CN112086352B - 一种利用Locos生长氧化隔离层以及制备IGBT芯片的工艺 - Google Patents

一种利用Locos生长氧化隔离层以及制备IGBT芯片的工艺 Download PDF

Info

Publication number
CN112086352B
CN112086352B CN202010784138.0A CN202010784138A CN112086352B CN 112086352 B CN112086352 B CN 112086352B CN 202010784138 A CN202010784138 A CN 202010784138A CN 112086352 B CN112086352 B CN 112086352B
Authority
CN
China
Prior art keywords
oxide layer
thermal oxide
grinding
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010784138.0A
Other languages
English (en)
Other versions
CN112086352A (zh
Inventor
崔凯
李婷
戴豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jingyi Precision Technology Co ltd
Original Assignee
Beijing Jingyi Precision Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jingyi Precision Technology Co ltd filed Critical Beijing Jingyi Precision Technology Co ltd
Priority to CN202010784138.0A priority Critical patent/CN112086352B/zh
Publication of CN112086352A publication Critical patent/CN112086352A/zh
Application granted granted Critical
Publication of CN112086352B publication Critical patent/CN112086352B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02343Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Element Separation (AREA)

Abstract

一种利用Locos生长氧化隔离层以及制备IGBT芯片的工艺,包括热氧化层的形成:在晶圆中每个芯片表面覆盖形成氮化硅层,采用氧化工艺在氮化硅层以外的芯片边缘生长出热氧化层用于漏电隔离;热氧化层的厚度调节:采用研磨液对热氧化层进行研磨或采用刻蚀工艺对热氧化层进行刻蚀,使热氧化层达到预期厚度;去除氮化硅层,然后再进行晶圆全局平坦化处理。本发明的工艺能够有效避免晶圆芯片中心部分过抛或研磨不充分的问题,进而保证芯片性能。

Description

一种利用Locos生长氧化隔离层以及制备IGBT芯片的工艺
技术领域
本发明涉及半导体领域,具体涉及一种氧化隔离层的生长工艺。
背景技术
随着半导体集成电路(Integrated circuit,IC)制造技术的不断进步,集成电路横向扩展工艺也不断出现,绝缘栅双极型晶体管(IGBT,Insulated Gate BipolarTransistor)便是其中一种扩展工艺的应用产品,IBGT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。由于其有强大的功率控制功能,其设计结构也与常见的MOS电路差异很大。在IGBT的制备工艺中,每个IGBT芯片的外缘部分需要生长0.5mm左右的宽氧化层,用于消除芯片漏电。
IGBT芯片常规的制备方法是采用硅局部氧化隔离技术(Locos)生长氧化隔离层,然后去除氮化硅层,采用光刻工艺和炉管工艺生成沟道和填充层,最后为了达到更好的全局平坦化的目的,需要采用化学机械研磨进行表面处理。
但上述的IGBT芯片这类需要在表面形成较宽不同材质的结构中,两种不同材料在最终平坦化处理时被研磨会引入凹陷(dishing)或者在被抛光物表面形成多晶硅残留(residue)的缺陷,影响芯片成型后的良率。
发明内容
因此,本发明要解决的技术问题在于,现有技术中晶圆表面需要引入较大面积的氧化层时,在最终全局平坦化研磨时容易导致dishing或residue等缺陷出现的问题,从而提供一种解决上述缺陷的利用Locos生长氧化隔离层以及制备IGBT芯片的工艺。
一种利用Locos生长氧化隔离层的工艺,包括:
热氧化层的形成:在晶圆中每个芯片中心部位形成氮化硅层,采用氧化工艺在氮化硅层以外的芯片边缘生长出热氧化层;
热氧化层的厚度调节:采用研磨液对热氧化层进行研磨或采用刻蚀工艺对热氧化层进行刻蚀,使热氧化层达到预期厚度;
去除氮化硅层,然后再进行颗粒中心部位的处理,例如进行晶圆的氧化层以及多晶硅的生长,最后进行平坦化的处理。
所述氮化硅层的厚度为400~1600A。
所述热氧化层的厚度调节的步骤中,研磨液为采用CeO2为研磨颗粒的研磨液,所述研磨时采用的研磨机构的转速为70~120rpm,研磨压力为2~4psi。
一种IGBT芯片的制备工艺,包括:
热氧化层的形成:在晶圆中每个芯片心部位形成氮化硅层,采用氧化工艺在氮化硅层以外的芯片边缘生长出热氧化层;
热氧化层的厚度调节:采用研磨液对热氧化层进行研磨或采用刻蚀工艺对热氧化层进行刻蚀,使其厚度达到预期厚度;
沟道的形成:去除氮化硅层后再采用刻蚀工艺在芯片工作区域形成沟道;
填充层的生长:采用炉管工艺进行多晶硅的生长填充;
平坦化处理:研磨去除表层多余多晶硅即可。
所述氮化硅层的厚度为400~1600A。
所述热氧化层的厚度调节的步骤中,研磨液为采用CeO2为研磨颗粒的研磨液,所述研磨时采用的研磨机构的转速为70~120rpm,研磨压力为2~4psi。
所述平坦化处理时,采用多晶硅研磨液,并利用多晶硅与SiO2高选择比的特性结合电机扭矩的终点检测方式去除多晶硅。
在采用多晶硅研磨液去除多晶硅后,还采用以SiO2为研磨颗粒的研磨液调节硅表面热氧化层的厚度。
采用以SiO2为研磨颗粒的研磨液将硅表面热氧化层的厚度调节至100~500A。
本发明技术方案,具有如下优点:
1.本发明提供的利用Locos生长氧化隔离层的工艺,采用在热氧化层形成之后,氮化硅层去除之前,进行热氧化层厚度的处理,即采用研磨液对热氧化层进行研磨或采用刻蚀工艺对热氧化层进行刻蚀,使热氧化层达到预期厚度;通过上述工艺可有效避免后期平坦化处理时对颗粒中心部分过抛或研磨不充分的问题,进而保证芯片性能。
2.本发明进一步对热氧化层的厚度调节时的研磨参数进行了限定,具体为:研磨液为采用CeO2为研磨颗粒的研磨液,所述研磨时采用的研磨机构的转速为70~120rpm,研磨压力为2~4psi;采用上述参数工艺的进行研磨,可以有效调节热氧化层的厚度,使其达到预定厚度。
3.本发明提供的IGBT的制备工艺,采用了上述利用Locos生长氧化隔离层的工艺,其不仅仅能有效避免过抛以及研磨不充分的问题,同时还能避免在后期平坦化处理后出现dishing或者residue缺陷的问题,使生产的芯片的性能能够有效得到保障;
同时,通过该热氧化层的厚度调节的步骤优化后,还能在全局平坦化时适用于电机扭矩终点检测方法的引入,进一步避免过抛以及研磨不充分的问题,提高芯片良率。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明IGBT制备的工艺流程图;
图2是对比例最终研磨前的结构示意图;
图3是对比例最终研磨后晶圆表面形貌图;
图4是多晶硅研磨时的电机扭矩终点检测曲线图。
附图标记:
1-晶圆,2-氮化硅层,3-热氧化层,4-填充层。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
一种利用Locos生长氧化隔离层的工艺,包括:
热氧化层的形成:在晶圆中每个芯片中心部位形成氮化硅层,采用氧化工艺在氮化硅层以外的芯片边缘生长出热氧化层;
热氧化层的厚度调节:采用研磨液对热氧化层进行研磨或采用刻蚀工艺对热氧化层进行刻蚀,使热氧化层达到预期厚度;
去除氮化硅层,然后再进行颗粒中心部位的处理,如进行晶圆的氧化层以及多晶硅的生长,最后进行平坦化的处理。
本发明提供的上述工艺,采用在热氧化层形成之后、氮化硅层去除之前,进行热氧化层厚度的处理,即采用研磨液对热氧化层进行研磨或采用刻蚀工艺对热氧化层进行刻蚀,使热氧化层达到预期厚度;通过上述工艺可有效避免后期平坦化处理时对颗粒中心部分过抛,进而保证芯片性能。
进一步,所述氮化硅层的厚度为800~1600A。所述热氧化层的厚度调节的步骤中,研磨液为采用CeO2为研磨颗粒的研磨液,所述研磨时采用的研磨机构的转速为70~120rpm,研磨压力为2~4psi。
实施例2
一种IGBT芯片的制备工艺,如图1所示,包括:
第一步:根据氧化层最终要留存的厚度定义在晶圆上SiN生长的厚度,本发明优选为800~1600A,同时根据电路特性定义热氧化生长区域,然后进行热氧化层的生长,本发明中形成的热氧化层的材质为硅氧化物,如:SiO2。本实施例中SiN生长的厚度设置为1200A。
第二步:通过用以CeO2为研磨颗粒的研磨液,例如AGC公司生产的CES333研磨液,研磨机构使用70~120rpm的转速,以2~4psi的压力,用固定时间的方式对热氧化层进行研磨,达到预期的厚度,本发明中优选采用高于硅表面1200~1800A。然后用硫酸去除SiN。本发明中该研磨机构为研磨盘或研磨头,本实施例中该研磨机构为研磨盘,研磨的转速为100rpm,研磨的压力为3psi,研磨后热氧化层的厚度高于硅晶圆中颗粒表面1500A。
第三步:通过光刻工艺在颗粒中心部位形成沟道,然后采用炉管工艺在暴露的晶圆表面,包括沟道底部、沟道侧壁表面以及颗粒的中心部位的表面形成氧化层,然后继续采用炉管工艺实现多晶硅对沟道的填充,实现填充层的生长。
第四步:通过用多晶硅研磨液,例如Fujimi公司生产的6103/6108多晶硅研磨液,利用多晶硅与SiO2高选择比的特性,结合电机扭矩终点的检测方法获得该多晶硅研磨时的电机扭矩终点检测曲线,如图4所示,根据检测曲线进行终点判断。具体的,当曲线处于平缓的起点时,即如图4中两个框线连接点位置处时,再平缓几秒,即为研磨终点。本实施例中为平缓约4-5s时为研磨终点,如图4中虚线位置处,在该虚线所在位置处的时间点停止研磨即可实现去除多余的多晶硅的目的。该电机扭矩终点的检测方法为现有技术,在此不再赘述。该多晶硅与SiO2高选择比的特性是指多晶硅与SiO2具有的高研磨速率比的特性。该图4中电机额定的最小输出扭矩定义为-100%,最大输出扭矩定义为100%,按比例形成了纵坐标所示的扭矩相对值。
第五步:但采用上述工艺已经完成制备需求后,则无需进行下步骤,如果采用上述工艺制备得到的结构中,热氧化层的厚度过大,则还可以再用以SiO2为研磨颗粒的研磨液微调硅表面氧化层厚度剩余100~500A。
实施例3
一种IGBT芯片的制备工艺,本实施例与实施例2的区别在于,本实施例中各个步骤之间的参数不同,具体如下:
第一步中SiN生长的厚度为800A。
第二步中研磨机构使用120rpm的转速,以4psi的压力对热氧化层进行研磨,研磨后热氧化层的厚度高于硅表面1200A。
实施例4
一种IGBT芯片的制备工艺,本实施例与实施例2的区别在于,本实施例中各个步骤之间的参数不同,具体如下:
第一步中SiN生长的厚度为1600A。
第二步中研磨机构使用70rpm的转速,以2psi的压力对热氧化层进行研磨,研磨后热氧化层的厚度高于硅表面1800A。
上述实施例3和4制备得到的IGBT与实施例2相同,该IGBT表面不存在过抛或研磨不充分的问题,并且处理后并没有出现dishing或者residue缺陷,使生产的芯片的性能能够有效得到保障。
对比例
一种IGBT芯片的制备工艺,本实施例与实施例2的区别在于,本实施例中不进行热氧化层的厚度调节,直接进行后续沟道的形成以及填充层的生长。本实施例采用的工艺,研磨前的结构示意图如图2所示,最终研磨后的晶圆表面形貌图如图3所示。
由于Locos生长的热氧化层与其他层(如多晶硅层、晶圆本身)相比,比例差异很大,同时由于多晶硅与硅氧化物的致密度相差很大,造成研磨速率有很大差异,因此,采用图2所示的结构在最终平坦化研磨后,每个芯片的中心部分可能会被过抛,而边缘部分不能充分研磨的情况,如图3所示,造成芯片的性能下降,在研磨后甚至出现dishing或者residue缺陷。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (4)

1.一种IGBT芯片的制备工艺,其特征在于,包括:
热氧化层的形成:在晶圆中每个芯片中心部位形成氮化硅层,采用氧化工艺在氮化硅层以外的芯片边缘生长出热氧化层;所述氮化硅层的厚度为800~1600A;
热氧化层的厚度调节:采用研磨液对热氧化层进行研磨或采用刻蚀工艺对热氧化层进行刻蚀,使其厚度达到预期厚度;在热氧化层的厚度调节的步骤中,热氧化层的高度高于硅表面800~1800A;
沟道的形成:去除氮化硅层后再采用刻蚀工艺在颗粒中心部位形成沟道;
填充层的生长:采用炉管工艺在暴露的晶圆表面形成氧化层,然后继续采用炉管工艺进行多晶硅的生长填充;
平坦化处理:研磨去除表层多余多晶硅即可;所述平坦化处理时,采用多晶硅研磨液,并利用多晶硅与SiO2高选择比的特性结合电机扭矩的终点检测方式去除多晶硅。
2.根据权利要求1所述的IGBT芯片的制备工艺,其特征在于,所述热氧化层的厚度调节的步骤中,研磨液为采用CeO2为研磨颗粒的研磨液,所述研磨时采用的研磨机构的转速为70~120rpm,研磨压力为2~4psi。
3.根据权利要求1所述的IGBT芯片的制备工艺,其特征在于,在采用多晶硅研磨液去除多晶硅后,还采用以SiO2为研磨颗粒的研磨液调节硅表面热氧化层的厚度。
4.根据权利要求3所述的IGBT芯片的制备工艺,其特征在于,采用以SiO2为研磨颗粒的研磨液将硅表面热氧化层的厚度调节至100~500A。
CN202010784138.0A 2020-08-06 2020-08-06 一种利用Locos生长氧化隔离层以及制备IGBT芯片的工艺 Active CN112086352B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010784138.0A CN112086352B (zh) 2020-08-06 2020-08-06 一种利用Locos生长氧化隔离层以及制备IGBT芯片的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010784138.0A CN112086352B (zh) 2020-08-06 2020-08-06 一种利用Locos生长氧化隔离层以及制备IGBT芯片的工艺

