五、新型說明: 【新型所屬之技術領域】 電路,尤指一種非隔離 本創作係有關於一種發光二極體的驅動 型升降壓式的發光二極體的驅動電路。 【先前技術】 請參照第1圖和第2圖,第1圖係為先紐術說明-種發光二 極體非隔離型的驅動電路⑽的示意圖,第2圖係為說明—電壓V1 和-直流電壓VD的示意圖,動電路卿包含一橋式整流器ι〇2、 一開關撕、-電感106、-二極體1〇8及—電容ιι〇,其中開關ι〇4 和電感廳形成-降壓(buck)單元’且開關1〇4係根據一控制訊號 CS開啟韻閉。橋式签流器1〇2執接於一交流電源II2,用以將交 流電源m所提供的交流賴VAC,整流成直流電壓VD。 如第1圖和第2圖所示’當開關1〇4根據控制訊號cs開啟且 電壓vi大於一串發光二極體114的跨壓v〇時,二極體1〇8不導 通、直流電壓VD透過開關104對電感1〇6和電容11〇充電,以及 電S vi驅動-$發光二極體114,其巾賴V1係為直流電壓^^ 減去電感106的跨壓VL。當開關1〇4根據控制訊號CS開啟且電壓 vi小於一串發光二極體114的跨壓v〇(如第2圖所示的死區時間 DT)時’二極體1〇8依然不導通,但因為電壓V1小於一串發光二極 體114的跨壓V0而無法驅動一串發光二極H 114。亦即當電壓vi M423415 小於一串發光二極體114的跨壓VO時,一串發光二極體114無法 被開啟。另外’當開關根據控制訊號CS關閉時,電感1〇6和 電容110係釋放所儲存的電能,以驅動一串發光二極體114。 如第2圖所示,因為驅動電路1〇〇具有死區時間(deadtime)DT, 所以驅動電路1〇〇的電流諧波失真很嚴重。 【新型内容】 本;作的例&供—種發光二極體非隔離型升降麈式的驅 動電路。該驅動電路包含一橋式整流器、一開關、一控制電路、一 變壓器、-飛輪二極體及一電容。該橋式整流器具有一第一端,用 =接於—交流電源的第—端,—第二端,—第三端,用以親接於 。亥父流電源的第二端’及—第四端,用以祕於至少—串發光二極 2第一端;該開關具有—第—端姻於該橋式整流器的第二端, ―莖及第」而,該控制電路具有一第一端,祕於該開關 "V第 5用以產生一押法·Η占 . 笛一山 让們机杌5以控制該開關的開啟與關閉,一 該變二端’及—第四端,输於該橋式整流11的第四端; 第二一一次側線圈及一二次側線圈,該-次側線圈具有- 乐埏,耦接於該控制電路的第-她,κ咕 雷败μ- ^―端’及-第二端’_於該控制 的第二端,該二次側線圈具有一破 端υ 一 、虿第一鳊,耦接於該開關的第三 及第一端,轉接於該控^ -望# ± 制電路的第四端;該飛輪二極體具有 弟—端,耦接於該開關的第二端, ^ 少—串笋光1抑笛-,山 第二端,用以輕接於該至 尤一極體的第一端;該 冤合具有一第一端,搞接於該飛輪 5 M423415 °體的第—端’及-第二端,输於該二次側線圈的第二端。 驅二tr:實施例提供一種發光二極體非隔離型升降壓式的 。該驅動電路包含-橋式整流器、—開關、—控制電路、 、電感、-飛輪二極體及-電容。該橋式整流器具有—第 以耦接於一交流電源的第一端,— 該交流雷料⑨㈤弟4,—第二端’用以轉接於 “的第―&’及—第四端’用以輪於至少—串 體=第一端;該開關具有-第-端姻於該橋式整流器的第二^, Γ!三端;該控制電路具有—第一端,祕於該開關 =第-^,用以產生-控制訊號,以控制該_的開啟與關閉,一 及—第三端,祕於該橋式整流11的第四端;該電感具有 ^ 於該開關的第三端,及—第二端,_於該控制電 八的其中該控制電路的第二端係輕接於該電感的線圈部 刀,該也輪二極體具有一第一端,接於該開關的第三端,及一第 =用以输於該至少-_二歸的第二端;該電容具有一 於該飛輪二極體的第二端,及—第二端,_於該電 2創作提供—種發光二極體非隔離型升降壓式的驅動電路。該 驅動電路在-_酬,瓣物顿—·線圈)充電 =驅動電路的電容放電轉動至少—串科二極體’·在該開關關 閉時,該驅動電路的電感(該二次側線圈)釋出所儲存的電能以同時 驅動該至少H極___。_,她於先前技 M423415 術,因為本_可統-親_,㈣在本創作中不僅該驅動電 路的轉換效率較高,且一電流諧波失真較低。 【實施方式】 請參照第3圖,第3圖係為本創作的—實施例說明_種發光二 極體非隔離型升降壓式的驅動電路300 #示意圖。驅動電路包 含-橋式整流器302、-開關304、-控制電路3〇6、一變_ 3〇8、 # 一飛輪二極體310及一電容312。橋式整流器302具有一第L端, 输於-交流電源313的第-端,一第二端,一第三端,輕接於交 流電源313的第二端,及一第四端,麵接於一串發光二極體314的 第一端。橋式整流器302係用以將交流電源313所提供的交流電壓 VAC,整流成直流電壓ye。但本創作並不受限於驅動電路驅 動一串發光二極體314,亦即驅動電路3〇〇可驅動複數串發光二極 體。開關304具有-第-端,麵接於橋式整流器3〇2的第二端,一 第二端’及一第三端,其中開關304係可為一 N型金氧半^體、 一 r型金氧半電晶體或一傳輸閘。控制電路3〇6具有一第—端,耦 ..接於開關綱的第二端,用以產生-控制訊號CS,以控制開關3〇4 .的開啟與關閉,一第二端,一第三端,及-第四端,耗接於橋式整 流器3〇2的第四端,其中控制訊號cs包含一導通時間與一戴止時 間,且控制電路306的型號係可為029992。變壓器包含一一 次側線圈·2及-二次側_細。—次側、軸_2具有一第一 端,输於控制電路306的第二端,及一第二端,輕胁控制電路 306.的第三端;二次侧線圈職具有一第一端,輕接於開關綱的 7 M423415 第二鈿’及一第二端,耦接於控制電路3〇6的第四端。另外,一次 側線圈迎的®數與二次側線圈遞4的錄比係可為3,且一次 側線圈3082的感應方向係和二次側線圈蓮的感應方向相反。飛 輪二極體310具有-第一端,搞接於開關搠的第三端,及一第二 端’麵接於-串發光二極體314的第二端;電容312具有一第一端, 祕於飛輪二極體31G的第二端,及—第二端,祕於二次側線圈 3084的第二端。如第3圖所示,驅動電路獨的特點在於橋式整流 器302的第四端(橋式整流器3〇2的負端)係耗接於一串發光二極體 314的第一端(一串發光二極體314的正端)。 如第3圖所示,控制電路3〇6係根據一次側線圈3〇82的感應電 流’調整控做號CS的導通時間。亦即當一次側線圈3的感應 電流係為零時’開關3〇4可根據控制訊^cs的導通時間開啟,且 飛輪一極體31〇不導通。如此,直流電壓仰係透過開關對二 次側線圈3084充電。此時’電容312係用以釋出所儲存的電能,以 驅動-串發光二滅314。亦即當關根據控制訊號cs的導通 時間開啟時,二次側線圈3〇84係用以儲存電能而電容312係用以釋 放電能。亦即當開關3〇4根據控制訊號cs的導通時間開啟時,直 流電壓VD並不會直接驅動一串發光二極體314。因此,驅動電路 300並不會有如第2圖所示的死區時間DT。當一次側線圈聰的 感應電流係、為最大值時,開關3G4係根據控制訊號cs的戴止時間 關閉。此時’二次側線圈麗係用以釋出所儲存的電能,以同時0驅 動一串發光二極體314及對電容312充電。亦即當開關3〇4根據控 M423415 制訊號cs的截止時間關閉時’二次側線圈3〇84、一串發光二極體 314、電容312和飛輪二極體310形成二次側線圈3084的放電迴圈。 請參照第4圖,第4圖係為本創作的另一實施例說明一種發光 二極體非隔離型升降壓式的驅動電路4〇〇的示意圖。驅動電路4〇〇 • 包含一橋式整流器302、一開關3〇4、一控制電路406、一電感408、 一飛輪二極體31〇及一電容312。驅動電路4〇〇和驅動電路3〇〇的 • 差別在於控制電路4〇6及電感408。控制電路406具有一第一端, 耦接於開關304的第二端,用以產生一控制訊號cs,以控制開關 3〇4的開啟與關閉,一第二端,及一第三端,叙接於橋式整流器搬 的第四端,電感408具有-第一端,搞接於開關3〇4的第三端,及 -第二端,滅於控制電路.的第三端,其中控制電路概的第 二端係耦接於電感408的線圈部分。 如第4圖所示,控制電路梅係根據電感侧的感應電流,調 整控制訊號CS的導通時間。亦即當電感儀的感應電流係為零時, 開關304可根據控制訊號cs的導通時間開啟,且飛輪二極體別 不導通。如此,直流電壓奶係透過開關電感充電。此 時,電容312係用以釋出所儲存的電能,以驅動一串發光二極體 ^亦即當開關3〇4根據控制訊號cs的導通時間開啟時,電感糊 存電,容312係用以釋放電能。當電感4〇8義 =為最大值時,開_係根據控制訊號cs的截止時間關閉。 此時,電感偏係用以釋出所儲存的電能,以同時驅動一串發光二 9 M423415 極體314及對電容312充電。亦即當開關304根據控制訊號CS的 戴止時間關閉時,電感408、一串發光二極體314、電容312和飛輪 二極體310形成電感408的放電迴圈。另外,驅動電路400的其餘 操作原理皆和驅動電路300相同,在此不再贅述。 綜上所述,本創作所提供的發光二極體#隔離型升降壓式的驅 動電路在開關開啟時,驅動電路的電感(二次側線圈)充電及驅動電 路的電容放電以驅動至少一串發光二極體;在開關關閉時,驅動電 路的電感(二次侧線圈)釋出所儲存的電能以同時驅動至少一串發 光二極體及對電容充電。因此,相較於先前技術’因為本創作可消 除死區時間’所以在本創作_不僅驅動電路的轉換效率較高,且電 流諸波失真較低。 以上所述僅為本創作之較佳實施例,凡依本創作申請專利範圍 所做之均等變化與修飾,皆應屬本創作之涵蓋範圍。 【圖式簡單說明】 第1圖係為先前技術說明一種發光二極體非隔離型的驅動電 意圖。 第2圖係為說明一電壓和一直流電壓的示意圖。 第3圖係為本創作的—實施例說明—紐光%體非隔離型升降壓 式的驅動電路的示意圖。 第4圖係為本創作的另一實施例說明一種發光二嫌非隔離型升降 M423415 壓式的驅動電路的示意圖。 【主要元件符號說明】 100、300、400 102 ' 302 104、304 106、408 108V. New description: [New technical field] Circuit, especially a kind of non-isolation This system is related to the driving circuit of a driving type buck-boost LED of a light-emitting diode. [Prior Art] Please refer to Fig. 1 and Fig. 2, and Fig. 1 is a schematic diagram of a non-isolated driving circuit (10) of a light-emitting diode, and Fig. 2 is a description of the voltages V1 and - Schematic diagram of the DC voltage VD, the dynamic circuit includes a bridge rectifier ι〇2, a switch tear, an inductor 106, a diode 1〇8, and a capacitor ιι〇, wherein the switch ι〇4 and the inductor hall form a step-down The (buck) unit 'and the switch 1〇4 are closed according to a control signal CS. The bridge type tag 1〇2 is connected to an AC power source II2 for rectifying the AC VAC provided by the AC power source m into a DC voltage VD. As shown in FIG. 1 and FIG. 2, when the switch 1〇4 is turned on according to the control signal cs and the voltage vi is greater than the voltage across the string of the light-emitting diodes 114, the diodes 1〇8 are not turned on, and the DC voltage is The VD charges the inductor 1〇6 and the capacitor 11〇 through the switch 104, and the electric S vi drives the −$ light-emitting diode 114, which is a DC voltage ^^ minus the voltage across the inductor VL. When the switch 1〇4 is turned on according to the control signal CS and the voltage vi is smaller than the voltage across the string of the LEDs 114 (such as the dead time DT shown in FIG. 2), the diodes 1〇8 remain unconductive. However, since the voltage V1 is smaller than the voltage V0 of the string of the LEDs 114, a series of the light-emitting diodes H 114 cannot be driven. That is, when the voltage vi M423415 is smaller than the voltage across the VO of the string of LEDs 114, a string of LEDs 114 cannot be turned on. In addition, when the switch is turned off according to the control signal CS, the inductor 1〇6 and the capacitor 110 release the stored electric energy to drive a series of the light-emitting diodes 114. As shown in Fig. 2, since the drive circuit 1 has a dead time DT, the current harmonic distortion of the drive circuit 1 is severe. [New content] This is an example of a non-isolated lift-type drive circuit for a light-emitting diode. The driving circuit comprises a bridge rectifier, a switch, a control circuit, a transformer, a flywheel diode and a capacitor. The bridge rectifier has a first end connected to the first end of the AC power source, the second end, and the third end for abutting. The second end of the Haifu power supply and the fourth end are used to secrete at least the first end of the string of diodes 2; the switch has a first end to the second end of the bridge rectifier, the stem And the first, the control circuit has a first end, the secret is that the switch " V fifth is used to generate a defensive method . 笛一山 let the machine 杌 5 to control the opening and closing of the switch, a second end and a fourth end are respectively connected to the fourth end of the bridge rectifier 11; a second primary side coil and a secondary side coil, the secondary side coil has a - 埏, coupled In the first-side of the control circuit, the second side coil has a broken end, and the first side of the control is at the second end of the control. The third end and the first end of the switch are coupled to the fourth end of the control circuit; the flywheel diode has a second end coupled to the second end of the switch , ^ less - string bamboo shoot light 1 anti-flute -, the second end of the mountain, used to lightly connect to the first end of the eleven pole; the twist has a first end, engages the flywheel 5 M423415 ° The first end of the body And - a second end, the second input terminal of the secondary side coil. Drive 2: The embodiment provides a light-emitting diode non-isolated buck-boost type. The driving circuit comprises a bridge rectifier, a switch, a control circuit, an inductor, a flywheel diode and a capacitor. The bridge rectifier has a first end coupled to an AC power source, and the AC lightning material 9 (5) 4, the second end is used to switch to the "-" and "fourth ends" 'for at least - string body = first end; the switch has - the first end of the bridge rectifier of the second ^, Γ! three ends; the control circuit has - the first end, secretive to the switch = -^, for generating a - control signal to control the opening and closing of the _, and - the third end, secretly the fourth end of the bridge rectification 11; the inductance having a third of the switch And a second end, wherein the second end of the control circuit is lightly connected to the coil portion of the inductor, and the second diode has a first end connected to the switch The third end, and a second = for the second end of the at least - two return; the capacitor has a second end of the flywheel diode, and - the second end, the electric 2 The creation provides a non-isolated buck-boost drive circuit for the light-emitting diode. The drive circuit is charged in the -_remuneration, the valve is - the coil is charged = the capacitance of the drive circuit is discharged. At least - a string diode 'when the switch is turned off, the inductance of the driver circuit (the secondary side coil) releases the stored electrical energy to simultaneously drive the at least H pole ___._, in the prior art M423415 Because this _ can be unified - pro _, (d) in this creation, not only the conversion efficiency of the drive circuit is high, but a current harmonic distortion is low. [Embodiment] Please refer to Figure 3, Figure 3 is the basis EMBODIMENT DESCRIPTION OF THE PREFERRED EMBODIMENT A light-emitting diode non-isolated buck-boost drive circuit 300 # schematic. The drive circuit includes a bridge rectifier 302, a switch 304, a control circuit 3〇6, a change _ 3〇 8. A flywheel diode 310 and a capacitor 312. The bridge rectifier 302 has an L-th terminal, which is connected to the first end of the AC power supply 313, a second end, and a third end, which are lightly connected to the AC power supply. The second end of the 313 and the fourth end are connected to the first end of the string of LEDs 314. The bridge rectifier 302 is configured to rectify the AC voltage VAC provided by the AC power source 313 into a DC voltage ye However, the creation is not limited to the driving circuit driving a string of LEDs 314, that is, driving The circuit 3A can drive a plurality of strings of LEDs. The switch 304 has a - terminal end, which is connected to the second end of the bridge rectifier 3〇2, a second end 'and a third end, wherein the switch 304 is It can be an N-type gold oxide half body, an r-type gold oxide semi-transistor or a transmission gate. The control circuit 3〇6 has a first end, and the coupling is connected to the second end of the switch to generate a control signal CS for controlling the opening and closing of the switch 3〇4. A second end, a third end, and a fourth end are connected to the fourth end of the bridge rectifier 3〇2, wherein the control signal The cs includes an on-time and a wear-on time, and the type of the control circuit 306 can be 029992. The transformer includes a primary side coil 2 and a secondary side_fine. The secondary side, the shaft 2 has a first end, the second end of the control circuit 306, and a second end, the third end of the light control circuit 306. The secondary side coil has a first end The second end of the 7 M423415 and the second end of the switch is coupled to the fourth end of the control circuit 3〇6. Further, the ratio of the number of the primary side coils to the secondary side coils 4 may be three, and the sensing direction of the primary side coils 3082 and the sensing direction of the secondary side coils are opposite. The flywheel diode 310 has a first end connected to the third end of the switch port, and a second end end connected to the second end of the string LED 314; the capacitor 312 has a first end. The second end of the flywheel diode 31G, and the second end, is secreted to the second end of the secondary side coil 3084. As shown in FIG. 3, the driving circuit is unique in that the fourth end of the bridge rectifier 302 (the negative terminal of the bridge rectifier 3〇2) is connected to the first end of a string of LEDs 314 (a string The positive terminal of the light emitting diode 314). As shown in Fig. 3, the control circuit 3〇6 adjusts the on-time of the control number CS based on the induced current of the primary side coil 3〇82. That is, when the induced current of the primary side coil 3 is zero, the switch 3〇4 can be turned on according to the conduction time of the control signal cs, and the flywheel body 31 is not turned on. Thus, the DC voltage is passed through the switch to charge the secondary side coil 3084. At this point, the capacitor 312 is used to discharge the stored electrical energy to drive-string illumination. That is, when the turn-on time of the control signal cs is turned on, the secondary side coils 3〇84 are used to store electrical energy and the capacitors 312 are used to discharge discharge energy. That is, when the switch 3〇4 is turned on according to the on-time of the control signal cs, the DC voltage VD does not directly drive a string of the LEDs 314. Therefore, the drive circuit 300 does not have the dead time DT as shown in Fig. 2. When the induced current system of the primary side coil is at the maximum value, the switch 3G4 is turned off according to the wear time of the control signal cs. At this time, the secondary side coil is used to discharge the stored electric energy to simultaneously drive a series of light emitting diodes 314 and charge the capacitor 312. That is, when the switch 3〇4 is turned off according to the cutoff time of the control M423415 signal cs, the secondary side coil 3〇84, the string of the light emitting diodes 314, the capacitor 312 and the flywheel diode 310 form the secondary side coil 3084. Discharge the loop. Please refer to FIG. 4, which is a schematic diagram of a driving circuit 4〇〇 of a light-emitting diode non-isolated buck-boost type according to another embodiment of the present invention. The driving circuit 4〇〇 includes a bridge rectifier 302, a switch 3〇4, a control circuit 406, an inductor 408, a flywheel diode 31〇, and a capacitor 312. The difference between the drive circuit 4〇〇 and the drive circuit 3〇〇 is the control circuit 4〇6 and the inductance 408. The control circuit 406 has a first end coupled to the second end of the switch 304 for generating a control signal cs for controlling the opening and closing of the switch 3〇4, a second end, and a third end. Connected to the fourth end of the bridge rectifier, the inductor 408 has a first end, which is connected to the third end of the switch 3〇4, and a second end, which is off the third end of the control circuit, wherein the control circuit The second end of the inductor is coupled to the coil portion of the inductor 408. As shown in Fig. 4, the control circuit adjusts the on-time of the control signal CS based on the induced current on the inductive side. That is, when the induced current of the inductor is zero, the switch 304 can be turned on according to the on-time of the control signal cs, and the flywheel diode is not turned on. Thus, the DC voltage milk is charged through the switching