CN112087139A - 具高升压比的隔离型转换器 - Google Patents

具高升压比的隔离型转换器 Download PDF

Info

Publication number
CN112087139A
CN112087139A CN202010248753.XA CN202010248753A CN112087139A CN 112087139 A CN112087139 A CN 112087139A CN 202010248753 A CN202010248753 A CN 202010248753A CN 112087139 A CN112087139 A CN 112087139A
Authority
CN
China
Prior art keywords
secondary side
diode
coupled
contact
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010248753.XA
Other languages
English (en)
Other versions
CN112087139B (zh
Inventor
林鸿杰
高肇利
谢奕平
黄进忠
郭朝龙
黄弘宇
李志贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Priority to US16/867,242 priority Critical patent/US11088629B2/en
Publication of CN112087139A publication Critical patent/CN112087139A/zh
Priority to US17/365,608 priority patent/US11652420B2/en
Application granted granted Critical
Publication of CN112087139B publication Critical patent/CN112087139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/26Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes without control electrode or semiconductor devices without control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • H02M3/33553Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种具高升压比的隔离型转换器,包含变压器、第一桥臂、第二桥臂以及升压电路。变压器包含具有次级侧第一接点与次级侧第二接点。第一桥臂包含第一二极管与第二二极管,第二桥臂包含第三二极管与第四二极管。升压电路包含耦接于第一桥臂与次级侧第二接点之间的至少一第五二极管、耦接于第二桥臂与次级侧第一接点之间的至少一第六二极管、以及至少两电容,耦接次级侧第一接点与次级侧第二接点。

