CN112023870A - 一种强化重整甲烷反应的高温co2吸附剂的制备方法 - Google Patents

一种强化重整甲烷反应的高温co2吸附剂的制备方法 Download PDF

Info

Publication number
CN112023870A
CN112023870A CN202010664334.4A CN202010664334A CN112023870A CN 112023870 A CN112023870 A CN 112023870A CN 202010664334 A CN202010664334 A CN 202010664334A CN 112023870 A CN112023870 A CN 112023870A
Authority
CN
China
Prior art keywords
adsorbent
salt
temperature
lithium
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010664334.4A
Other languages
English (en)
Inventor
陈恒志
田小雪
丁锐
张其琪
王雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202010664334.4A priority Critical patent/CN112023870A/zh
Publication of CN112023870A publication Critical patent/CN112023870A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明的目的是针对CO2吸附剂的吸附能力问题,提供一种用于强化甲烷重整反应的高温CO2吸附剂的制备方法,该方法制备出来的掺杂型锆酸锂吸附剂粒径均匀细小,吸附CO2的速率快,吸附容量高。

Description

一种强化重整甲烷反应的高温CO2吸附剂的制备方法
技术领域
本发明涉及高温CO2吸附剂,具体涉及CO2的制备方法。
背景技术
近年来,随着全球变暖和环境保护愈加受到人们的关注,氢能作为一种清洁的二次能源,其有效的开发和利用越来越受到各国的重视。甲烷水蒸气重整制氢(SMR)是目前工业制氢最廉价、效率最高的方法,但其存在着许多不足,从而限制了该技术更为广泛的运用。吸附强化甲烷水蒸汽重整(SESMR)过程是在反应中加入CO2吸附剂用来吸收重整反应中生成的CO2,从而打破化学平衡,提高反应转化率和氢气产率。因此,研究一种在SESMR过程中高效快速吸收CO2气体的CO2吸附剂对制氢技术具有重要的理论和实际应用价值。
钙基吸附剂反应机理简单、原材料丰富、成本低,是目前CO2捕集技术中被研究最多的高温吸附剂,但其缺点也是非常明显的,吸附和脱附温差较大,脱附速率慢,而且容易引起吸附剂烧结,骨架结构坍塌,使得材料无法循环利用。锂基吸附剂具有吸附/脱附速率快,机械强度高,选择性高的优点,被认为是一种很有前景的高温CO2吸附剂。其中锆酸锂吸附剂能够在450-700℃之间直接吸附CO2,有望成为理想的高温吸附CO2的材料。
现有技术中,以纳米ZrO2和微米级Li2CO3为原料,经高温煅烧得到锆酸锂材料。与已有技术相比,合成温度低,制备工艺简单,但材料使用高温固相法获得,颗粒尺寸不均匀,经过25次循环试验后,吸附容量衰减。
现有技术中,还以硝酸氧锆为锆源,以氢氧化锂为锂源,以碳酸根为沉淀剂,在氨水中进行沉淀反应,反应后除水干燥焙烧得到锆酸锂吸附材料。但是,该方法制备出的锆酸锂吸附温度过高,饱和吸附量较小,且循环稳定性较差。
现有技术中,还将锆源、锂源、催化剂、结合剂,模板剂按照一定配比溶解到去离子水中,随后缓慢加入碱液,搅拌反应得到凝胶前驱体,加入活性炭研磨分散得混合料,随后加入水玻璃,再次研磨热压成型,烧结得到Na掺杂二氧化碳吸附剂陶瓷。但是,该方法所制备出来的二氧化碳吸附剂,颗粒尺寸较小,具有中空和微孔相结合的多维度微观结构,陶瓷材料比表面积较高,材料活性高,吸附二氧化碳能力强。
综上所述,现有技术中关于掺杂型的锆酸锂吸附剂还是多以简单的单一离子掺杂为主,其吸附性能还有待提高。
发明内容
本发明的目的是提供一种用于强化重整甲烷反应的高温CO2吸附剂的制备方法,其特征在于,包括以下步骤:
(1)将锆盐和锂盐溶于柠檬酸-乙二醇溶液(柠檬酸溶于乙二醇中)中,搅拌得到澄清透明溶液I;
(2)将钾盐、铷盐加入溶液I中,容器密封超声30s,加热搅拌反应,调节PH;其中,调节PH采用氨水、尿素溶液的一种及以上;
(3)将反应后的溶液静置陈化一天,蒸馏烘干得到湿凝胶,真空干燥得到锆酸锂干凝胶;
(4)将干凝胶研磨分散,进行二次煅烧得到Rb+/K+掺杂的锆酸锂材料。
上述方法操作过程简便,对锆酸锂材料进行了钾盐和铷盐两种共熔盐掺杂改性,制备出来的掺杂型锆酸锂吸附剂粒径均匀细小,吸附CO2的速率快,吸附容量高。
进一步,步骤(1)中,锆盐与锂盐的摩尔比为1:1~1:4;
进一步,步骤(1)中,锆盐与柠檬酸的摩尔比为1:3~1:8;
进一步,步骤(1)中的锆盐(单位mol)、步骤(1)中的乙二醇的体积(单位L)、步骤(2)中的氨水的体积(单位L)之比为1: 0.1~0.5:0~0.2;
进一步,步骤(2)中,Rb+与K+的摩尔比为1:1~4;
进一步,步骤(2)中,调节PH至8~10,其中,调节PH采用氨水、尿素溶液的一种及以上;
进一步,步骤(1)中的锆盐的物质的量为A,步骤(2)中的 Rb+与K+物质的量之和B,A:B为1:0.1~1:0.5。
进一步,锆盐为硝酸氧锆、硝酸锆、八水合氧氯化锆的一种。
进一步,锂盐为硝酸锂、碳酸锂、醋酸锂的一种,钾盐为碳酸钾,铷盐为碳酸铷。
进一步,步骤2)中,加热反应温度在50~90℃下反应2h~6h。
进一步,步骤3)中,蒸馏温度100~150℃,蒸馏时间4~12h。
进一步,步骤4)中,采用二次煅烧;其中,一次煅烧温度200~ 400℃,二次煅烧温度600~950℃,煅烧时间均为2~6h。
本发明的技术效果是毋庸置疑的,本发明所制备的 Rb/K-Li2ZrO3吸附剂吸附CO2性能良好,当吸附温度为550℃、CO2分压为0.25bar时,60min内样品吸附量可达18.7wt.%,饱和吸附量达到23.59wt.%,经过15次吸附-脱附循环实验后,30min内的吸附容量仍可达初始容量的86.1%,循环性能良好,可多次重复使用。
附图说明
图1实施例1完整吸附-脱附曲线图;
图2实施例1五次吸附-脱附循环曲线图。
具体实施方式
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。
实施例1
(1)称取63g柠檬酸溶于100ml乙二醇中,搅拌得到CA-EG络合剂溶液。称取26.7g硝酸氧锆和16g硝酸锂加入CA-EG溶液中,继续搅拌约10min使其混合均匀;
(2)称取1.38碳酸钾和3.47g碳酸铷,适量蒸馏水溶解,用注射器快速注入制得的混合溶液中,随后将容器密封超声5min,加热至70℃反应4h,向其中缓慢滴加30ml浓氨水调节PH,添加完毕后继续70℃搅拌反应4h得到透明溶液。
(3)将上述溶液静置陈化一天后,于120℃蒸馏8h,而后置于真空烘箱中干燥12h得到样品前驱体。
(4)将前驱体以5℃/min升温到400℃保持2h,再升温到700℃煅烧6h,研磨得到Rb+/K+掺杂的锆酸锂材料(Rb/K-Li2ZrO3)。
实验:本发明合成的Rb+/K+掺杂的锆酸锂材料的CO2吸附性能测试如下:将材料置于热重分析仪中,在N2气氛中将样品由室温上升到500-600℃,切换为CO2气氛恒温保持一段时间进行吸附CO2实验,反应结束后转换为N2气氛升温到650-750℃,进行脱附CO2实验。
将上述制得的Rb/K-Li2ZrO3于550℃,CO2分压为0.25bar的气氛下恒温吸附,60min的吸附量达到18.7wt.%,完整吸附-脱附过程见图1。五次吸附-脱附循环曲线表明,所制得的Rb+/K+掺杂锆酸锂材料经多次循环后,材料的吸附性能没有发生明显变化,说明所制备的锆酸锂材料具有较好的循环稳定性,结果见图2。
实施例2:
一种用于强化重整甲烷反应的高温CO2吸附剂的制备方法,其特征在于,包括以下步骤:
(1)称取柠檬酸溶于乙二醇中,搅拌得到CA-EG络合剂溶液。称取硝酸锆、碳酸锂,溶于CA-EG络合剂溶液中,搅拌得到澄清透明溶液I。锆盐与锂盐的摩尔比为1:1。锆盐与柠檬酸的摩尔比为1:3。锆盐的物质的量与乙二醇的体积之比为1:0.1(锆盐单位mol、乙二醇的体积单位L)。
(2)称取碳酸钾和碳酸铷加入所述溶液I中,加热至50℃反应 2h,加浓氨水调节PH至8。步骤(1)中的锆盐的物质的量为A,步骤(2)中的Rb+与K+物质的量之和B,A:B为1:0.1。
(3)将反应后的溶液静置陈化一天后,对陈化溶液在100℃下蒸馏4h,烘干,得到锆酸锂干凝胶(前驱体)。
(4)采用二次煅烧干凝胶得到Rb+/K+掺杂的锆酸锂材料,即将前驱体以5℃/min升温到300℃保持2h,再升温到600℃煅烧6h,研磨得到Rb+/K+掺杂的锆酸锂材料。
实施例3
一种用于强化重整甲烷反应的高温CO2吸附剂的制备方法,其特征在于,包括以下步骤:
(1)称取柠檬酸溶于乙二醇中,搅拌得到CA-EG络合剂溶液。称取八水合氧氯化锆、醋酸锂溶于CA-EG络合剂溶液中,搅拌得到澄清透明溶液I。锆盐与锂盐的摩尔比为1:4。锆盐与柠檬酸的摩尔比为1:8。锆盐的物质的量与乙二醇的体积之比为1:0.5(锆盐单位mol、乙二醇的体积单位L)。
(2)称取碳酸钾和碳酸铷加入所述溶液I中,加热90℃反应 6h,加浓氨水调节PH至10。步骤(1)中的锆盐的物质的量为A,步骤(2)中的Rb+与K+物质的量之和B,A:B为1:0.5。
(3)将反应后的溶液静置陈化一天后,对陈化溶液在150℃下蒸馏12h,烘干,得到锆酸锂干凝胶(前驱体)。
(4)采用二次煅烧干凝胶得到Rb+/K+掺杂的锆酸锂材料,即将前驱体以5℃/min升温到400℃保持2h,再升温到700℃煅烧6h,研磨得到Rb+/K+掺杂的锆酸锂材料。

Claims (8)

1.一种用于强化重整甲烷反应的高温CO2吸附剂的制备方法,其特征在于,包括以下步骤:
(1)将所述锆盐和锂盐溶于柠檬酸的乙二醇溶液中,搅拌得到澄清透明溶液I;
(2)将钾盐、铷盐加入所述溶液I中,加热反应,调节PH;
(3)将反应后的溶液静置陈化后,蒸馏、烘干,得到锆酸锂干凝胶;
(4)煅烧干凝胶得到Rb+/K+掺杂的锆酸锂材料。
2.根据权利要求1所述的一种用于强化甲烷重整反应的高温CO2吸附剂的制备方法,其特征在于:
步骤(1)中,锆盐与锂盐的摩尔比为1:1~1:4;
步骤(1)中,锆盐与柠檬酸的摩尔比为1:3~1:8;
锆盐(单位mol)、乙二醇的体积(单位L)与氨水的体积(单位L)之比为1:0.1~0.5:0~0.2。
3.根据权利要求1或2所述的一种用于强化甲烷重整反应的高温CO2吸附剂的制备方法,其特征在于:
步骤(2)中,Rb+与K+的摩尔比为1:1~4;
步骤(2)中,调节PH至8~10,其中,调节PH采用氨水、尿素溶液的一种及以上;
步骤(1)中的锆盐的物质的量为A,步骤(2)中的Rb+与K+物质的量之和B,A:B为1:0.1~1:0.5。
4.根据权利要求1或3所述的一种用于强化甲烷重整反应的高温CO2吸附剂的制备方法,其特征在于:锆盐为硝酸氧锆、硝酸锆、八水合氧氯化锆的一种。
5.根据权利要求1或3所述的一种用于强化甲烷重整反应的高温CO2吸附剂的制备方法,其特征在于:锂盐为硝酸锂、碳酸锂、醋酸锂的一种,钾盐为碳酸钾,铷盐为碳酸铷。
6.根据权利要求1或3所述的一种用于强化甲烷重整反应的高温CO2吸附剂的制备方法,其特征在于:步骤2)中,加热反应温度在50~90℃下反应2h~6h。
7.根据权利要求1或3所述的一种用于强化甲烷重整反应的高温CO2吸附剂的制备方法,其特征在于:步骤3)中,对陈化溶液蒸馏温度为100~150℃,蒸馏时间4~12h。
8.根据权利要求1所述的一种用于强化甲烷重整反应的高温CO2吸附剂的制备方法,其特征在于:步骤4)中,采用二次煅烧;其中,一次煅烧温度200~400℃,二次煅烧温度600~950℃,煅烧时间均为2~6h。
CN202010664334.4A 2020-07-10 2020-07-10 一种强化重整甲烷反应的高温co2吸附剂的制备方法 Pending CN112023870A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010664334.4A CN112023870A (zh) 2020-07-10 2020-07-10 一种强化重整甲烷反应的高温co2吸附剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010664334.4A CN112023870A (zh) 2020-07-10 2020-07-10 一种强化重整甲烷反应的高温co2吸附剂的制备方法

Publications (1)

Publication Number Publication Date
CN112023870A true CN112023870A (zh) 2020-12-04

Family

ID=73579056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010664334.4A Pending CN112023870A (zh) 2020-07-10 2020-07-10 一种强化重整甲烷反应的高温co2吸附剂的制备方法

Country Status (1)

Country Link
CN (1) CN112023870A (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154633A (ja) * 2002-11-05 2004-06-03 National Institute Of Advanced Industrial & Technology 高温炭酸ガス吸収材
NO20053197D0 (no) * 2005-06-30 2005-06-30 Inst Energiteknik Method for producing lithium zirconate.
GB0517343D0 (en) * 2005-08-25 2005-10-05 Magnesium Elektron Ltd Doped Zirconate
US20050232855A1 (en) * 2004-04-19 2005-10-20 Texaco Inc. Reactor with carbon dioxide fixing material
JP2009106812A (ja) * 2007-10-26 2009-05-21 Toshiba Corp 炭酸ガス吸収材、炭酸ガス分離装置、改質装置、およびこの炭酸ガス吸収材の製造方法
CN101696015A (zh) * 2009-10-26 2010-04-21 昆明理工大学 一种高温co2吸收材料硅酸锂的制备方法
CN102101698A (zh) * 2011-01-27 2011-06-22 浙江师范大学 一种高温下高效吸收co2的锂基锆酸盐材料的制备方法
CN102351244A (zh) * 2011-07-11 2012-02-15 浙江师范大学 一种在高温下可高效吸收co2的锂基锆酸盐材料的制备方法
CN103611490A (zh) * 2013-12-10 2014-03-05 东华理工大学 一种新型二氧化碳吸附剂及制备方法
US20150274524A1 (en) * 2014-03-27 2015-10-01 Georgia Tech Research Corporation Reactor for steam reforming and methods of use thereof
US20150321166A1 (en) * 2014-05-07 2015-11-12 Kyungpook National University Industry-Academic Cooperation Foundation Method of manufacturing lithium silicate-based high-temperature dry sorbent for removing carbon dioxide and high-temperature dry carbon dioxide sorbent
KR101585792B1 (ko) * 2014-09-29 2016-01-14 한국전력공사 이산화탄소 중온 활성 고체 흡수제, 슬러리 조성물 및 이의 제조방법
CN106747606A (zh) * 2017-01-04 2017-05-31 姚月祥 一种模板法制备Na掺杂二氧化碳吸附剂陶瓷的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154633A (ja) * 2002-11-05 2004-06-03 National Institute Of Advanced Industrial & Technology 高温炭酸ガス吸収材
US20050232855A1 (en) * 2004-04-19 2005-10-20 Texaco Inc. Reactor with carbon dioxide fixing material
NO20053197D0 (no) * 2005-06-30 2005-06-30 Inst Energiteknik Method for producing lithium zirconate.
GB0517343D0 (en) * 2005-08-25 2005-10-05 Magnesium Elektron Ltd Doped Zirconate
JP2009106812A (ja) * 2007-10-26 2009-05-21 Toshiba Corp 炭酸ガス吸収材、炭酸ガス分離装置、改質装置、およびこの炭酸ガス吸収材の製造方法
CN101696015A (zh) * 2009-10-26 2010-04-21 昆明理工大学 一种高温co2吸收材料硅酸锂的制备方法
CN102101698A (zh) * 2011-01-27 2011-06-22 浙江师范大学 一种高温下高效吸收co2的锂基锆酸盐材料的制备方法
CN102351244A (zh) * 2011-07-11 2012-02-15 浙江师范大学 一种在高温下可高效吸收co2的锂基锆酸盐材料的制备方法
CN103611490A (zh) * 2013-12-10 2014-03-05 东华理工大学 一种新型二氧化碳吸附剂及制备方法
US20150274524A1 (en) * 2014-03-27 2015-10-01 Georgia Tech Research Corporation Reactor for steam reforming and methods of use thereof
US20150321166A1 (en) * 2014-05-07 2015-11-12 Kyungpook National University Industry-Academic Cooperation Foundation Method of manufacturing lithium silicate-based high-temperature dry sorbent for removing carbon dioxide and high-temperature dry carbon dioxide sorbent
KR101585792B1 (ko) * 2014-09-29 2016-01-14 한국전력공사 이산화탄소 중온 활성 고체 흡수제, 슬러리 조성물 및 이의 제조방법
CN106747606A (zh) * 2017-01-04 2017-05-31 姚月祥 一种模板法制备Na掺杂二氧化碳吸附剂陶瓷的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘叶凤: "高温二氧化碳吸附剂的制备与表征", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技I辑》 *
师瑞娟: "《质子导体固体电解质》", 31 January 2019, 中国书籍出版社 *
袁文辉等: "CO_2吸附剂掺钾锆酸锂的制备及性能表征", 《华南理工大学学报(自然科学版)》 *
顾大明等: "《功能材料制备实验》", 30 June 2011, 哈尔滨工业大学出版社 *

Similar Documents

Publication Publication Date Title
CN113694922B (zh) 一种用于氨分解的负载型催化剂及其制备方法
Zhou et al. Molten K2CO3-promoted high-performance Li4SiO4 sorbents at low CO2 concentrations
Wang et al. Lithium-based sorbent from rice husk materials for hydrogen production via sorption-enhanced steam reforming of ethanol
KR102092940B1 (ko) 이산화탄소 흡착제와 그 제조방법, 이를 포함한 이산화탄소 포집 모듈, 및 이를 이용한 이산화탄소 분리 방법
CN100398203C (zh) 用于甲烷水蒸汽重整制氢的复合催化剂及制备方法和应用
CN100369666C (zh) 含硅纳米氧化钙高温二氧化碳吸附剂和该吸附剂的制备方法以及在制氢工艺中的应用
CN105080490A (zh) 一种铬镁双金属MOFs吸附剂MIL-101(Cr,Mg)及其制备方法
Jing et al. Self-activation of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere
CN103521162A (zh) 铈改性的钙基双功能颗粒、制备方法及其应用
CN106311251A (zh) 介孔二氧化硅负载的高分散镍镧氧化物催化剂的制备方法
CN105903458A (zh) 一种钙基吸附剂的制备方法及应用
CN102500310A (zh) 高温高活性钙基co2吸附剂及其制备方法
Zhou et al. High-performance Ce doped three-dimensional ordered macroporous Co-based catalysts on CO oxidation
CN112023870A (zh) 一种强化重整甲烷反应的高温co2吸附剂的制备方法
CN108554366A (zh) 一步法制备锰氧离子筛前驱体LixMn3-xO4的方法
CN111482181A (zh) 一种重整制氢复合催化剂及其制备方法和应用
CN109250763B (zh) 一种硫化氢甲烷重整制氢的方法
Li et al. Readily-fabricated supported MgO catalysts for efficient and green synthesis of diethyl carbonate from ethyl carbamate and ethanol
JING et al. Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst
CN108067180B (zh) 一种钇镁-钙基co2吸附剂及其制备方法
CN115626666A (zh) 三钙钛矿型复合金属氧化物载氧体及其制备方法和应用
CN111569891B (zh) 一种中温甲烷部分氧化催化剂及其制备方法和应用
CN104495906A (zh) 一种γ-氧化铝掺杂稀土氧化物的制备方法
CN109908907B (zh) 甲烷二氧化碳重整制合成气催化剂及其制法
CN108654555A (zh) 一种高温吸收二氧化碳的正硅酸锂材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201204