inductor. At this time, the capacitor 312 is used to release the stored electric energy to drive a series of light-emitting diodes. That is, when the switch 3〇4 is turned on according to the on-time of the control signal cs, the inductor paste is stored, and the capacitor 312 is used. Release electrical energy. When the inductance 4〇8= is the maximum value, the on_ is turned off according to the cutoff time of the control signal cs. At this time, the inductance is biased to release the stored electrical energy to simultaneously drive a series of light-emitting diodes M 513415 and charge the capacitor 312. That is, when the switch 304 is turned off according to the wear time of the control signal CS, the inductor 408, the string of LEDs 314, the capacitor 312, and the flywheel diode 310 form a discharge loop of the inductor 408. In addition, the remaining operating principles of the driving circuit 400 are the same as those of the driving circuit 300, and are not described herein again. In summary, the driving diode of the light-emitting diode #isolated buck-boost type provided by the present invention drives the inductance (secondary coil) of the driving circuit and the capacitor discharge of the driving circuit to drive at least one string when the switch is turned on. The light emitting diode; when the switch is turned off, the inductance of the driving circuit (secondary side coil) releases the stored electrical energy to simultaneously drive at least one string of light emitting diodes and charge the capacitor. Therefore, compared with the prior art 'because the creation can eliminate the dead time', in the present invention, not only the conversion efficiency of the driving circuit is high, but also the current distortion of the current is low. The above descriptions are only preferred embodiments of the present invention, and all changes and modifications made in accordance with the scope of patent application of this creation should be covered by this creation. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a prior art description of a non-isolated driving design of a light-emitting diode. Figure 2 is a schematic diagram illustrating a voltage and a DC voltage. Fig. 3 is a schematic view of the driving circuit of the non-isolated buck-boost type of the present invention. Fig. 4 is a schematic view showing a driving circuit of a light-emitting two-isolated non-isolated lift M423415 pressure type according to another embodiment of the present invention. [Description of main component symbols] 100, 300, 400 102 ' 302 104, 304 106, 408 108
110、312 112 、 313 114 、 314 306、406110, 312 112, 313 114, 314 306, 406
308 310 3082 /λ r» ^ CS DT VI VAC VD308 310 3082 /λ r» ^ CS DT VI VAC VD
VO、VL 驅動電路 橋式整流器 開關 電感 二極體 電容 交流電源 一串發光二極體 控制電路 變壓器 飛輪二極體 一次側線圈 —/·占》ΠΙΠ ^一 -人'間、咏固 控制訊號 死區時間 電壓 交流電壓 直流電壓 跨壓 11VO, VL drive circuit bridge rectifier switch inductor diode capacitor AC power supply a string of LED control circuit transformer flywheel diode primary side coil - / · account "ΠΙΠ 一 one-person's, tamping control signal died Zone time voltage AC voltage DC voltage cross voltage 11