Description

具高升压比的隔离型转换器
技术领域
本发明涉及一种隔离型转换器,特别涉及一种具高升压比的隔离型转换器。
背景技术
请参见图1所示,其为相关技术的非隔离式升压转换器的电路方框图。如果需要高电压转换比(升压比),例如大于10倍,则使用两个或两个以上的升压(DC-DC)转换器来实现高升压比的要求。如图1所示的第一直流升压转换器与第二直流升压转换器。然而多级升压转换器的缺点是较高的电路元件成本和较低的转换效率。
请参见图2所示,其为相关技术的推挽式转换器的电路图。推挽式转换器具有通过隔离变压器实现电隔离的优势。通过调节隔离变压器的线圈匝数,可以实现推挽式转换器的高升压比(电压转换比)。然而,如果电压转换比太高,则次级侧线圈匝数过多会造成隔离变压器的漏感增加,导致开关和/或二极管的应力更高,需要使用具有较高额定电压的元件,开关的导通电阻也变大,将会导致电路成本增加,效率降低以及变压器体积增大。
请参见图3所示,其为相关技术的全桥LLC谐振转换器的电路图。全桥LLC谐振转换器可以使用谐振技术使开关在ZVS(零电压切换)下工作,通常设计开关频率操作在谐振点附近。通过调节隔离变压器的线圈匝数,可以实现LLC谐振转换器的高电压转换比。然而,如果电压转换率太高,则线圈匝数过多会导致变压器的线圈匝数增加,变压器的体积增加以及效率降低。此外,图3所示的全桥LLC谐振转换器提供了变压器的第一象限和第三象限操作,此处象限是指变压器于B-H曲线的主要操作区域(忽略磁滞现象)。
请参见图4所示,其为相关技术的全桥相移转换器的电路图。全桥转换器的开关可通过相位控制技术在ZVS条件下工作,与推挽式转换器相比,具有较少的开关损耗。通过调节隔离变压器的线圈匝数,可以实现全桥转换器所需的输出电压。然而,为了实现高升压比(电压转换比),过多的线圈匝数导致更大的变压器体积,更高的半导体开关应力以及更低的转换效率。
在以上几种常见的隔离转换器中,其隔离变压器工作在第一象限和第三象限中。本公开提出了一种具高升压比的隔离型转换器,其可以在第一象限和第三象限中操作。可以通过对电容器充电以建立高输出电压来实现隔离转换器的高升压比,能够有效地减少隔离变压器的线圈匝数。由于减少了隔离变压器的线圈匝数,因此将提高升压电路的效率,降低电路元件成本并减小体积。
为此,如何设计出一种具高升压比的隔离型转换器,来解决前述的技术问题,乃为本公开发明人所研究的重要课题。
发明内容
本发明的目的在于提供一种具高升压比的隔离型转换器,解决现有技术的问题。
为实现前述目的,本发明所提出的具高升压比的隔离型转换器包含变压器、第一桥臂、第二桥臂以及升压电路。变压器包含具有次级侧第一接点与次级侧第二接点的次级侧。第一桥臂包含第一二极管与第二二极管,第一二极管的阴极耦接直流正输出接点,第一二极管的阳极耦接第一桥臂上接点,第二二极管的阳极耦接直流负输出接点,第二二极管的阴极耦接第一桥臂下接点。第二桥臂包含第三二极管与第四二极管,第三二极管的阴极耦接直流正输出接点,第三二极管的阳极耦接第二桥臂上接点,第四二极管的阳极耦接直流负输出接点,第四二极管的阴极耦接第二桥臂下接点。升压电路包含耦接于第一桥臂与次级侧第二接点之间的至少一第五二极管;耦接于第二桥臂与次级侧第一接点之间的至少一第六二极管;以及至少两电容,耦接次级侧第一接点与次级侧第二接点。
通过所提出的具高升压比的隔离型转换器,提高升压电路的效率,降低电路元件成本并减小体积。
本发明的另一目的在于提供一种隔离型升压转换器,解决现有技术的问题。
为实现前述目的,本发明所提出的隔离型升压转换器包含变压器、第一桥臂、第二桥臂以及升压电路。变压器包含具有次级侧第一接点、次级侧第二接点以及中心抽头接点的次级侧。第一桥臂包含第一开关与第二开关,第一开关的第一端耦接直流正输出接点,第一开关的第二端耦接第一桥臂上接点,第二开关的第一端耦接直流负输出接点,第二开关的第二端耦接第一桥臂下接点。第二桥臂包含第三开关与第四开关,第三开关的第一端耦接直流正输出接点,第三开关的第二端耦接第二桥臂上接点,第四开关的第一端耦接直流负输出接点,第四开关的第二端耦接第二桥臂下接点。升压电路包含耦接于第一桥臂与次级侧第二接点之间的至少一第五开关;耦接于第二桥臂与次级侧第一接点之间的至少一第六开关;以及至少两电容,耦接次级侧第一接点与次级侧第二接点。
通过所提出的隔离型升压转换器,提高升压电路的效率,降低电路元件成本并减小体积。
为了能更进一步了解本发明为实现预定目的所采取的技术、手段及技术效果,请参阅以下有关本发明的详细说明与附图,相信本发明的目的、特征与特点,当可由此得一深入且具体的了解,然而说明书附图仅提供参考与说明用,并非用来对本发明加以限制者。
附图说明
图1:为相关技术的非隔离式升压转换器的电路方框图。
图2:为相关技术的推挽式转换器的电路图。
图3:为相关技术的全桥LLC谐振转换器的电路图。
图4:为相关技术的全桥相移转换器的电路图。
图5:为本发明单总线升压架构的具高升压比的隔离型转换器的第一实施例的电路图。
图6:为本发明单总线升压架构的具高升压比的隔离型转换器的第二实施例的电路图。
图7:为图5操作于第一象限的电流路径示意图。
图8:为图5操作于第三象限的电流路径示意图。
图9:为本发明单总线升压架构的具高升压比的隔离型转换器的第三实施例的电路图。
图10:为本发明单总线升压架构的具高升压比的隔离型转换器的第四实施例的电路图。
图11:为本发明双总线升压架构的隔离型升压转换器的电路图。
图12:为具有图5的单总线升压架构的推挽式转换器的电路图。
图13:为具有图5的单总线升压架构的全桥转换器的电路图。
图14:为具有图5的单总线升压架构的全桥LLC谐振转换器的电路图。
图15:为具有图11的双总线升压架构的推挽式转换器的电路图。
图16:为具有图11的双总线升压架构的全桥转换器的电路图。
图17:为具有图11的双总线升压架构的全桥LLC谐振转换器的电路图。
附图标记说明:
T1:变压器
Lb1:第一桥臂
Lb2:第二桥臂
10:升压电路
D1:第一二极管
D2:第二二极管
D3:第三二极管
D4:第四二极管
D5:第五二极管
D6:第六二极管
D5:上第五二极管、下第五二极管
D6:上第六二极管、下第六二极管
C1:第一电容
C2:第二电容
C3:第三电容
C4:第四电容
+Vb:直流正输出接点
-Vb:直流负输出接点
Ps1:次级侧第一接点
Ps2:次级侧第二接点
Pu1:第一桥臂上接点
Pu2:第二桥臂上接点
Pw1:第一桥臂下接点
Pw2:第二桥臂下接点
Pct:中心抽头接点
Ic1:主电流
Ic2:预充电电流
具体实施方式
兹有关本发明的技术内容及详细说明,配合附图说明如下。
请参见图5所示,其为本发明单总线升压架构的具高升压比的隔离型转换器的第一实施例的电路图。所述隔离型转换器包含变压器T1、第一桥臂Lb1、第二桥臂Lb2以及升压电路10。变压器T1包含具有次级侧第一接点Ps1与次级侧第二接点Ps2的次级侧。第一桥臂Lb1包含第一二极管D1与第二二极管D2。第一二极管D1的阴极耦接直流正输出接点+Vb,第一二极管D1的阳极耦接第一桥臂上接点Pu1,第二二极管D2的阳极耦接直流负输出接点-Vb,第二二极管D2的阴极耦接第一桥臂下接点Pw1。第二桥臂Lb2包含第三二极管D3与第四二极管D4。第三二极管D3的阴极耦接直流正输出接点+Vb,第三二极管D3的阳极耦接第二桥臂上接点Pu2,第四二极管D4的阳极耦接直流负输出接点-Vb,第四二极管D4的阴极耦接第二桥臂下接点Pw2。
升压电路10包含耦接于第一桥臂Lb1与次级侧第二接点Ps2之间的至少一第五二极管D5、耦接于第二桥臂Lb2与次级侧第一接点Ps1之间的至少一第六二极管D6,以及至少两电容,耦接次级侧第一接点Ps1与次级侧第二接点Ps2。
如图5所示,至少两电容的数量为两个,分别包含一第一电容C1与第二电容C2。第一电容C1的两端分别耦接于次级侧第一接点Ps1与第一桥臂上接点Pu1。第二电容C2的两端分别耦接于次级侧第二接点Ps2与第二桥臂上接点Pu2。第五二极管D5的阴极耦接第一桥臂上接点Pu1、第五二极管D5的阳极耦接次级侧第二接点Ps2。第六二极管D6的阴极耦接第二桥臂上接点Pu2、第六二极管D6的阳极耦接次级侧第一接点Ps1。
如图6所示,至少两电容的数量为两个,分别包含一第一电容C1与第二电容C2。第一电容C1的两端分别耦接于次级侧第一接点Ps1与第一桥臂下接点Pw1。第二电容C2的两端分别耦接于次级侧第二接点Ps2与第二桥臂下接点Pw2。第五二极管D5的阳极耦接第一桥臂下接点Pw1、第五二极管D5的阴极耦接次级侧第二接点Ps2。第六二极管D6的阳极耦接第二桥臂下接点Pw2、第六二极管D6的阴极耦接次级侧第一接点Ps1。
本公开提出了耦合到隔离变压器T1的次级侧(或省略仅称为次级侧)的二极管-电容器电路,以通过次级侧线圈匝对电容器充电,从而减少了线圈匝数,提高了转换效率,并减少了占用的体积。此外,二极管-电容器电路可以用在能够在第一象限和第三象限中工作的各种隔离转换器中。
请参见图7所示,其为图5操作于第一象限的电流路径示意图。隔离型转换器操作于第一象限时,主电流Ic1流经变压器T1的次级侧、第二电容C2、第三二极管D3、直流正输出接点+Vb、直流负输出接点-Vb、第二二极管D2以及次级侧。预充电电流Ic2流经变压器T1的次级侧、第五二极管D5、第一电容C1以及次级侧。其中,预充电电流Ic2是对第一电容C1预充电。
此外,图6的隔离型转换器操作于第一象限(未图示)时,主电流流经变压器T1的次级侧、第三二极管D3、直流正输出接点+Vb、直流负输出接点-Vb、第二二极管D2、第一电容C1以及次级侧;预充电电流流经次级侧、第二电容C2、第六二极管D6以及次级侧。
请参见图8所示,其为图5操作于第三象限的电流路径示意图。隔离型转换器操作于第三象限时,主电流Ic1流经变压器T1的次级侧、第一电容C1、第一二极管D1、直流正输出接点+Vb、直流负输出接点-Vb、第四二极管D4以及次级侧。预充电电流Ic2流经变压器T1的次级侧、第六二极管D6、第二电容C2以及次级侧。类似地,图6的隔离型转换器操作于第三象限(未图示)时,主电流流经变压器T1的次级侧、第一二极管D1、直流正输出接点+Vb、直流负输出接点-Vb、第四二极管D4、第二电容C2以及次级侧;预充电电流流经变压器T1的次级侧、第一电容C1、第五二极管D5以及次级侧。
请参见图9所示,其为本发明单总线升压架构的具高升压比的隔离型转换器的第三实施例的电路图。图9的电路架构为图5电路架构与图6电路架构的结合。如图9所示,至少两电容的数量为四个,分别包含第一电容C1、第二电容C2、第三电容C3以及第四电容C4。至少一第五二极管D5的数量为两个,分别为上第五二极管D5与下第五二极管D5。至少一第六二极管D6的数量为两个,分别为上第六二极管D6与下第六二极管D6。
第一电容C1的两端分别耦接于次级侧第一接点Ps1与第一桥臂上接点Pu1。第二电容C2的两端分别耦接于次级侧第二接点Ps2与第二桥臂上接点Pu2。第三电容C3的两端分别耦接于次级侧第一接点Ps1与第一桥臂下接点Pw1。第四电容C4的两端分别耦接于次级侧第二接点Ps2与第二桥臂下接点Pw2。
上第五二极管D5的阴极耦接第一桥臂上接点Pu1、上第五二极管D5的阳极耦接次级侧第二接点Ps2。上第六二极管D6的阴极耦接第二桥臂上接点Pu2、上第六二极管D6的阳极耦接次级侧第一接点Ps1。下第五二极管D5的阳极耦接第一桥臂下接点Pw1、下第五二极管D5的阴极耦接次级侧第二接点Ps2。下第六二极管D6的阳极耦接第二桥臂下接点Pw2、下第六二极管D6的阴极耦接次级侧第一接点Ps1。
在图9的电路架构下,隔离型转换器操作于第一象限(未图示)时,主电流流经变压器T1的次级侧、第二电容C2、第三二极管D3、直流正输出接点+Vb、直流负输出接点-Vb、第二二极管D2、第三电容C3以及次级侧。第一预充电电流流经次级侧、上第五二极管D5、第一电容C1以及次级侧;第二预充电电流流经次级侧、第四电容C4、下第六二极管D6以及次级侧。隔离型转换器操作于第三象限(未图示)时,主电流流经变压器T1的次级侧、第一电容C1、第一二极管D1、直流正输出接点+Vb、直流负输出接点-Vb、第四二极管D4、第四电容C4以及次级侧。第一预充电电流流经次级侧、上第六二极管D6、第二电容C2以及次级侧;第二预充电电流流经次级侧、第三电容C3、下第五二极管D5以及次级侧。
请参见图10所示,其为本发明单总线升压架构的具高升压比的隔离型转换器的第四实施例的电路图。图10与图9最主要的差异在于图9中的所有二极管D1~D6是以功率开关S1~S6取代,在本实施例中,功率开关S1~S6为金属氧化物半导体场效晶体管(MOSFET),然不以此为限制本发明。通过对功率开关S1~S6的主动控制,使得隔离型转换器可达到双向操作的功能。同样地,对应于图5、图6以及图9的隔离型转换器架构,亦可以功率开关取代二极管,使得隔离型转换器可达到双向操作的功能,或通过功率开关取代二极管以达到更少的导通损耗。值得一提,关于图5、图6以及图9前述内容中,所称二极管并不限制一定是独立封装的二极管元件,亦可代表功率开关的寄生元件,如金属氧化物半导体场效晶体管的本体二极管(Body Diode)。
请参见图11所示,其为本发明双总线升压架构的隔离型升压转换器的电路图。在二极管-电容器电路的相同概念中,针对特定应用提出了双总线电路结构,例如UPS功率转换器的双总线输出。相较于图9所示的单总线升压架构的隔离型转换器,图11所示的双总线升压架构的隔离型转换器的变压器还包含中心抽头接点Pct,通过中心抽头的架构,达到输出双总线电压平衡充放电,其电路与图9相似,不再赘述。
请参见图12所示,其为具有图5的单总线升压架构的推挽式转换器的电路图。图5所示的二极管-电容器电路是应用于具有单总线电路结构的推挽式转换器,以实现具有高升压比和高效率的DC-DC转换器。并且,通过在隔离型转换器的输出侧接上电感与电容,可采用定频控制方式进行控制。
此外,图6、图9以及图10中所示的二极管-电容器电路是也适用于具有单总线电路结构的推挽式转换器(未示出详细的电路图)。
请参见图13所示,其为具有图5的单总线升压架构的全桥转换器的电路图。图5所示的对称的二极管-电容器电路是应用于具有单总线电路结构的全桥转换器,以实现具有高升压比和高效率的DC-DC转换器。
此外,图6、图9以及图10中所示的二极管-电容器电路是也应用于具有单总线电路结构的全桥转换器(未示出详细的电路图)。
请参见图14所示,其为具有图5的单总线升压架构的全桥LLC谐振转换器的电路图。图5所示的二极管-电容器电路是应用于具有单总线电路结构的全桥LLC谐振转换器,以实现具有高升压比和高效率的DC-DC转换器。
此外,图6、图9以及图10中所示的二极管-电容器电路是也应用于具有单总线电路结构的全桥LLC谐振转换器(未示出详细的电路图)。
请参见图15所示,其为具有图11的双总线升压架构的推挽式转换器的电路图。图11所示的二极管-电容器电路是应用于具有双总线电路结构的推挽式转换器,以实现具有高升压比和高效率的DC-DC转换器。
请参见图16所示,其为具有图11的双总线升压架构的全桥转换器的电路图。图11所示的二极管-电容器电路是应用于具有双总线电路结构的全桥转换器,以实现具有高升压比和高效率的DC-DC转换器。
请参见图17所示,其为具有图11的双总线升压架构的全桥LLC谐振转换器的电路图。图11所示的二极管-电容器电路是应用于具有双总线电路结构的全桥LLC谐振转换器,以实现具有高升压比和高效率的DC-DC变换器。
以上所述,仅为本发明优选具体实施例的详细说明与附图,而本发明的特征并不局限于此,并非用以限制本发明,本发明的所有范围应以权利要求为准,凡合于本发明权利要求的构思与其类似变化的实施例,皆应包含于本发明的范围中,任何本领域技术人员在本发明的领域内,可轻易思及的变化或修饰皆可涵盖在以下本公开的权利要求。