Publications (2)

Publication Number Publication Date
CN112086352A CN112086352A (zh) 2020-12-15
CN112086352B true CN112086352B (zh) 2024-02-20

Family

ID=73735438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010784138.0A Active CN112086352B (zh) 2020-08-06 2020-08-06 一种利用Locos生长氧化隔离层以及制备IGBT芯片的工艺

Country Status (1)

Country Link
CN (1) CN112086352B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8729422D0 (en) * 1986-12-17 1988-02-03 Samsung Semiconductor Tele Method of semiconductor device isolation by lateral separation
EP0589124A1 (en) * 1992-09-23 1994-03-30 Co.Ri.M.Me. Method for eliminating the bird's beak from selective oxidations of semiconductor electronic devices
US5786262A (en) * 1997-04-09 1998-07-28 Taiwan Semiconductor Manufacturing Co., Ltd. Self-planarized gapfilling for shallow trench isolation
US5872045A (en) * 1997-07-14 1999-02-16 Industrial Technology Research Institute Method for making an improved global planarization surface by using a gradient-doped polysilicon trench--fill in shallow trench isolation
KR20030052663A (ko) * 2001-12-21 2003-06-27 주식회사 하이닉스반도체 반도체소자의 분리 방법
US6599812B1 (en) * 1998-10-23 2003-07-29 Stmicroelectronics S.R.L. Manufacturing method for a thick oxide layer
CN101924059A (zh) * 2009-06-13 2010-12-22 无锡华润上华半导体有限公司 一种场氧化隔离制造方法
CN102339782A (zh) * 2010-07-16 2012-02-01 中芯国际集成电路制造(上海)有限公司 浅沟道隔离区的制作方法
CN103681320A (zh) * 2012-08-30 2014-03-26 上海华虹宏力半导体制造有限公司 锗硅异质结双极型三极管器件的制造方法
CN104157578A (zh) * 2014-08-26 2014-11-19 上海华虹宏力半导体制造有限公司 半导体器件的形成方法
CN104275640A (zh) * 2013-07-12 2015-01-14 株式会社荏原制作所 膜厚测定装置、膜厚测定方法及具有膜厚测定装置的研磨装置
CN104465367A (zh) * 2013-09-16 2015-03-25 北大方正集团有限公司 一种对场氧化层进行处理的方法及应用
CN105679667A (zh) * 2016-03-09 2016-06-15 上海道之科技有限公司 一种沟槽igbt器件的终端结构制造方法
CN106486417A (zh) * 2015-09-02 2017-03-08 无锡华润上华科技有限公司 提升晶边良率的方法
CN107017161A (zh) * 2017-05-31 2017-08-04 上海华力微电子有限公司 一种减小sti‑cmp过程中碟型凹陷的方法
CN107527810A (zh) * 2016-06-22 2017-12-29 北大方正集团有限公司 一种场氧化层的平坦化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208628A (ja) * 2001-01-11 2002-07-26 Mitsubishi Electric Corp 半導体装置の製造方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8729422D0 (en) * 1986-12-17 1988-02-03 Samsung Semiconductor Tele Method of semiconductor device isolation by lateral separation
EP0589124A1 (en) * 1992-09-23 1994-03-30 Co.Ri.M.Me. Method for eliminating the bird's beak from selective oxidations of semiconductor electronic devices
US5786262A (en) * 1997-04-09 1998-07-28 Taiwan Semiconductor Manufacturing Co., Ltd. Self-planarized gapfilling for shallow trench isolation
US5872045A (en) * 1997-07-14 1999-02-16 Industrial Technology Research Institute Method for making an improved global planarization surface by using a gradient-doped polysilicon trench--fill in shallow trench isolation
US6599812B1 (en) * 1998-10-23 2003-07-29 Stmicroelectronics S.R.L. Manufacturing method for a thick oxide layer
KR20030052663A (ko) * 2001-12-21 2003-06-27 주식회사 하이닉스반도체 반도체소자의 분리 방법
CN101924059A (zh) * 2009-06-13 2010-12-22 无锡华润上华半导体有限公司 一种场氧化隔离制造方法
CN102339782A (zh) * 2010-07-16 2012-02-01 中芯国际集成电路制造(上海)有限公司 浅沟道隔离区的制作方法
CN103681320A (zh) * 2012-08-30 2014-03-26 上海华虹宏力半导体制造有限公司 锗硅异质结双极型三极管器件的制造方法
CN104275640A (zh) * 2013-07-12 2015-01-14 株式会社荏原制作所 膜厚测定装置、膜厚测定方法及具有膜厚测定装置的研磨装置
CN104465367A (zh) * 2013-09-16 2015-03-25 北大方正集团有限公司 一种对场氧化层进行处理的方法及应用
CN104157578A (zh) * 2014-08-26 2014-11-19 上海华虹宏力半导体制造有限公司 半导体器件的形成方法
CN106486417A (zh) * 2015-09-02 2017-03-08 无锡华润上华科技有限公司 提升晶边良率的方法
CN105679667A (zh) * 2016-03-09 2016-06-15 上海道之科技有限公司 一种沟槽igbt器件的终端结构制造方法
CN107527810A (zh) * 2016-06-22 2017-12-29 北大方正集团有限公司 一种场氧化层的平坦化方法
CN107017161A (zh) * 2017-05-31 2017-08-04 上海华力微电子有限公司 一种减小sti‑cmp过程中碟型凹陷的方法

Also Published As

Publication number Publication date
CN112086352A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
JP3514908B2 (ja) 研磨剤
JP3230986B2 (ja) ポリッシング方法、半導体装置の製造方法及び半導体製造装置。
US6429134B1 (en) Method of manufacturing semiconductor device
TW201436011A (zh) 改善化學機械研磨平坦化的方法與裝置
US7087528B2 (en) Chemical-mechanical polishing (CMP) process for shallow trench isolation
US6537914B1 (en) Integrated circuit device isolation methods using high selectivity chemical-mechanical polishing
US5366924A (en) Method of manufacturing an integrated circuit including planarizing a wafer
CN112086352B (zh) 一种利用Locos生长氧化隔离层以及制备IGBT芯片的工艺
US20060148205A1 (en) Semiconductor manufacturing method for device isolation
CN100521108C (zh) 半导体器件的制造方法
JP4489108B2 (ja) 半導体装置の製造方法
CN105826179B (zh) 半导体结构的形成方法
JP2000091415A (ja) Stiの形成方法
US6703270B2 (en) Method of manufacturing a semiconductor device
TWI508223B (zh) 用於製造具有均勻梯狀高度之隔離區的半導體裝置的方法
US7186655B2 (en) Method for manufacturing semiconductor device
US7833908B2 (en) Slurry composition for chemical-mechanical polishing capable of compensating nanotopography effect and method for planarizing surface of semiconductor device using the same
CN112086354B (zh) 一种igbt器件的平坦化方法
CN112331610B (zh) 半导体结构的制备方法
JP2002057310A (ja) Soi基板の作製方法
JPH10125880A (ja) 張り合わせsoi基板の作製方法
JP2000252354A (ja) 埋め込み絶縁膜を有する基板の製造方法
CN114758981B (zh) 一种使用二氧化硅填充深沟槽后的平坦化方法及晶圆
KR20010005151A (ko) 화학적기계적연마를 이용한 소자분리방법
US8603916B2 (en) CMP techniques for overlapping layer removal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 100176 101, floor 2, building 2, No. 1, Taihe Third Street, economic and Technological Development Zone, Daxing District, Beijing

Applicant after: Beijing Jingyi Precision Technology Co.,Ltd.

Address before: No.1, Taihe Third Street, economic and Technological Development Zone, Daxing District, Beijing, 100176

Applicant before: Beijing ShuoKe precision electronic equipment Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant