CN114105639A - 一种红外透明陶瓷材料及其制备方法 - Google Patents

一种红外透明陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114105639A
CN114105639A CN202111559748.1A CN202111559748A CN114105639A CN 114105639 A CN114105639 A CN 114105639A CN 202111559748 A CN202111559748 A CN 202111559748A CN 114105639 A CN114105639 A CN 114105639A
Authority
CN
China
Prior art keywords
nano
powder
mgo
prepared
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111559748.1A
Other languages
English (en)
Inventor
范金太
钱凯臣
沈宗云
张龙
冯涛
姜本学
冯明辉
张露露
范翔龙
陈柏健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN202111559748.1A priority Critical patent/CN114105639A/zh
Publication of CN114105639A publication Critical patent/CN114105639A/zh
Priority to CN202211430376.7A priority patent/CN115745607A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提出了一种红外透明陶瓷材料及其制备方法,属于陶瓷材料技术领域,其化学通式为Gd2O3‑MgO‑ROm,其中R=Y、Sc、Ca、Sr、La、Lu中的一种,m=1或1.5;所述红外透明陶瓷材料由立方相Gd2O3和立方相MgO两相组成;采用含有Gd2O3的纳米粉体、MgO的纳米粉体和ROm的纳米粉体组成的纳米复合粉体烧结而成;其中,所述纳米复合粉体中,Gd2O3的纳米粉体和MgO的纳米粉体的体积比为1:5‑5:1,ROm的纳米粉体占所述纳米复合粉体总摩尔量的百分比为0.01‑10%。本发明实现了中红外宽波段高透过率Gd2O3‑MgO纳米复相陶瓷的制备,中红外3‑7μm的平均透过率大于80%。

Description

一种红外透明陶瓷材料及其制备方法
技术邻域
本发明涉及一种红外透明陶瓷材料及其制备方法。
背景技术
红外透明材料是指能够透过红外辐射的材料,主要用于制造红外探测器的窗口、红外仪器的透镜和棱镜等。用于飞行器的红外透明窗口材料或整流罩要求能够保护光学系统免受大气、水分、灰尘的影,同时参与系统成像和矫正相差,这就需要红外透明材料具有较大的透过率、机械强度、硬度和抗热冲击性能。Gd2O3的物化性质与Y2O3相似,都属于重稀土倍半氧化物,拥有较低的声子能量,比一般的光学材料(蓝宝石、AlON、尖晶石等)更长的截止波长,还有低的高温红外辐射系数、高温力学性能优良等优点,是一种很有前景的红外窗口材料。
氧化钆和氧化镁两相相互固溶度很低,通过钉扎效应,可有效抑制烧结过程中晶粒长大,降低晶粒尺寸可以在不影响多晶陶瓷透过率的同时,提升其力学性能。
东北大学的吴南、李晓东等[Fabrication of Gd2O3-MgO nanocomposite opticalceramics with varied crystallographic modifications of Gd2O3constituent.Journal of the American Ceramic Society 101,4887(2018)]研究了热压烧结温度对Gd2O3-MgO复相陶瓷中Gd2O3相变的影响。下诺夫哥罗德国立大学的DmitryA.Permin等[IR-transparent MgO-Gd2O3 composite ceramic produced by self-propagating high-temperature synthesis and spark plasma sintering.Journal ofAdvanced Ceramics 10,237(2021)]用自燃烧法制备粉体,采用放电等离子体烧结工艺制备出Gd2O3-MgO纳米复相陶瓷,研究了退火处理对样品透过率和硬度的影响。这两项研究都说明了Gd2O3-MgO复相陶瓷具有优良的红外透过性能和力学性能,是未来红光光学窗口的候选材料之一。但是上述两项研究中制备的陶瓷中Gd2O3的相都为单斜相,烧结前粉体为立方相,由于单斜相的密度更大,在烧结过程中发生相变,Gd2O3的体积会缩小10%左右,这在大尺寸样品的制造中会形成较大的内应力导致开裂,而且单斜相Gd2O3在光学上是各向异性的,会降低材料的红外透过率。上述的两项研究中的烧结方法也不适用于大尺寸样品的制备生成,而本专利的空气预烧和HIP烧结后处理的方法都适用于大尺寸以及形状不规则样品的制备。但是一般Gd2O3在无压条件下烧结致密的温度为1400~1600℃,超过了Gd2O3从立方相转变为单斜相的相变温度(约1250℃)。
发明内容
本发明的目的在于提出一种红外透明陶瓷材料及其制备方法,首次采用空气预烧和热等静压(HIP)烧结的方法制备出立方相Gd2O3-MgO复相陶瓷,通过本发明方法获得的红外透明的Gd2O3-MgO-ROm纳米复相陶瓷,物相为立方相,其密度接近理论值,晶粒小且均匀,中红外3-6μm的透过率大于81%,维氏硬度超过10GPa。本发明采用溶胶-凝胶法制备纳米复相粉体,原料成本低,工艺简单,便于大规模工业化生产。
本发明的技术方案是这样实现的:
本发明提供一种红外透明陶瓷材料,其化学通式为Gd2O3-MgO-ROm,其中R=Y、Sc、Ca、Sr、La、Lu中的一种,m=1或1.5;
所述红外透明陶瓷材料由立方相Gd2O3和立方相MgO两相组成;
所述红外透明陶瓷材料是采用含有Gd2O3的纳米粉体、MgO的纳米粉体和ROm的纳米粉体组成的纳米复合粉体烧结而成;
其中,所述纳米复合粉体中,Gd2O3的纳米粉体和MgO的纳米粉体的体积比为1:5-5:1,ROm的纳米粉体占所述纳米复合粉体总摩尔量的百分比为0.01-10%。
作为本发明的进一步改进,所述红外透明陶瓷材料的红外透过率为70-83%。
本发明进一步保护一种上述红外透明陶瓷材料的制备方法,包括以下步骤:
(1)以氧化钆、镁盐、R盐、浓硝酸和有机添加剂为原料,采用溶胶-凝胶法制备纳米复合粉体;R=Y、Sc、Ca、Sr、La、Lu中的一种;
(2)将步骤(1)得到的纳米复合粉体干压成型处理,得到成型素坯;
(3)将所述成型素坯进行空气预烧和热等静压烧结,得到纳米复相烧结体;
(4)将所述纳米复相烧结体进行退火和机械加工处理,得到所述红外复相陶瓷。
作为本发明的进一步改进,步骤(1)的具体步骤为:
a)配制含有钆盐、镁盐、R盐、浓硝酸和有机添加剂的溶液;
b)将步骤a)所配制的溶液放入烘箱中,加热至100℃-250℃,保温0.5-6h,得到干凝胶;
c)将步骤b)所制的干凝胶放入马弗炉中,加热至600-1000℃,保温1-8h,之后自然降温,即得纳米复合粉体。
作为本发明的进一步改进,所述钆盐为硝酸钆、醋酸钆、硫酸钆、氯化钆中的至少一种,为所述镁盐为硝酸镁、醋酸镁、硫酸镁、氯化镁中的至少一种,所述R盐为R(NO3)2m、R(Ac)2m、R(SO4)2m、RCl2m中的至少一种,m=1或1.5,所述有机添加剂为柠檬酸、乙二醇、葡萄糖、甘氨酸、尿素中的至少一种,所述浓硝酸的浓度为50-70%。
作为本发明的进一步改进,在步骤b)中,先对烘箱进行预热再将起始溶液放入,预热温度为50-200℃;在步骤c)中,以1-5℃/min的升温速率进行加热;所述加热为分阶段加热,包括:在150-250℃保温0-4h,加热升温到400-500℃时保温0-12h,之后加热到600-1000℃时保温0.5-8h。
作为本发明的进一步改进,对步骤(1)制得的纳米复合粉体进行球磨、干燥、过筛形成粒径为50-1000nm的球形颗粒粉体后进行烧结。
作为本发明的进一步改进,所述球磨介质为无水乙醇、丙酮、甘油、异丙醇中的至少一种,球磨转速为50-300r/min,球磨时间为1-48h;所述干燥是在50-90℃的烘箱中干燥0.5-24h;所述过筛为过25-200目筛造粒。
作为本发明的进一步改进,步骤(3)中所述空气预烧的工艺参数为:升温速率为1-20℃/min,保温温度为800-1400℃,保温时间为0.5-3h;所述热等静压的烧结的工艺参数为:升温速率为2-200℃/min,保温温度为800-1400℃,保温时间为0.5-5h,保压压力为50-300MPa。
作为本发明的进一步改进,步骤(4)中所述退火温度为900-1400℃,保温时间为0.5-24h。
本发明进一步保护一种上述红外透明陶瓷材料的制备方法,具体步骤如下:
第一阶段:溶胶-凝胶法制备复合纳米粉体
步骤1.1)氧化钆溶于硝酸溶液,与六水硝酸镁和R(NO3)2m溶于去离子水配制的溶液混合,在磁力搅拌器上充分混合;
步骤1.2)有机添加剂溶于去离子水中配制溶液,所述有机添加剂为柠檬酸、乙二醇、葡萄糖、果糖、甘氨酸、尿素、丙二醇等;
步骤1.3)将步骤1.1)和步骤1.2)得到的溶液混合,磁力搅拌并加热至粘稠凝胶;
步骤1.4)将步骤1.3)所述凝胶置入烘箱中加热,烘箱温度为150-250℃,加热时间为0.5-6h,得到黄褐色的干凝胶;
步骤1.5)将步骤1.4)所述干凝胶置入氧气炉中高温煅烧,煅烧温度为600-900℃,煅烧时间为0.5-6h,得到Gd2O3-MgO-ROm复合纳米粉体;
步骤1.6)将步骤1.5)所述的Gd2O3-MgO-ROm复合纳米粉体球磨及过筛处理后,在500-800℃下煅烧1-6h,获得高活性复合纳米粉体。
第二阶段:复相陶瓷的制备
步骤2.1)将步骤1.6)所述的高活性复合纳米粉体用模具压制成素坯;
步骤2.2)将步骤2.1)所述的素坯在马弗炉中空气气氛下进行预烧,烧结温度为1300-1500℃,升温速率为1-50℃/min,保温0.5-12h,自然降温后获得致密的陶瓷坯体。
步骤2.3)采用热等静压烧结炉对步骤2.2)所述的陶瓷坯体进行热等静压烧结(HIP),烧结温度为1250-1450℃,保温时间为0.5-4h,氩气气氛加压压力为50-300MPa,获得致密的陶瓷样品;
步骤2.4)对步骤2.3)所述的陶瓷样品在马弗炉中进行退火处理,温度为800-1200℃,保温5-30h;
步骤2.5)对步骤2.4)得到的退火处理样品进行双面镜面抛光,获得红外透明复相陶瓷产品。
在步骤1.1)中,氧化钆、六水硝酸镁和R(NO3)2m的纯度不低于99%。
在步骤1.3)中,磁力搅拌器的加热温度为50-300℃。
步骤1.6)所述的球磨及过筛,具体是采用氧化锆球磨罐及球磨子,球磨子直径1-5mm,粉体与球磨子的质量配比为1:2至1:15,球磨介质选择无水乙醇,粉体与无水乙醇的配比为1:1至1:5,球磨时间12-60h,在60-100℃烘箱中烘干5-20h,用100-350目网筛过筛。
步骤2.1)所述的模具为φ10mm、φ20mm、φ40mm、φ80mm或φ100mm的不锈钢模具。
步骤2.2)所述的陶瓷坯体的致密度大于95%,小于99%。
步骤2.3)所述的陶瓷样品的致密度大于99%,小于100%。
本发明选用溶胶-凝胶法制备Gd2O3-MgO纳米复相粉体,选用与金属离子络合性能好,易形成空间网状结构且燃烧反应时放热较高的有机物作为添加剂,这样既保证了粉体中Gd2O3和MgO两相分布的均匀性,又保证了粉体有较好的结晶性,避免了进一步煅烧造成的晶粒长大和团聚,后采用热等静压烧结,有效控制晶粒尺寸在亚微米或纳米尺度时实现复相陶瓷的致密化。
本发明具有如下有益效果:本发明将ROm固溶进Gd2O3中可以提高相变温度,抑制其相变过程,得到立方相Gd2O3-MgO复相陶瓷。本发明首次采用空气预烧和热等静压(HIP)烧结的方法制备出立方相Gd2O3-MgO复相陶瓷,通过本发明方法获得的红外透明的Gd2O3-MgO-ROm纳米复相陶瓷,物相为立方相,其密度接近理论值,晶粒小且均匀,中红外3-6μm的透过率大于81%,维氏硬度超过10GPa。本发明采用溶胶-凝胶法制备纳米复相粉体,原料成本低,工艺简单,便于大规模工业化生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1制备出的纳米复合粉体的透射电镜照片;
图2为实施例1制备出的纳米复合粉体的XRD图;
图3为实施例2制备出的红外纳米复相陶瓷的XRD图;
图4为实施例1制备出的红外纳米复相陶瓷的红外透过率;
图5为实施例1制备出的红外纳米复相陶瓷的扫描电镜图;
图6为实施例2制备出的红外纳米复相陶瓷的红外透过率;
图7为实施例2制备出的红外纳米复相陶瓷的扫描电镜图;
图8为实施例1-5制备出的红外透明陶瓷材料的维氏硬度图。
具体实施方法
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
称取Gd2O3溶于硝酸溶液中直至恰好溶解,配制成Gd(NO3)3溶液,与Mg(NO3)2溶液混合,保证最终Gd2O3和MgO的体积比为1:1,在硝酸盐混合溶液中分别加入一水柠檬酸和乙二醇,在磁力搅拌上搅拌并加热,溶液变为浓稠之后放入200摄氏度的烘箱中保温5h,将制得的干凝胶放入预热到200℃的马弗炉中,通入氧气,以1℃/min升到800℃,保温4h,后自然降温,得到Gd2O3-MgO纳米复相粉体。以无水乙醇为球磨介质进行球磨,球磨48h后放入烘箱干燥,用200目筛网过筛,将所得粉体置入马弗炉中600℃加热5h后获得高活性Gd2O3-MgO复合纳米粉体。称取3g粉体倒入模具用油压机干压成型为小圆片;称取20g粉体倒入模具干压成型为40mm×60mm的方片,然后进行210MPa冷等静压处理获得陶瓷素坯。将陶瓷素坯置入马弗炉中空气气氛下1350℃保温2h,降温后得到预烧结复相陶瓷坯体,再将预烧坯体放入热等静压炉中在氩气气氛下加压到200MPa在1350℃下保温1.5h,降温后获得陶瓷样品,将样品在1000℃下退火处理20h,最后进行双面高精度镜面抛光加工,获得红外透明Gd2O3-MgO纳米复相陶瓷。图1为实施例1制备出的Gd2O3-MgO纳米复相粉体的透射电镜照片,由图中可见,粉体的平均晶粒约为16nm,颗粒大小分布均匀,没有严重团聚的现象;图2为实施例1制备出的Gd2O3-MgO纳米复相粉体的XRD图,从图中可以看出衍射峰对应于立方氧化钆和立方氧化镁,没有其他杂相。图4为实施例1制备出的Gd2O3-MgO纳米复相陶瓷的红外透过率,在3-6μm范围内的透过率超过70%。图5为实施例1制备出的Gd2O3-MgO纳米复相陶瓷的扫描电镜图,其中白色相为Gd2O3相,黑色相为MgO相,由图中可以看出,复相陶瓷中两相分布均匀,晶粒平均尺寸在210nm左右,致密度较高
实施例2
称取Gd2O3溶于硝酸溶液中直至恰好溶解,配制成Gd(NO3)3溶液,与Mg(NO3)2溶液和Y(NO3)3溶液混合,保证最终Gd2O3和MgO的体积比为1:1,Y(NO3)3摩尔量占Gd(NO3)3和Y(NO3)3总量的10%,在硝酸盐混合溶液中分别加入一水柠檬酸和乙二醇,在磁力搅拌上搅拌并加热,溶液变为浓稠之后放入200摄氏度的烘箱中保温5h,将制得的干凝胶放入预热到200℃的马弗炉中,通入氧气,以1℃/min升到800℃,保温4h,后自然降温,得到Gd2O3-MgO纳米复相粉体。以无水乙醇为球磨介质进行球磨,球磨48h后放入烘箱干燥,用200目筛网过筛,将所得粉体置入马弗炉中600℃加热5h后获得高活性Gd2O3-MgO复合纳米粉体。称取3g粉体倒入模具用油压机干压成型为小圆片;称取20g粉体倒入模具干压成型为40mm×60mm的方片,然后进行210MPa冷等静压处理获得陶瓷素坯。将陶瓷素坯置入马弗炉中空气气氛下1350℃保温2h,降温后得到预烧结复相陶瓷坯体,再将预烧坯体放入热等静压炉中在氩气气氛下加压到200MPa在1350℃下保温1.5h,降温后获得陶瓷样品,将样品在1000℃下退火处理20h,最后进行双面高精度镜面抛光加工,获得红外透明Gd2O3-MgO纳米复相陶瓷。图3为实施例2制备出的Gd2O3-MgO纳米复相陶瓷的XRD图,从图中可以看出制备出的陶瓷样品为立方氧化钆和和立方氧化镁相,没有其他杂相。图6为实施例2制备出的Gd2O3-MgO纳米复相陶瓷的红外透过率,在3-6μm范围内的透过率超过80%;图7为实施例2制备出的Gd2O3-MgO纳米复相陶瓷的扫描电镜图,由图中可见,复相陶瓷中晶粒尺寸分布均匀,晶粒尺寸在190nm左右。
实施例3
称取Gd2O3溶于硝酸溶液中直至恰好溶解,配制成Gd(NO3)3溶液,与Mg(NO3)2溶液和Y(NO3)3溶液混合,保证最终Gd2O3和MgO的体积比为1:1,Y(NO3)3摩尔量占Gd(NO3)3和Y(NO3)3总量的15%,在硝酸盐混合溶液中分别加入一水柠檬酸和乙二醇,在磁力搅拌上搅拌并加热,溶液变为浓稠之后放入200摄氏度的烘箱中保温5h,将制得的干凝胶放入预热到200℃的马弗炉中,通入氧气,以1℃/min升到800℃,保温4h,后自然降温,得到Gd2O3-MgO纳米复相粉体。以无水乙醇为球磨介质进行球磨,球磨48h后放入烘箱干燥,用200目筛网过筛,将所得粉体置入马弗炉中600℃加热5h后获得高活性Gd2O3-MgO复合纳米粉体。称取3g粉体倒入模具用油压机干压成型为小圆片;称取20g粉体倒入模具干压成型为40mm×60mm的方片,然后进行210MPa冷等静压处理获得陶瓷素坯。将陶瓷素坯置入马弗炉中空气气氛下1350℃保温2h,降温后得到预烧结复相陶瓷坯体,再将预烧坯体放入热等静压炉中在氩气气氛下加压到200MPa在1350℃下保温1.5h,降温后获得陶瓷样品,将样品在1000℃下退火处理20h,最后进行双面高精度镜面抛光加工,获得红外透明Gd2O3-MgO纳米复相陶瓷。
实施例4
称取Gd2O3溶于硝酸溶液中直至恰好溶解,配制成Gd(NO3)3溶液,与Mg(NO3)2溶液和Y(NO3)3溶液混合,保证最终Gd2O3和MgO的体积比为1:1,Y(NO3)3摩尔量占Gd(NO3)3和Y(NO3)3总量的20%,硝酸盐混合溶液中分别加入一水柠檬酸和乙二醇,在磁力搅拌上搅拌并加热,溶液变为浓稠之后放入200摄氏度的烘箱中保温5h,将制得的干凝胶放入预热到200℃的马弗炉中,通入氧气,以1℃/min升到800℃,保温4h,后自然降温,得到Gd2O3-MgO纳米复相粉体。以无水乙醇为球磨介质进行球磨,球磨48h后放入烘箱干燥,用200目筛网过筛,将所得粉体置入马弗炉中600℃加热5h后获得高活性Gd2O3-MgO复合纳米粉体。称取3g粉体倒入模具用油压机干压成型为小圆片;称取20g粉体倒入模具干压成型为40mm×60mm的方片,然后进行210MPa冷等静压处理获得陶瓷素坯。将陶瓷素坯置入马弗炉中空气气氛下1350℃保温2h,降温后得到预烧结复相陶瓷坯体,再将预烧坯体放入热等静压炉中在氩气气氛下加压到200MPa在1350℃下保温1.5h,降温后获得陶瓷样品,将样品在1000℃下退火处理20h,最后进行双面高精度镜面抛光加工,获得红外透明Gd2O3-MgO纳米复相陶瓷。
实施例5
称取Gd2O3溶于硝酸溶液中直至恰好溶解,配制成Gd(NO3)3溶液,与Mg(NO3)2溶液和Y(NO3)3溶液混合,保证最终Gd2O3和MgO的体积比为1:1,Y(NO3)3摩尔量占Gd(NO3)3和Y(NO3)3总量的30%,硝酸盐混合溶液中分别加入一水柠檬酸和乙二醇,在磁力搅拌上搅拌并加热,溶液变为浓稠之后放入200摄氏度的烘箱中保温5h,将制得的干凝胶放入预热到200℃的马弗炉中,通入氧气,以1℃/min升到800℃,保温4h,后自然降温,得到Gd2O3-MgO纳米复相粉体。以无水乙醇为球磨介质进行球磨,球磨48h后放入烘箱干燥,用200目筛网过筛,将所得粉体置入马弗炉中600℃加热5h后获得高活性Gd2O3-MgO复合纳米粉体。称取3g粉体倒入模具用油压机干压成型为小圆片;称取20g粉体倒入模具干压成型为40mm×60mm的方片,然后进行210MPa冷等静压处理获得陶瓷素坯。将陶瓷素坯置入马弗炉中空气气氛下1350℃保温2h,降温后得到预烧结复相陶瓷坯体,再将预烧坯体放入热等静压炉中在氩气气氛下加压到200MPa在1350℃下保温1.5h,降温后获得陶瓷样品,将样品在1000℃下退火处理20h,最后进行双面高精度镜面抛光加工,获得红外透明Gd2O3-MgO纳米复相陶瓷。
图8为实施例1-5制备出的红外透明陶瓷材料的维氏硬度图,从图中可以看出,不添加Y2O3的Gd2O3-MgO复相陶瓷的硬度最高,为10.4GPa,固溶Y2O3后硬度稍微下降,平均为10.0GPa。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种红外透明陶瓷材料,其特征在于,其化学通式为Gd2O3-MgO-ROm,其中R=Y、Sc、Ca、Sr、La、Lu中的一种,m=1或1.5;
所述红外透明陶瓷材料由立方相Gd2O3和立方相MgO两相组成;
所述红红外透明陶瓷材料是采用含有Gd2O3的纳米粉体、MgO的纳米粉体和ROm的纳米粉体组成的纳米复合粉体烧结而成;
其中,所述纳米复合粉体中,Gd2O3的纳米粉体和MgO的纳米粉体的体积比为1:5-5:1,ROm的纳米粉体占所述纳米复合粉体总摩尔量的百分比为0.01-10%。
2.一种权利要求1所述的红外复相陶瓷的制备方法,其特征在于该方法包含以下步骤:
(1)以氧化钆、镁盐、R盐、浓硝酸和有机添加剂为原料,采用溶胶-凝胶法制备纳米复合粉体;
(2)将步骤①得到的纳米复合粉体干压成型处理,得到成型素坯;
(3)将所述成型素坯进行空气预烧和热等静压烧结,得到纳米复相烧结体;
(4)将所述纳米复相烧结体进行退火处理,得到所述红外复相陶瓷。
3.根据权利要求2所述的制备方法,其特征在于,步骤(1)的具体步骤为:
a)配制含有钆盐、镁盐、R盐、浓硝酸和有机添加剂的溶液;
b)将步骤a)所配制的溶液放入烘箱中,加热至100℃-250℃,保温0.5-6h,得到干凝胶;
c)将步骤b)所制的干凝胶放入马弗炉中,加热至600-1000℃,保温1-8h,之后自然降温,即得纳米复合粉体。
4.根据权利要求2或3所述的方法,其特征在于,所述钆盐为硝酸钆、醋酸钆、硫酸钆、氯化钆中的至少一种,为所述镁盐为硝酸镁、醋酸镁、硫酸镁、氯化镁中的至少一种,所述R盐为R(NO3)2m、R(Ac)2m、R(SO4)2m、RCl2m中的至少一种,m=1或1.5,所述有机添加剂为柠檬酸、乙二醇、葡萄糖、甘氨酸、尿素中的至少一种,所述浓硝酸的浓度为50-70%。
5.根据权利要求3中所述的方法,其特征在于,在步骤b)中,先对烘箱进行预热再将起始溶液放入,预热温度为50-200℃;在步骤c)中,以1-5℃/分钟的升温速率进行加热,包括:在150-250℃保温0-4小时,加热升温到400-500℃时保温0-12小时,之后加热到600-1000℃时保温0.5-8小时。
6.根据权利要求2所述的制备方法,其特征在于,对步骤(1)制得的复合粉体进行球磨、干燥、过筛形成粒径为50-1000nm的球形颗粒粉体后进行烧结。
7.根据权利要求6所述的制备方法,其特征在于,所述球磨介质为无水乙醇、丙酮、甘油、异丙醇中的至少一种,球磨转速为50-300r/min,球磨时间为1-48h;所述干燥是在50-90℃的烘箱中干燥0.5-24h;所述过筛为过25-200目筛造粒。
8.根据权利要求2所述的制备方法,其特征在于,步骤(3)中所述空气预烧的工艺参数为:升温速率为1-20℃/min,保温温度为800-1400℃,保温时间为0.5-3h;所述热等静压的烧结的工艺参数为:升温速率为2-200℃/min,保温温度为800-1400℃,保温时间为0.5-5h,保压压力为50-300MPa。
9.根据权利要求2所述的制备方法,其特征在于,步骤(4)中所述退火温度为900-1400℃,保温时间为0.5-24h。
CN202111559748.1A 2021-12-20 2021-12-20 一种红外透明陶瓷材料及其制备方法 Pending CN114105639A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111559748.1A CN114105639A (zh) 2021-12-20 2021-12-20 一种红外透明陶瓷材料及其制备方法
CN202211430376.7A CN115745607A (zh) 2021-12-20 2022-11-15 一种红外透明陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111559748.1A CN114105639A (zh) 2021-12-20 2021-12-20 一种红外透明陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114105639A true CN114105639A (zh) 2022-03-01

Family

ID=80361623

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111559748.1A Pending CN114105639A (zh) 2021-12-20 2021-12-20 一种红外透明陶瓷材料及其制备方法
CN202211430376.7A Withdrawn CN115745607A (zh) 2021-12-20 2022-11-15 一种红外透明陶瓷材料及其制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202211430376.7A Withdrawn CN115745607A (zh) 2021-12-20 2022-11-15 一种红外透明陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (2) CN114105639A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010492A (zh) * 2022-04-20 2022-09-06 清华大学 低红外透过率的贵金属纳米颗粒复合陶瓷及其制备方法
CN116283289A (zh) * 2023-02-28 2023-06-23 四川大学 一种高透明Gd2O3透明陶瓷材料的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217230B (zh) * 2023-03-15 2024-05-07 沈阳大学 一种低热导率宽中红外波段透过高熵纳米复合陶瓷的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215419A1 (en) * 2003-01-27 2005-09-29 Yanagitani Takagimi Rare earth garmet sintered compact
JP2010047460A (ja) * 2008-07-22 2010-03-04 Schott Ag 透明セラミック及びその製造方法ならびにその透明セラミックスを用いた光学素子
CN101723658A (zh) * 2009-12-23 2010-06-09 中国地质大学(北京) 一种低导热GdMgAl11O19耐高温陶瓷材料及制备方法
CN108753296A (zh) * 2018-07-19 2018-11-06 东北大学 一种可由近紫外或蓝光芯片激发的红光发光材料及其制备方法和应用
CN109369183A (zh) * 2018-12-13 2019-02-22 东北大学 一种红外透明陶瓷材料及其制备方法
CN113754435A (zh) * 2021-09-08 2021-12-07 郑州航空工业管理学院 一种Y2O3-MgO红外透明陶瓷的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265098B (zh) * 2008-04-30 2011-02-16 东北大学 以氧化镥—氧化钆固溶体为基质的透明陶瓷闪烁体材料及其制备方法
CN101456735A (zh) * 2008-12-16 2009-06-17 中国计量学院 一种氧化钆镥透明陶瓷闪烁体的制备方法
CN101456734A (zh) * 2008-12-16 2009-06-17 中国计量学院 稀土氧化物固溶体陶瓷闪烁体及其制备方法
CN103922742B (zh) * 2014-04-02 2016-02-10 中国科学院上海硅酸盐研究所 一种Y2O3-MgO纳米复相陶瓷及其制备方法
CN109650890A (zh) * 2019-02-28 2019-04-19 东北大学 一种氧化钆-氧化镁纳米复合陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215419A1 (en) * 2003-01-27 2005-09-29 Yanagitani Takagimi Rare earth garmet sintered compact
JP2010047460A (ja) * 2008-07-22 2010-03-04 Schott Ag 透明セラミック及びその製造方法ならびにその透明セラミックスを用いた光学素子
CN101723658A (zh) * 2009-12-23 2010-06-09 中国地质大学(北京) 一种低导热GdMgAl11O19耐高温陶瓷材料及制备方法
CN108753296A (zh) * 2018-07-19 2018-11-06 东北大学 一种可由近紫外或蓝光芯片激发的红光发光材料及其制备方法和应用
CN109369183A (zh) * 2018-12-13 2019-02-22 东北大学 一种红外透明陶瓷材料及其制备方法
CN113754435A (zh) * 2021-09-08 2021-12-07 郑州航空工业管理学院 一种Y2O3-MgO红外透明陶瓷的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010492A (zh) * 2022-04-20 2022-09-06 清华大学 低红外透过率的贵金属纳米颗粒复合陶瓷及其制备方法
CN116283289A (zh) * 2023-02-28 2023-06-23 四川大学 一种高透明Gd2O3透明陶瓷材料的制备方法
CN116283289B (zh) * 2023-02-28 2024-02-02 四川大学 一种高透明Gd2O3透明陶瓷材料的制备方法

Also Published As

Publication number Publication date
CN115745607A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN114105639A (zh) 一种红外透明陶瓷材料及其制备方法
Jin et al. ZrO2-doped Y2O3 transparent ceramics via slip casting and vacuum sintering
JP5819992B2 (ja) 透明度が向上した多結晶酸窒化アルミニウムの製造方法
Yavetskiy et al. Effect of starting materials and sintering temperature on microstructure and optical properties of Y 2 O 3: Yb 3+ 5 at% transparent ceramics
US11161274B2 (en) Method for manufacturing transparent ceramic material for faraday rotator
CN104557013B (zh) 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法
CN112299861B (zh) 一种AlON透明陶瓷伪烧结剂与应用及透明陶瓷的制备方法
CN102020470A (zh) 高光学质量的氧化钇透明陶瓷的制备方法
Huang et al. An effective strategy for preparing transparent ceramics using nanorod powders based on pressure-assisted particle fracture and rearrangement
Xu et al. Fabrication and characterization of highly transparent ZrO2-doped Tm2O3 ceramics
JP2019199078A (ja) 焼結用セラミックス成形体の作製方法及びセラミックス焼結体の製造方法
CN112174645B (zh) 一种制备致密纳米晶粒陶瓷的方法
CN107473730A (zh) 一种制备细晶、高强镁铝尖晶石透明陶瓷的方法
CN113754436B (zh) 一种纳米晶激光级倍半氧化物透明陶瓷的制备方法
CN109053192B (zh) 一种MgAlON透明陶瓷粉体的制备方法
KR20140132866A (ko) 고강도 질화알루미늄 소결체 및 이의 저온 소결방법
CN111704445B (zh) 一种宽光学透过域的高镁含量MgAlON透明陶瓷及其制备方法
LIU et al. Fabrication and characterizations of red Ce-doped 8YSZ transparent ceramics by two-step sintering
CN110183229A (zh) 一种具有低温裂纹自愈合能力的Ti2Al(1-x)SnxC陶瓷修复相粉体的制备方法
CN115010503A (zh) 一种氧化物透明陶瓷材料烧结助剂的使用方法
CN114349500A (zh) 一种中波红外透明氧化锆陶瓷材料及其制备方法
CN112194485A (zh) 一种热障涂层陶瓷材料及其制备方法和应用
CN111732436A (zh) 易烧结钛和钨共掺杂碳化锆粉体及其制备方法
Huang et al. Fabrication of lanthanum doped yttria transparent ceramics
KR102066489B1 (ko) 기계적 강도가 향상된 적외선 투과 스피넬 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220301

WD01 Invention patent application deemed withdrawn after publication