Claims (16)

1.一种具高升压比的隔离型转换器,包含:
一变压器,包含具有一次级侧第一接点与一次级侧第二接点的一次级侧;
一第一桥臂,包含一第一二极管与一第二二极管,该第一二极管的阴极耦接一直流正输出接点,该第一二极管的阳极耦接一第一桥臂上接点,该第二二极管的阳极耦接一直流负输出接点,该第二二极管的阴极耦接一第一桥臂下接点;
一第二桥臂,包含一第三二极管与一第四二极管,该第三二极管的阴极耦接该直流正输出接点,该第三二极管的阳极耦接一第二桥臂上接点,该第四二极管的阳极耦接该直流负输出接点,该第四二极管的阴极耦接一第二桥臂下接点;及
一升压电路,包含:
耦接于该第一桥臂与该次级侧第二接点之间的至少一第五二极管;
耦接于该第二桥臂与该次级侧第一接点之间的至少一第六二极管;及
至少两电容,耦接该次级侧第一接点与该次级侧第二接点。
2.如权利要求1所述具高升压比的隔离型转换器,其中该至少两电容的数量为两个,分别包含一第一电容与一第二电容;
其中,该第一电容的两端分别耦接于该次级侧第一接点与该第一桥臂上接点;该第二电容的两端分别耦接于该次级侧第二接点与该第二桥臂上接点;
其中,该第五二极管的阴极耦接该第一桥臂上接点、该第五二极管的阳极耦接该次级侧第二接点;该第六二极管的阴极耦接该第二桥臂上接点、该第六二极管的阳极耦接该次级侧第一接点。
3.如权利要求1所述具高升压比的隔离型转换器,其中该至少两电容的数量为两个,分别包含一第一电容与一第二电容;
其中,该第一电容的两端分别耦接于该次级侧第一接点与该第一桥臂下接点;该第二电容的两端分别耦接于该次级侧第二接点与该第二桥臂下接点;
其中,该第五二极管的阳极耦接该第一桥臂下接点、该第五二极管的阴极耦接该次级侧第二接点;该第六二极管的阳极耦接该第二桥臂下接点、该第六二极管的阴极耦接该次级侧第一接点。
4.如权利要求1所述具高升压比的隔离型转换器,其中该至少两电容的数量为四个,分别包含一第一电容、一第二电容、一第三电容以及一第四电容;该至少一第五二极管的数量为两个,分别为一上第五二极管与一下第五二极管;该至少一第六二极管的数量为两个,分别为一上第六二极管与一下第六二极管;
其中,该第一电容的两端分别耦接于该次级侧第一接点与该第一桥臂上接点;该第二电容的两端分别耦接于该次级侧第二接点与该第二桥臂上接点;该第三电容的两端分别耦接于该次级侧第一接点与该第一桥臂下接点;该第四电容的两端分别耦接于该次级侧第二接点与该第二桥臂下接点;
其中,该上第五二极管的阴极耦接该第一桥臂上接点、该上第五二极管的阳极耦接该次级侧第二接点;该上第六二极管的阴极耦接该第二桥臂上接点、该上第六二极管的阳极耦接该次级侧第一接点;
其中,该下第五二极管的阳极耦接该第一桥臂下接点、该下第五二极管的阴极耦接该次级侧第二接点;该下第六二极管的阳极耦接该第二桥臂下接点、该下第六二极管的阴极耦接该次级侧第一接点。
5.如权利要求2所述具高升压比的隔离型转换器,其中该隔离型转换器操作于第一象限时:
一主电流流经该次级侧、该第二电容、该第三二极管、该直流正输出接点、该直流负输出接点、该第二二极管以及该次级侧;
一预充电电流流经该次级侧、该第五二极管、该第一电容以及该次级侧。
6.如权利要求2所述具高升压比的隔离型转换器,其中该隔离型转换器操作于第三象限时:
一主电流流经该次级侧、该第一电容、该第一二极管、该直流正输出接点、该直流负输出接点、该第四二极管以及该次级侧;
一预充电电流流经该次级侧、该第六二极管、该第二电容以及该次级侧。
7.如权利要求3所述具高升压比的隔离型转换器,其中该隔离型转换器操作于第一象限时:
一主电流流经该次级侧、该第三二极管、该直流正输出接点、该直流负输出接点、该第二二极管、该第一电容以及该次级侧;
一预充电电流流经该次级侧、该第二电容、该第六二极管以及该次级侧。
8.如权利要求3所述具高升压比的隔离型转换器,其中该隔离型转换器操作于第三象限时:
一主电流流经该次级侧、该第一二极管、该直流正输出接点、该直流负输出接点、该第四二极管、该第二电容以及该次级侧;
一预充电电流流经该次级侧、该第一电容、该第五二极管以及该次级侧。
9.如权利要求4所述具高升压比的隔离型转换器,其中该隔离型转换器操作于第一象限时:
一主电流流经该次级侧、该第二电容、该第三二极管、该直流正输出接点、该直流负输出接点、该第二二极管、该第三电容以及该次级侧;
一第一预充电电流流经该次级侧、该上第五二极管、该第一电容以及该次级侧;
一第二预充电电流流经该次级侧、该第四电容、该下第六二极管以及该次级侧。
10.如权利要求4所述具高升压比的隔离型转换器,其中该隔离型转换器操作于第三象限时:
一主电流流经该次级侧、该第一电容、该第一二极管、该直流正输出接点、该直流负输出接点、该第四二极管、该第四电容以及该次级侧;
一第一预充电电流流经该次级侧、该上第六二极管、该第二电容以及该次级侧;
一第二预充电电流流经该次级侧、该第三电容、该下第五二极管以及该次级侧。
11.如权利要求4所述具高升压比的隔离型转换器,其中该次级侧还包含一中心抽头接点。
12.一种具高升压比的隔离型转换器,包含:
一变压器,包含具有一次级侧第一接点与一次级侧第二接点的一次级侧;
一第一桥臂,包含一第一开关与一第二开关,该第一开关的第一端耦接一直流正输出接点,该第一开关的第二端耦接一第一桥臂上接点,该第二开关的第一端耦接一直流负输出接点,该第二开关的第二端耦接一第一桥臂下接点;
一第二桥臂,包含一第三开关与一第四开关,该第三开关的第一端耦接该直流正输出接点,该第三开关的第二端耦接一第二桥臂上接点,该第四开关的第一端耦接该直流负输出接点,该第四开关的第二端耦接一第二桥臂下接点;及
一升压电路,包含:
耦接于该第一桥臂与该次级侧第二接点之间的至少一第五开关;
耦接于该第二桥臂与该次级侧第一接点之间的至少一第六开关;
至少两电容,耦接该次级侧第一接点与该次级侧第二接点。
13.如权利要求12所述具高升压比的隔离型转换器,其中该至少两电容的数量为两个,分别包含一第一电容与一第二电容;
其中,该第一电容的两端分别耦接于该次级侧第一接点与该第一桥臂上接点;该第二电容的两端分别耦接于该次级侧第二接点与该第二桥臂上接点;
其中,该第五开关的第一端耦接该第一桥臂上接点、该第五开关的第二端耦接该次级侧第二接点;该第六开关的第一端耦接该第二桥臂上接点、该第六开关的第二端耦接该次级侧第一接点。
14.如权利要求12所述具高升压比的隔离型转换器,其中该至少两电容的数量为两个,分别包含一第一电容与一第二电容;
其中,该第一电容的两端分别耦接于该次级侧第一接点与该第一桥臂下接点;该第二电容的两端分别耦接于该次级侧第二接点与该第二桥臂下接点;
其中,该第五开关的第一端耦接该第一桥臂下接点、该第五开关的第二端耦接该次级侧第二接点;该第六开关的第一端耦接该第二桥臂下接点、该第六开关的第二端耦接该次级侧第一接点。
15.如权利要求12所述具高升压比的隔离型转换器,其中该至少两电容的数量为四个,分别包含一第一电容、一第二电容、一第三电容以及一第四电容;该至少一第五开关的数量为两个,分别为一上第五开关与一下第五开关;该至少一第六开关的数量为两个,分别为一上第六开关与一下第六开关;
其中,该第一电容的两端分别耦接于该次级侧第一接点与该第一桥臂上接点;该第二电容的两端分别耦接于该次级侧第二接点与该第二桥臂上接点;该第三电容的两端分别耦接于该次级侧第一接点与该第一桥臂下接点;该第四电容的两端分别耦接于该次级侧第二接点与该第二桥臂下接点;
其中,该上第五开关的第一端耦接该第一桥臂上接点、该上第五开关的第二端耦接该次级侧第二接点;该上第六开关的第一端耦接该第二桥臂上接点、该上第六开关的第二端耦接该次级侧第一接点;
其中,该下第五开关的第一端耦接该第一桥臂下接点、该下第五开关的第二端耦接该次级侧第二接点;该下第六开关的第一端耦接该第二桥臂下接点、该下第六开关的第二端耦接该次级侧第一接点。
16.如权利要求15所述具高升压比的隔离型转换器,其中该次级侧还包含一中心抽头接点。
CN202010248753.XA 2019-06-12 2020-04-01 具高升压比的隔离型转换器 Active CN112087139B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/867,242 US11088629B2 (en) 2019-06-12 2020-05-05 Isolated converter with high boost ratio
US17/365,608 US11652420B2 (en) 2019-06-12 2021-07-01 Isolated converter with high boost ratio

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962860650P 2019-06-12 2019-06-12
US62/860,650 2019-06-12

Publications (2)

Publication Number Publication Date
CN112087139A true CN112087139A (zh) 2020-12-15
CN112087139B CN112087139B (zh) 2022-04-05

Family

ID=73734668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010248753.XA Active CN112087139B (zh) 2019-06-12 2020-04-01 具高升压比的隔离型转换器

Country Status (3)

Country Link
US (3) US11081968B2 (zh)
CN (1) CN112087139B (zh)
TW (2) TWI740343B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11081968B2 (en) * 2019-06-12 2021-08-03 Delta Electronics, Inc. Isolated boost converter

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533986A (en) * 1983-10-31 1985-08-06 General Electric Company Compact electrical power supply for signal processing applications
EP0446383A1 (de) * 1990-03-09 1991-09-18 Siemens Nixdorf Informationssysteme Aktiengesellschaft Eingangsstromspitzen vermeidendes Schaltnetzteil mit sinusförmiger Stromaufnahme
EP0714160A2 (en) * 1994-11-22 1996-05-29 AT&T Corp. A high efficiency boost topology with two outputs
US5959438A (en) * 1998-01-09 1999-09-28 Delta Electronics, Inc. Soft-switched boost converter with isolated active snubber
US20040264224A1 (en) * 2003-06-26 2004-12-30 Yungtaek Jang Structure and method for an isolated boost converter
CN1571258A (zh) * 2003-07-24 2005-01-26 飞瑞股份有限公司 非隔离式交流电源装置及其控制方法
CN1736018A (zh) * 2002-11-14 2006-02-15 菲尔风暴有限公司 功率变换器电路和方法
CN201536274U (zh) * 2009-11-04 2010-07-28 佛山市柏克电力设备有限公司 一种ups同步控制器
CN101895198A (zh) * 2010-06-18 2010-11-24 华南理工大学 高频变压器三角-星型联结的电流馈三电感升压变换器
CN202135059U (zh) * 2011-06-30 2012-02-01 深圳市核达中远通电源技术有限公司 一种半桥llc谐振转换器
TWM423415U (en) * 2011-10-05 2012-02-21 Darfon Electronics Corp Non-isolated buck-boost light emitting diode driving circuit
CN102801350A (zh) * 2011-05-23 2012-11-28 盈威力新能源科技(上海)有限公司 H桥光伏并网逆变器
US20120314455A1 (en) * 2011-06-08 2012-12-13 National Semiconductor Corporation Isolated sepic power converter for light emitting diodes and other applications
CN103208927A (zh) * 2013-05-07 2013-07-17 南京航空航天大学 一种隔离型软开关高升压直流变换器及其控制方法
CN103887987A (zh) * 2014-04-17 2014-06-25 南京航空航天大学 一种基于开关电容的多重倍压高增益高频整流隔离变换器
CN103904896A (zh) * 2014-04-17 2014-07-02 南京航空航天大学 基于混合整流桥臂的双倍压高频整流隔离变换器
CN103904904A (zh) * 2014-04-17 2014-07-02 南京航空航天大学 双倍压高增益高频整流隔离变换器
CN103904923A (zh) * 2014-04-17 2014-07-02 南京航空航天大学 基于混合整流桥臂和开关电容的高增益高频升压整流隔离变换器
CN103986330A (zh) * 2014-05-28 2014-08-13 东南大学 一种适用于高压大功率场合的谐振升压直/直变换器及其控制方法
CN104143919A (zh) * 2013-05-07 2014-11-12 台达电子工业股份有限公司 双向直流变换器
CN104201900A (zh) * 2014-09-18 2014-12-10 南京航空航天大学 一种谐振变换器及其控制方法
CN104242621A (zh) * 2013-06-11 2014-12-24 Abb研究有限公司 Lc 缓冲电路
CN106533212A (zh) * 2016-12-03 2017-03-22 中国电子科技集团公司第四十三研究所 低电压输入隔离型多路输出开关电源的电路拓扑结构
CN106887953A (zh) * 2015-10-29 2017-06-23 Tdk株式会社 开关电源装置

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3478258A (en) * 1967-05-24 1969-11-11 Sony Corp Transformerless voltage reducing rectifier circuit
US3579078A (en) * 1969-10-06 1971-05-18 Trw Inc Constant current high-voltage power supply
US4167777A (en) * 1978-02-24 1979-09-11 Instrumentation Specialties Company Switching-mode regulator
US4454455A (en) * 1982-09-30 1984-06-12 General Electric Company Fault responsive means for changing control sequence of a multiple-bridge electric power converter
US4559590A (en) * 1983-03-24 1985-12-17 Varian Associates, Inc. Regulated DC to DC converter
JPS6077679A (ja) * 1983-09-30 1985-05-02 Toshiba Corp 多倍圧整流回路
FR2573936B1 (fr) * 1984-11-23 1992-04-10 Auxilec Convertisseur continu-continu a commutateur de decoupage et transformateur
JPH0343834Y2 (zh) * 1987-10-26 1991-09-13
EP0660976B1 (de) * 1993-07-14 1997-08-06 Melcher Ag Rückspeisungsfester synchrongleichrichter
DE69518572T2 (de) * 1994-04-29 2001-04-19 Andre Bonnet Statischer Wandler mit gesteuertem Schalter und Steuerungsschaltung
US5774346A (en) * 1997-01-24 1998-06-30 Poon; Franki Ngai Kit Family of zero voltage switching DC to DC converters with coupled output inductor
US6067236A (en) * 1997-11-03 2000-05-23 Rantec Microwave & Electronics Inc. Power supply for providing high voltage power from a low voltage source
US5883795A (en) * 1998-04-28 1999-03-16 Lucent Technologies Inc. Clamp circuit for a power converter and method of operation thereof
US5956243A (en) * 1998-08-12 1999-09-21 Lucent Technologies, Inc. Three-level boost rectifier with voltage doubling switch
JP4024936B2 (ja) * 1998-09-01 2007-12-19 沖電気工業株式会社 電圧発生回路
JP3019841B1 (ja) * 1998-09-30 2000-03-13 日本電気株式会社 高電圧電源回路
US6744643B2 (en) * 2002-09-06 2004-06-01 Phoenixtec Power Co., Ltd. Push-pull booster circuit with a pair of inductors for coupling
US6992902B2 (en) * 2003-08-21 2006-01-31 Delta Electronics, Inc. Full bridge converter with ZVS via AC feedback
US8358521B2 (en) * 2006-02-01 2013-01-22 Applied Energetics, Inc Intrinsically safe systems and methods for generating bi-polar high voltage
US7746677B2 (en) * 2006-03-09 2010-06-29 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. AC-DC converter circuit and power supply
US20080316775A1 (en) * 2007-06-22 2008-12-25 Lead Year Enterprise Co., Ltd. Soft-switching circuit for power supply
WO2009028053A1 (ja) * 2007-08-29 2009-03-05 Mitsubishi Electric Corporation 交流直流変換装置及びその装置を用いた圧縮機駆動装置並びに空気調和機
JP5125607B2 (ja) * 2008-02-28 2013-01-23 富士電機株式会社 電力変換装置
US20110199802A1 (en) * 2008-04-15 2011-08-18 National Taiwan University Of Science And Technology Single ended power converters operating over 50% duty cycle
US8009444B2 (en) * 2009-04-30 2011-08-30 Hungkuang University Boost device for voltage boosting
TWI384736B (zh) * 2009-07-15 2013-02-01 Delta Eletronics Inc 具電流檢測電路之無橋功率因數校正電路系統及其方法
KR20110109256A (ko) * 2010-03-31 2011-10-06 삼성전자주식회사 고전압 전원 장치
EP2589136B1 (en) * 2010-06-29 2018-03-21 Brusa Elektronik AG Voltage converter
KR101392613B1 (ko) * 2010-08-17 2014-05-07 파일세유 고등 회로 배치의 변압기 없는 일 위상 피브이 인버터
GB2489466A (en) * 2011-03-29 2012-10-03 Sony Corp Grid tied inverter having DC-DC current fed push-pull converter
GB2489467A (en) * 2011-03-29 2012-10-03 Sony Corp Grid tied inverter having DC-DC current fed push-pull converter
CN102158096B (zh) * 2011-05-11 2013-11-20 南京博兰得电子科技有限公司 一种非隔离式谐振变换器
CN102185284B (zh) * 2011-05-18 2014-08-20 台达电子企业管理(上海)有限公司 变换装置保护方法、变换装置以及保护装置
EP2667499A4 (en) * 2011-07-01 2015-03-11 Huawei Tech Co Ltd CONVERTER FOR POWER FACTOR CORRECTION AND CONVERSION APPARATUS FOR POWER FACTOR CORRECTION
TWI456885B (zh) * 2011-12-06 2014-10-11 Ind Tech Res Inst 一種直流轉直流的電壓調節裝置及其操作方法
CN102624213B (zh) * 2012-03-29 2014-12-03 台达电子工业股份有限公司 一种功率因数校正电路
TWM447043U (zh) * 2012-05-04 2013-02-11 Allis Electric Co Ltd 具交錯式柔性切換機制之高效率高升壓比直流轉換器
KR20130134786A (ko) * 2012-05-31 2013-12-10 주식회사 실리콘웍스 Led 램프 구동을 위한 전원 회로 및 전원 공급 방법 그리고 플라이백 트랜스포머의 일차측 제어 회로
TWI469481B (zh) * 2012-10-12 2015-01-11 Nat Univ Tsing Hua 隔離型交錯式直流轉換器
US20140268927A1 (en) * 2013-03-14 2014-09-18 Vanner, Inc. Voltage converter systems
JP6127290B2 (ja) * 2013-05-28 2017-05-17 国立研究開発法人宇宙航空研究開発機構 コンバータと多段倍電圧整流回路を併用した均等化機能付充放電器
US20140354246A1 (en) * 2013-05-30 2014-12-04 Flextronics Ap, Llc Bridgeless pfc power converter with high efficiency
CN105340166B (zh) * 2013-07-11 2017-09-19 三菱电机株式会社 Dc/dc变换器
JP6218466B2 (ja) * 2013-07-12 2017-10-25 キヤノン株式会社 高圧電源装置及び画像形成装置
US9531300B2 (en) * 2013-09-16 2016-12-27 Enphase Energy, Inc. Single phase cycloconverter with integrated line-cycle energy storage
KR101558662B1 (ko) * 2013-10-10 2015-10-08 현대자동차주식회사 스위칭 전원 장치 및 이를 포함하는 배터리 충전 장치
TWI495244B (zh) * 2013-11-14 2015-08-01 Nat Univ Tsing Hua 直流雙向電源轉換系統及其電路
WO2015098221A1 (ja) * 2013-12-25 2015-07-02 住友理工株式会社 発電システム
JP2015159711A (ja) * 2014-01-23 2015-09-03 パナソニックIpマネジメント株式会社 スイッチング電源装置、電力変換装置
US9856722B2 (en) * 2014-03-14 2018-01-02 General Electric Company Methods and systems for controlling voltage switching
US10305387B2 (en) * 2014-07-30 2019-05-28 Abb Schweiz Ag Systems and methods for single active bridge converters
GB2528894B (en) * 2014-08-01 2017-05-10 Eisergy Ltd Power factor correction stages in power conversion
WO2016040832A1 (en) * 2014-09-12 2016-03-17 The Regents Of The University Of California Hybrid boosting converters
US9490709B2 (en) * 2014-12-30 2016-11-08 Korea Institute Of Energy Research Hybrid DC-DC converter with LLC converter and full-bridge converter
CN107112903B (zh) * 2015-02-02 2019-03-26 三菱电机株式会社 Dc/dc转换器
JP2016178780A (ja) * 2015-03-19 2016-10-06 Tdk株式会社 直列補償型電力伝送システム
JP2016201069A (ja) * 2015-04-14 2016-12-01 富士通セミコンダクター株式会社 整流回路、電源回路及びrfidタグ
JP6617588B2 (ja) * 2016-02-02 2019-12-11 Tdk株式会社 スイッチング電源装置
TWI591951B (zh) * 2016-03-22 2017-07-11 崑山科技大學 三繞組交錯式高升壓dc-dc轉換器
US9960687B2 (en) * 2016-06-06 2018-05-01 General Electric Company System and method for a DC/DC converter
JP6748489B2 (ja) * 2016-06-22 2020-09-02 株式会社デンソー 電力変換装置
WO2018110787A1 (ko) * 2016-12-15 2018-06-21 서울과학기술대학교 산학협력단 단일단 인터리브드 소프트 스위칭 컨버터
US10686378B2 (en) * 2016-12-16 2020-06-16 Futurewei Technologies, Inc. High-efficiency regulated buck-boost converter
US10811987B2 (en) * 2017-03-31 2020-10-20 Schneider Electric It Corporation Bi-directional DC-DC converter with load and source synchronized power control
US9997994B1 (en) * 2017-05-12 2018-06-12 Acbel Polytech Inc. Totem-pole power factor corrector and current-sampling unit thereof
JP6953176B2 (ja) * 2017-05-18 2021-10-27 キヤノン株式会社 電源装置及び画像形成装置
TWI635697B (zh) * 2017-08-01 2018-09-11 崑山科技大學 隔離型零電壓切換高升壓dc-dc轉換器
TW201914184A (zh) * 2017-08-25 2019-04-01 國立高雄第一科技大學 具隔離式高升壓轉換器及串聯電池平衡模組的電力裝置
JP6936693B2 (ja) * 2017-10-23 2021-09-22 株式会社Soken 電力変換装置
CN107994772A (zh) * 2017-12-29 2018-05-04 华中科技大学 一种dc-dc变换器
US10476398B1 (en) * 2018-05-01 2019-11-12 Postech Academy-Industry Foundation Power conversion circuit for photovoltaic power generation with high efficiency over wide input voltage range
US10483862B1 (en) * 2018-10-25 2019-11-19 Vanner, Inc. Bi-directional isolated DC-DC converter for the electrification of transportation
US20200220368A1 (en) * 2019-01-08 2020-07-09 Google Llc Universal Adapter
IT201900006719A1 (it) * 2019-05-10 2020-11-10 St Microelectronics Srl Convertitore elettronico
US11081968B2 (en) * 2019-06-12 2021-08-03 Delta Electronics, Inc. Isolated boost converter
US10819244B1 (en) * 2019-06-20 2020-10-27 Abb Power Electronics Inc. Single-stage isolated DC-DC converters with interleaved arms
CN112350607B (zh) * 2019-08-06 2023-10-20 台达电子工业股份有限公司 具双向功率转换的三相电源装置
US10700614B1 (en) * 2019-10-25 2020-06-30 Institute Of Electrical Engineering, Chinese Academy Of Sciences Series-type photovoltaic high-voltage DC grid-connected converter topological circuit and modulation method thereof

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533986A (en) * 1983-10-31 1985-08-06 General Electric Company Compact electrical power supply for signal processing applications
EP0446383A1 (de) * 1990-03-09 1991-09-18 Siemens Nixdorf Informationssysteme Aktiengesellschaft Eingangsstromspitzen vermeidendes Schaltnetzteil mit sinusförmiger Stromaufnahme
EP0714160A2 (en) * 1994-11-22 1996-05-29 AT&T Corp. A high efficiency boost topology with two outputs
US5959438A (en) * 1998-01-09 1999-09-28 Delta Electronics, Inc. Soft-switched boost converter with isolated active snubber
CN1736018A (zh) * 2002-11-14 2006-02-15 菲尔风暴有限公司 功率变换器电路和方法
US20040264224A1 (en) * 2003-06-26 2004-12-30 Yungtaek Jang Structure and method for an isolated boost converter
CN1571258A (zh) * 2003-07-24 2005-01-26 飞瑞股份有限公司 非隔离式交流电源装置及其控制方法
CN201536274U (zh) * 2009-11-04 2010-07-28 佛山市柏克电力设备有限公司 一种ups同步控制器
CN101895198A (zh) * 2010-06-18 2010-11-24 华南理工大学 高频变压器三角-星型联结的电流馈三电感升压变换器
CN102801350A (zh) * 2011-05-23 2012-11-28 盈威力新能源科技(上海)有限公司 H桥光伏并网逆变器
US20120314455A1 (en) * 2011-06-08 2012-12-13 National Semiconductor Corporation Isolated sepic power converter for light emitting diodes and other applications
CN202135059U (zh) * 2011-06-30 2012-02-01 深圳市核达中远通电源技术有限公司 一种半桥llc谐振转换器
TWM423415U (en) * 2011-10-05 2012-02-21 Darfon Electronics Corp Non-isolated buck-boost light emitting diode driving circuit
CN103208927A (zh) * 2013-05-07 2013-07-17 南京航空航天大学 一种隔离型软开关高升压直流变换器及其控制方法
CN104143919A (zh) * 2013-05-07 2014-11-12 台达电子工业股份有限公司 双向直流变换器
CN104242621A (zh) * 2013-06-11 2014-12-24 Abb研究有限公司 Lc 缓冲电路
CN103904923A (zh) * 2014-04-17 2014-07-02 南京航空航天大学 基于混合整流桥臂和开关电容的高增益高频升压整流隔离变换器
CN103904904A (zh) * 2014-04-17 2014-07-02 南京航空航天大学 双倍压高增益高频整流隔离变换器
CN103904896A (zh) * 2014-04-17 2014-07-02 南京航空航天大学 基于混合整流桥臂的双倍压高频整流隔离变换器
CN103887987A (zh) * 2014-04-17 2014-06-25 南京航空航天大学 一种基于开关电容的多重倍压高增益高频整流隔离变换器
CN103986330A (zh) * 2014-05-28 2014-08-13 东南大学 一种适用于高压大功率场合的谐振升压直/直变换器及其控制方法
CN104201900A (zh) * 2014-09-18 2014-12-10 南京航空航天大学 一种谐振变换器及其控制方法
CN106887953A (zh) * 2015-10-29 2017-06-23 Tdk株式会社 开关电源装置
CN106533212A (zh) * 2016-12-03 2017-03-22 中国电子科技集团公司第四十三研究所 低电压输入隔离型多路输出开关电源的电路拓扑结构

Also Published As

Publication number Publication date
CN112087139B (zh) 2022-04-05
US20200395861A1 (en) 2020-12-17
TW202101887A (zh) 2021-01-01
US20210336548A1 (en) 2021-10-28
US20200395860A1 (en) 2020-12-17
TW202046615A (zh) 2020-12-16
US11088629B2 (en) 2021-08-10
TWI740343B (zh) 2021-09-21
US11652420B2 (en) 2023-05-16
TWI719877B (zh) 2021-02-21
US11081968B2 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
CN109703399B (zh) 车载充放电系统及其所适用的控制方法
US10193459B2 (en) High static gain bi-directional DC-DC resonant converter
US8432709B2 (en) DC-to-AC power inverting apparatus for photovoltaic modules
JP5590124B2 (ja) Dc−dcコンバータ
US10141851B2 (en) Resonant DC to DC power converter
CN113131628B (zh) 无线电能传输系统、无线电能传输装置及方法
KR20200080385A (ko) 비절연형 충전기와 직류 컨버터의 통합 장치
US20200266713A1 (en) DC-DC converter
CN112087139B (zh) 具高升压比的隔离型转换器
JP2013230067A (ja) 双方向共振型コンバータ
CN101478247B (zh) 具有电压反馈的单级ac-dc变换电路
CN112087150B (zh) 隔离型升压转换器
Khodabakhsh et al. Using multilevel ZVZCS converters to improve light-load efficiency in low power applications
KR20140063923A (ko) Dab 컨버터의 경 부하 시 소프트 스위칭장치
CN114915173A (zh) 柔切式电源转换器
US20210184578A1 (en) Composite DC-DC Converter
JP7505600B2 (ja) 電力変換装置
CN215871196U (zh) 直流-直流dcdc变换器及车辆
JP2014003827A (ja) 充放電システム
US11228250B2 (en) Flyback power switch structure for bridgeless rectifier
KR101333409B1 (ko) 양방향 고주파 공진기 및 이를 이용한 양방향 변압기
US9281740B2 (en) Power conversion apparatus
JP2024084960A (ja) 蓄電システム
Chou et al. Light-load Conversion Efficiency Enhancement for Three-Phase Dual Active Bridge DC-DC Converters
KR20210048868A (ko) 다중 llc 공진형 컨버터

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant