CN110937898B - 一种倍半氧化物窗口材料的制备方法 - Google Patents

一种倍半氧化物窗口材料的制备方法 Download PDF

Info

Publication number
CN110937898B
CN110937898B CN201911146644.0A CN201911146644A CN110937898B CN 110937898 B CN110937898 B CN 110937898B CN 201911146644 A CN201911146644 A CN 201911146644A CN 110937898 B CN110937898 B CN 110937898B
Authority
CN
China
Prior art keywords
powder
sample
biscuit
pressure
isostatic pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911146644.0A
Other languages
English (en)
Other versions
CN110937898A (zh
Inventor
刘孟寅
张荣实
王跃忠
张高峰
李霄鹏
张彤
刘华松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Jinhang Institute of Technical Physics
Original Assignee
Tianjin Jinhang Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Jinhang Institute of Technical Physics filed Critical Tianjin Jinhang Institute of Technical Physics
Priority to CN201911146644.0A priority Critical patent/CN110937898B/zh
Publication of CN110937898A publication Critical patent/CN110937898A/zh
Application granted granted Critical
Publication of CN110937898B publication Critical patent/CN110937898B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种倍半氧化物窗口材料的制备方法,属于透明陶瓷材料技术领域。该方法获得的Y2O3陶瓷在具备高透明特点(在中波红外波段可达70%以上)的同时,还具缺陷少、硬度高(≥12GPa)的特点。该方法制备的Y2O3透明陶瓷,可应用于红外窗口、天线罩等领域。

Description

一种倍半氧化物窗口材料的制备方法
技术领域
本发明属于透明陶瓷材料技术领域,具体涉及一种倍半氧化物窗口材料的制备方法。
背景技术
Y2O3窗口材料的热障温度可达400℃,远高于蓝宝石的100℃,是目前报道的唯一可在400℃高温下使用的光学窗口材料。同时,低的声子能量使得Y2O3窗口在0.25μm-8μm波段都能达到80%左右的透过率,且在400℃高温下,其长波截止波长仍能保持在6μm以上。对于波长5μm的红外光的透过率而言,Y2O3仅从室温时的83%下降到400℃时的82%,而蓝宝石在400℃时对于波长5μm光的透过率则下降到48%;同时,纯相的Y2O3在3-5μm的发射率在400℃时最低仅为~0.02,是相同条件下蓝宝石的1/10。虽然传统的Y2O3窗口力学性能较差,但通过掺杂其它氧化物形成第二相的方法可以有效减小其晶粒尺寸,提高其力学性能。综上,掺杂的Y2O3是一种理想的低辐射高超音速应用窗口材料。但是采用传统的真空无压或热压烧结方法制备的Y2O3窗口材料中存在大量的氧缺陷,严重影响了其光学透过率。
目前针对上述问题,目前主要是通过烧结后,将样品置于空气或者氧气氛下退火的方法来去除氧缺陷提高其透过率。但在高温下退火仍存在一定的问题,当退火温度较低时,其氧缺陷不能完全去除,对其光学性能的提高程度有限,但采用较高的退火温度,虽然能较好的去除氧缺陷,但在较高的温度下,会使得Y2O3的晶粒发生严重的二次生长,导致其力学性能显著下降,不能满足高超音速应用窗口材料力学性能上的需求。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:针对当前在烧结过程中Y2O3易产生氧缺陷导致其光学透过率下降的问题,实现一种具有高中波红外波段透过率特征的低缺陷、高强度的Y2O3透明陶瓷窗口材料的制备方法。
(二)技术方案
为了解决上述技术问题,本发明提供了一种倍半氧化物窗口材料的制备方法,包括以下步骤:
1)以Y2O3和低声子能量氧化物粉体为原料,经预处理,得粉体A;
2)取粉体A样品,经模压成型,再经冷等静压处理,得素坯B;
3)取素坯B样品,置于坩埚中,在周围填充纯ZrO2粉体或ZrO2粉体与BN粉体的混合粉;
4)将坩埚置于氮气保护的烧结炉中,先抽真空至10Pa以下,再通入一定量的N2,升温至1400℃~1600℃保温2h~10h,通过控制之前的N2通入量使得保温后炉内压力保持在0.03MPa-0.5MPa,保温结束后自然冷却后,得陶瓷C;
5)取素坯C样品,盛于坩埚中,经热等静压处理,得陶瓷D,打磨抛光后即得Y2O3透明陶瓷E。
优选地,步骤1中,以Y2O3和低声子能量氧化物粉体为原料,按照质量分数分别为60wt%~99wt%、1wt%~40wt%的比例称取原料,其中低声子能量氧化物粉体包括La2O3、Sc2O3
优选地,步骤1中,预处理时,以耐磨氧化铝或氧化锆球为球磨介质,无水乙醇为分散介质,球料比为4:1~12:1,加入一定量的分散剂,球磨时间为10h~60h,得到浆料;再将所得浆料经50℃~100℃真空干燥处理去除分散介质,然后将去除分散介质的粉体进行研磨并过200目筛后,再在500-1300℃温度下烧结1-10小时,获得粉体A。
优选地,步骤2中,所述模压成型的压力为15MPa~30MPa,保压时间1min~10min;冷等静压的压力为150MPa~300MPa,保压时间5min~15min。
优选地,步骤3中,ZrO2的比例不低于50wt%,使得样品B被完全包覆。
优选地,步骤5中,热等静压处理时在1350℃~1550℃保温1h~10h。
优选地,步骤5中,热等静压的压强为100MPa~200MPa,以Ar气作为传压介质,纯度不低于99.99vol%。
优选地,步骤5中,坩埚材料为高纯钨或者BN,纯度不低于99.99wt%;
优选地,步骤5中,热等静压处理过程中,升、降温速率控制在5℃~10℃/min。
(三)有益效果
本发明提供的一种具有高中波红外波段透过率特征的低缺陷、高强度的Y2O3透明陶瓷窗口材料的制备方法,是一种掺杂低声子能量氧化物的中波红外Y2O3透光窗口材料制备方法,首先通过掺杂低声子能量氧化物制备Y2O3复相粉体,再在微正压的N2气氛下,采用ZrO2粉体包埋预烧素坯的方式来抑制Y2O3晶粒的生长和氧缺陷的产生,最后再通过进一步热等静压处理制备出具有低缺陷、高强度的Y2O3透明陶瓷。该方法可以有效抑制Y2O3的氧缺陷产生及晶粒尺寸生长,显著提高其光学和力学性能,在具备高透明特点(在中波红外波段可达70%以上)的同时,还具缺陷少、硬度高(≥12GPa)的特点。所得Y2O3陶瓷透明陶瓷,可应用于红外窗口、天线罩等。
附图说明
图1为真空烧结得到Y2O3的与本发明实施例1所得Y2O3的氧缺陷比例图;
图2为本发明实施例1~2所得Y2O3透明陶瓷透过率(样品厚度3mm)图;
图3为传统方法得到Y2O3与本发明实施例1所得Y2O3的硬度对比图。
具体实施方式
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本发明提供了一种掺杂低声子能量氧化物的中波红外Y2O3透光窗口材料的制备方法,特别是指一种在微正压0.03-0.5MPa的N2气氛下,通过ZrO2粉体包埋掺杂有低声子能量氧化物的Y2O3冷压素坯的方式来抑制烧结过程中Y2O3透光窗口晶粒生长和氧缺陷产生,再结合热等静压后处理制备得到在中波红外波段(3.0-6μm)具有较高透过率和较高强度的Y2O3透明陶瓷窗口材料的方法。该方法通过合理选择掺杂剂类型及配比以及控制烧结工艺参数,实现样品的制备,它包括以下步骤:
1)以Y2O3和低声子能量氧化物粉体为原料,经预处理,得粉体A。
进一步地,该Y2O3粉体的合成方法是这样的:以Y2O3和低声子能量氧化物粉体(包括但不限于La2O3、Sc2O3等)为原料,按照质量分数分别为60wt%~99wt%、1wt%~40wt%的比例称取原料,其中低声子能量氧化物粉体可能是一种或者多种的组合,其比例根据需要可任意调节。
进一步地,以耐磨氧化铝或氧化锆球为球磨介质,无水乙醇为分散介质,球料比为4:1~12:1,加入一定量的分散剂,球磨时间为10h~60h,得到浆料;将所得浆料经50℃~100℃真空干燥处理去除分散介质。然后将去除分散介质的粉体进行研磨并过200目筛后,再在500-1300℃温度下烧结1-10小时,获得粉体A。
2)取粉体A样品,经模压成型,再经冷等静压处理,得素坯B。
进一步地,所述的模压成型压力为15MPa~30MPa,保压时间1min~10min;冷等静压压力为150MPa~300MPa,保压时间5min~15min。
3)取素坯B样品,置于坩埚中,在周围填充纯ZrO2粉体或ZrO2粉体与BN粉体的混合粉,其中ZrO2的比例不低于50wt%,使得样品B被完全包覆。
4)将坩埚置于氮气保护的烧结炉中,先抽真空至10Pa以下,再通入一定量的N2,升温至1400℃~1600℃保温2h~10h,通过控制之前的N2通入量使得保温后炉内压力保持在0.03MPa-0.5MPa,保温结束后自然冷却后,得陶瓷C。
5)取素坯C样品,盛于坩埚中,经热等静压处理(1350℃~1550℃保温1h~10h),得陶瓷D,打磨抛光后即得Y2O3透明陶瓷E。
进一步地,热等静压压强为100MPa~200MPa,以Ar气作为传压介质,纯度不低于99.99vol%;进一步地,坩埚材料为高纯钨或者BN,纯度不低于99.99wt%;
进一步地,热等静压处理过程中的升、降温速率控制在5℃~10℃/min。
实施例1:
a)以Y2O3粉体和La2O3粉体为原料,经预处理,得粉体A1。
进一步地,该Y2O3掺杂粉体的制备方法是这样的:以Y2O3粉体和La2O3粉体为原料,按照摩尔分数分别为86mol%、14mol%的比例称取原料,以耐磨氧化铝球为球磨介质,无水乙醇为分散介质,球:料:无水乙醇为6:1:3,球磨时间为96h,得浆料;将所得浆料经70℃干燥处理去除分散介质。干燥后,将粉体置于马弗炉中,升温至1200℃保温5h进一步去除杂质,自然冷却,得Y2O3掺杂粉体。
b)取粉体A1样品,经模压成型,再经冷等静压处理,得素坯B1。
进一步地,所述的模压成型压力为15MPa,保压时间1min;冷等静压压力为220MPa,保压时间5min。
c)取素坯B1样品,置于氮气保护的烧结炉中,先抽真空至10Pa以下,再充入氮气至0.01MPa,然后升温至1550℃,当温度升到1550℃炉内压力为0.08MPa,在此温度下保温保压5小时。自然冷却后,得陶瓷C1。
进一步地,素坯B1是盛于装有包埋粉的氮化硼坩埚中,包埋粉的成分为ZrO2和BN的混合物,其中ZrO2的质量比例为50wt%;
进一步地,烧结升、降温速率控制在10℃/min;
进一步地,所述氮气纯度为99.99vol%。
d)取陶瓷C1样品,盛于坩埚中,经热等静压处理(1500℃保温1h~10h),得陶瓷D1,打磨抛光后即得Y2O3透明陶瓷E1。
进一步地,热等静压压强为150MPa,以Ar气作为传压介质,纯度不低于99.99vol%;进一步地,坩埚材料为高纯钨或者BN,纯度不低于99.99wt%;
进一步地,热等静压处理过程中,升、降温速率控制在5℃~10℃/min。
实施例2:
a)以Y2O3粉体和Sc2O3粉体为原料,经预处理,得粉体A2。
进一步地,该Y2O3掺杂粉体的制备方法是这样的:以Y2O3粉体和Sc2O3粉体为原料,按照摩尔分数分别为94mol%、6mol%的比例称取原料,以耐磨氧化铝球为球磨介质,无水乙醇为分散介质,球:料:无水乙醇为6:1:3,球磨时间为96h,得浆料;将所得浆料经70℃干燥处理去除分散介质。干燥后,将粉体置于马弗炉中,升温至1200℃保温5h进一步去除杂质,自然冷却,得Y2O3掺杂粉体。
b)取粉体A2样品,经模压成型,再经冷等静压处理,得素坯B2。
进一步地,所述的模压成型压力为15MPa,保压时间1min;冷等静压压力为300MPa,保压时间5min。
c)取素坯B2样品,置于氮气保护的烧结炉中,先抽真空至10Pa以下,再充入氮气至0.1MPa,然后升温至1500℃,当温度升到1500℃炉内压力为0.3MPa,在此温度下保温保压10小时。自然冷却后,得陶瓷C2。
进一步地,素坯B2是盛于装有包埋粉的石墨坩埚中,包埋粉的成分为纯ZrO2
进一步地,烧结升、降温速率控制在10℃/min;
进一步地,所述氮气纯度为99.99vol%。
d)取陶瓷C样品,盛于坩埚中,经热等静压处理(1550℃保温1h~10h),得陶瓷D,打磨抛光后即得Y2O3透明陶瓷E2。
进一步地,热等静压压强为100MPa~200MPa,以Ar气作为传压介质,纯度不低于99.99vol%;进一步地,坩埚材料为高纯钨或者BN,纯度不低于99.99wt%;
进一步地,热等静压处理过程中的升、降温速率控制在5℃~10℃/min。
可以看出,本发明提供的一种具有高中波红外波段透过率特征的低缺陷、高强度的Y2O3透明陶瓷的制备方法,可以在有效抑制Y2O3的氧缺陷产生及晶粒尺寸生长的基础上,显著提高其光学和力学性能,从图1至图3可以看出,其氧缺陷浓度明显小于真空烧结方法,其硬度明显高于传统方法制备的Y2O3的硬度。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (2)

1.一种倍半氧化物窗口材料的制备方法,其特征在于,包括以下步骤:
1)以Y2O3和低声子能量氧化物粉体为原料,经预处理,得粉体A;
2)取粉体A样品,经模压成型,再经冷等静压处理,得素坯B;
3)取素坯B样品,置于坩埚中,在周围填充纯ZrO2粉体或ZrO2粉体与BN粉体的混合粉;
4)将坩埚置于氮气保护的烧结炉中,先抽真空至10Pa以下,再通入一定量的N2,升温至1400℃~1600℃保温2h~10h,通过控制之前的N2通入量使得保温后炉内压力保持在0.03MPa-0.5MPa,保温结束后自然冷却后,得陶瓷C;
5)取素坯C样品,盛于坩埚中,经热等静压处理,得陶瓷D,打磨抛光后即得Y2O3透明陶瓷E;
步骤1中,以Y2O3和低声子能量氧化物粉体为原料,按照质量分数分别为60wt%~99wt%、1wt%~40wt%的比例称取原料,其中低声子能量氧化物粉体包括La2O3、Sc2O3
步骤1中,预处理时,以耐磨氧化铝或氧化锆球为球磨介质,无水乙醇为分散介质,球料比为4:1~12:1,加入一定量的分散剂,球磨时间为10h~60h,得到浆料;再将所得浆料经50℃~100℃真空干燥处理去除分散介质,然后将去除分散介质的粉体进行研磨并过200目筛后,再在500-1300℃温度下烧结1-10小时,获得粉体A;
步骤2中,所述模压成型的压力为15MPa~30MPa,保压时间1min~10min;冷等静压的压力为150MPa~300MPa,保压时间5min~15min;
步骤3中,ZrO2的比例不低于50wt%,使得样品B被完全包覆;
步骤5中,热等静压处理时在1350℃~1550℃保温1h~10h;
步骤5中,热等静压的压强为100MPa~200MPa,以Ar气作为传压介质,纯度不低于99.99vol%;
步骤5中,坩埚材料为高纯钨或者BN,纯度不低于99.99wt%;
步骤5中,热等静压处理过程中,升、降温速率控制在5℃~10℃/min。
2.一种利用权利要求1所述的方法制备的倍半氧化物窗口材料。
CN201911146644.0A 2019-11-21 2019-11-21 一种倍半氧化物窗口材料的制备方法 Active CN110937898B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911146644.0A CN110937898B (zh) 2019-11-21 2019-11-21 一种倍半氧化物窗口材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911146644.0A CN110937898B (zh) 2019-11-21 2019-11-21 一种倍半氧化物窗口材料的制备方法

Publications (2)

Publication Number Publication Date
CN110937898A CN110937898A (zh) 2020-03-31
CN110937898B true CN110937898B (zh) 2021-12-21

Family

ID=69907224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911146644.0A Active CN110937898B (zh) 2019-11-21 2019-11-21 一种倍半氧化物窗口材料的制备方法

Country Status (1)

Country Link
CN (1) CN110937898B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112174667B (zh) * 2020-09-22 2022-11-22 天津津航技术物理研究所 一种y2o3窗口材料的制备方法
CN113880572B (zh) * 2021-11-18 2022-12-09 天津津航技术物理研究所 一种高强度低辐射透光窗口材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115134A (en) * 1977-07-11 1978-09-19 Gte Laboratories Incorporated Transparent yttria ceramics and method for producing same
JP2773193B2 (ja) * 1989-03-03 1998-07-09 住友電気工業株式会社 透光性イツトリア焼結体の製造方法
CN100447106C (zh) * 2005-01-17 2008-12-31 上海大学 掺La3+的Y2O3基透明激光陶瓷的制备方法
JP4783654B2 (ja) * 2006-03-20 2011-09-28 コバレントマテリアル株式会社 透光性セラミックス焼結体及びその製造方法
CN101698601B (zh) * 2009-11-04 2012-05-30 中国科学院上海硅酸盐研究所 一种氧化钇基透明陶瓷的烧结方法
JP6119528B2 (ja) * 2012-10-03 2017-04-26 信越化学工業株式会社 透明セスキオキサイド焼結体の製造方法
CN104529449A (zh) * 2014-12-18 2015-04-22 徐州市江苏师范大学激光科技有限公司 一种采用两步烧结制备氧化钇基透明陶瓷的方法

Also Published As

Publication number Publication date
CN110937898A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
CN107352994B (zh) 一种镁铝尖晶石透明陶瓷的制备方法
CN101284733B (zh) 钇铝石榴石和氧化钇双晶相透明陶瓷及其制备方法
CN107721406B (zh) 一种制备高透光性镁铝尖晶石透明陶瓷的方法
CN110937898B (zh) 一种倍半氧化物窗口材料的制备方法
CN108794016B (zh) 一种高红外透过率AlON透明陶瓷的快速制备方法
KR20120098118A (ko) 투명도가 향상된 다결정 산질화알루미늄의 제조방법
US10023795B2 (en) Ceramic composite systems and method
CN108675797B (zh) 氮化硅基复合陶瓷材料及其微波烧结制备方法
CN110218096A (zh) 一种高硬高耐磨氮化硅陶瓷及其制备方法和应用
CN113943162A (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
JPH06211573A (ja) 透明なy2o3焼結体の製造方法
CN110627504A (zh) 碳化硼复合材料的无压烧结制备方法
CN107473730B (zh) 一种制备细晶、高强镁铝尖晶石透明陶瓷的方法
JPH06107456A (ja) 透光性イットリウム−アルミニウム−ガーネット焼結体の製造方法
US11807582B1 (en) Silicon nitride ceramic sintered body and preparation method thereof
CN109053192B (zh) 一种MgAlON透明陶瓷粉体的制备方法
CN109437916B (zh) 高透明LiAlON陶瓷的制备方法
CN113603475B (zh) 一种三价铬离子掺杂镁铝尖晶石透明陶瓷的制备方法
CN112225564B (zh) 一种氮氧化铝透明陶瓷及其制备方法
CN1478757A (zh) 一种用放电等离子烧结制备高纯块体钛铝碳材料的方法
CN114956821A (zh) 一种高透过率三氧化二钇透明陶瓷及其制备方法
CN112028492B (zh) 一种M:YAG-Al2O3纳米层状复合透明陶瓷及其制备方法
CN1317229C (zh) 一种半透明氮化物复相陶瓷及其制备方法
CN108585878B (zh) 一种高硬度MgAlON透明陶瓷及其制备方法
CN102351540B (zh) LiAlON透明陶瓷的无压烧结制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant