2015-04-22 徐州市江苏师范大学激光科技有限公司 一种采用两步烧结制备氧化钇基透明陶瓷的方法
CN105601277A (zh) * 2015-12-23 2016-05-25 江苏师范大学 一种氧化钇基透明陶瓷的制备方法
CN107344854A (zh) * 2016-05-06 2017-11-14 中国科学院上海光学精密机械研究所 一种制备氮氧化铝透明陶瓷的方法
CN107540374A (zh) * 2016-06-24 2018-01-05 中国科学院上海光学精密机械研究所 氧化钇透明陶瓷的制备方法
CN107805068A (zh) * 2017-10-20 2018-03-16 中国科学院上海光学精密机械研究所 一种小晶粒y2o3陶瓷的制备方法
CN110922169A (zh) * 2019-11-25 2020-03-27 中国科学院上海光学精密机械研究所 一种Y2O3-MgO纳米复相红外透明陶瓷的制备方法
CN110937898A (zh) * 2019-11-21 2020-03-31 天津津航技术物理研究所 一种倍半氧化物窗口材料的制备方法
CN111116199A (zh) * 2020-01-18 2020-05-08 湖南工学院 一种真空无压烧结制备Gd2Zr2O7透明陶瓷的方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115134A (en) * 1977-07-11 1978-09-19 Gte Laboratories Incorporated Transparent yttria ceramics and method for producing same
US5013696A (en) * 1989-09-25 1991-05-07 General Electric Company Preparation of high uniformity polycrystalline ceramics by presintering, hot isostatic pressing and sintering and the resulting ceramic
JPH11278933A (ja) * 1998-03-31 1999-10-12 Natl Inst For Res In Inorganic Materials 酸化イットリウムの焼成方法
CN103951433A (zh) * 2014-04-15 2014-07-30 山东大学 一种微波两步烧结制备MgO-Y2O3纳米陶瓷的方法
CN104529449A (zh) * 2014-12-18 2015-04-22 徐州市江苏师范大学激光科技有限公司 一种采用两步烧结制备氧化钇基透明陶瓷的方法
CN105601277A (zh) * 2015-12-23 2016-05-25 江苏师范大学 一种氧化钇基透明陶瓷的制备方法
CN107344854A (zh) * 2016-05-06 2017-11-14 中国科学院上海光学精密机械研究所 一种制备氮氧化铝透明陶瓷的方法
CN107540374A (zh) * 2016-06-24 2018-01-05 中国科学院上海光学精密机械研究所 氧化钇透明陶瓷的制备方法
CN107805068A (zh) * 2017-10-20 2018-03-16 中国科学院上海光学精密机械研究所 一种小晶粒y2o3陶瓷的制备方法
CN110937898A (zh) * 2019-11-21 2020-03-31 天津津航技术物理研究所 一种倍半氧化物窗口材料的制备方法
CN110922169A (zh) * 2019-11-25 2020-03-27 中国科学院上海光学精密机械研究所 一种Y2O3-MgO纳米复相红外透明陶瓷的制备方法
CN111116199A (zh) * 2020-01-18 2020-05-08 湖南工学院 一种真空无压烧结制备Gd2Zr2O7透明陶瓷的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吕滨等: "Y2O3透明陶瓷的研究进展", 《化学工业与工程技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880572A (zh) * 2021-11-18 2022-01-04 天津津航技术物理研究所 一种高强度低辐射透光窗口材料及制备方法

Also Published As

Publication number Publication date
CN112174667B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN110776311B (zh) 一种热压烧结制备钙钛矿型复合氧化物高熵陶瓷的方法
CN112500163A (zh) 一种高可见光透过率氧化钇透明陶瓷的制备方法
CN109987941A (zh) 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN113754435B (zh) 一种Y2O3-MgO红外透明陶瓷的制备方法
CN114105639A (zh) 一种红外透明陶瓷材料及其制备方法
CN108640672A (zh) 一种镁铝尖晶石透明陶瓷的制备方法
JPS63201061A (ja) 透光性酸化イットリウム
CN112174667B (zh) 一种y2o3窗口材料的制备方法
TW201446705A (zh) 透光性金屬氧化物燒結體之製造方法及透光性金屬氧化物燒結體
CN104507892A (zh) 多晶体硫族化物陶瓷材料
CN114773048A (zh) 一种复合陶瓷材料的制备方法及其应用
CN113773081A (zh) 一种透明陶瓷及其制备方法
CN112279650A (zh) 一种高致密度的碳化硅陶瓷复合材料的制备方法
CN112299861A (zh) 一种AlON透明陶瓷伪烧结剂与应用及透明陶瓷的制备方法
Chen et al. Fabrication of YAG transparent ceramics by two-step sintering
CN105016776B (zh) 一种氮氧化铝透明陶瓷及其制备方法
Hu et al. Fabrication of infrared-transparent 3Y-TZP ceramics with small grain size by pre-sintering in an oxygen atmosphere and hot isostatic pressing
JP2019199078A (ja) 焼結用セラミックス成形体の作製方法及びセラミックス焼結体の製造方法
CN110937898B (zh) 一种倍半氧化物窗口材料的制备方法
CN103755353B (zh) 一种Y-α-SiAlON透明陶瓷的快速低温制备方法
KR102444340B1 (ko) 열간 가압 소결에 의한 투광성 이트리아의 제조 방법
CN113754436B (zh) 一种纳米晶激光级倍半氧化物透明陶瓷的制备方法
CN109467442B (zh) 一种氮化硅陶瓷及其制备方法
CN115557787B (zh) 一种倍半氧化物透明陶瓷及其制备方法
CN114956821A (zh) 一种高透过率三氧化二钇透明陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant