CN111864184B - 带隔膜的电极板的制造方法和电池的制造方法 - Google Patents

带隔膜的电极板的制造方法和电池的制造方法 Download PDF

Info

Publication number
CN111864184B
CN111864184B CN202010272051.5A CN202010272051A CN111864184B CN 111864184 B CN111864184 B CN 111864184B CN 202010272051 A CN202010272051 A CN 202010272051A CN 111864184 B CN111864184 B CN 111864184B
Authority
CN
China
Prior art keywords
active material
undried
material layer
separator
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010272051.5A
Other languages
English (en)
Other versions
CN111864184A (zh
Inventor
平野优
水口晓夫
松延广平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN111864184A publication Critical patent/CN111864184A/zh
Application granted granted Critical
Publication of CN111864184B publication Critical patent/CN111864184B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

本发明的带隔膜的电极板的制造方法包括:在集电箔上形成未干燥活性物质层的工序;涂布包含水溶性高分子、水和高沸点溶剂的高分子溶液,在未干燥活性物质层上形成未干燥隔膜层的工序;以及使未干燥隔膜层内的水汽化,使水溶性高分子以三维网状析出,然后使高沸点溶剂汽化,形成多孔质隔膜层,并且使未干燥活性物质层内的分散介质汽化,形成活性物质层的工序。

Description

带隔膜的电极板的制造方法和电池的制造方法
技术领域
本发明涉及带隔膜的电极板的制造方法和电池的制造方法,所述带隔膜的电极板在集电箔上形成活性物质层,并在活性物质层上进一步形成多孔质隔膜层。
背景技术
已知使用聚乙烯醇(PVA)等的水溶性高分子形成多孔质体的方法。例如,日本特开2012-251057号公开了这样的方法(参照日本特开2012-251057的权利要求1、第(0033)段等)。该日本特开2012-251057中,首先将PVA溶解在水中制作PVA溶液。接着,在加热的同时将与水具有混合性的第1溶剂加入到该PVA溶液中。然后,例如,将该PVA溶液涂布到基板上并进一步冷却,得到析出了PVA的成形体。然后,将该成形体浸渍到第2溶剂中,将成形体中所含的混合溶剂(水和第1溶剂)与第2溶剂进行置换。然后,使其减压干燥,得到了由PVA构成的多孔质体。
发明内容
在用于电池的带隔膜的电极板(在集电箔上具有活性物质层的电极板上一体地形成隔膜层的电极板)形成隔膜层时,考虑采用上述多孔质体的形成方法。但是,所述形成方法的工序复杂,生产率低且成本高。另外,所述形成方法是适合于制造单个隔膜的方法,当在电极板上设置隔膜层时难以应用。
因此,本发明人研究了以下方法。即,研究了下述方法:首先,制作包含PVA等的水溶性高分子、水以及高沸点溶剂的高分子溶液,所述高沸点溶剂比水更难溶解所述水溶性高分子且沸点比水高,所述高分子溶液中溶解了所述水溶性高分子。然后,将该高分子溶液涂布到电极板上,在电极板上形成未干燥隔膜层。然后,使未干燥隔膜层内的水汽化,使水溶性高分子以三维网状析出,然后使高沸点溶剂汽化,得到多孔质隔膜层。
但是,得知在采用该方法形成隔膜层时,无法均匀地形成隔膜层,隔膜层的有些地方在隔膜层的内部形成孔洞、和/或在隔膜层中形成贯穿孔(贯穿隔膜层使电极板的活性物质层在底部露出的孔)。认为其原因如下。即,将高分子溶液涂布到干燥了的活性物质层上形成未干燥隔膜层时,直到使该未干燥隔膜层干燥形成隔膜层为止期间,构成未干燥隔膜层的高分子溶液的一部分会进入到活性物质层内的空隙中,且存在于活性物质层的孔洞内的空气会移动到未干燥隔膜层中。于是,由于该移动的空气使未干燥隔膜层内产生孔洞,而且孔洞变大使未干燥隔膜层形成贯穿孔。并且,认为这些孔洞和贯穿孔在干燥后的隔膜层中也会残留。
本发明是鉴于这样的现有状况而完成的,提供一种能够在活性物质层上均匀地形成隔膜层的带隔膜的电极板的制造方法、以及具有带隔膜的电极板的电极体的电池的制造方法。
用于解决所述课题的本发明一方案是一种带隔膜的电极板的制造方法,所述带隔膜的电极板具备集电箔、形成于该集电箔上的活性物质层、以及形成于该活性物质层上的多孔质隔膜层,所述制造方法具备未干燥活性物质层形成工序、未干燥隔膜层形成工序和干燥工序,所述未干燥活性物质层形成工序中,在所述集电箔上形成包含活性物质粒子和分散介质的未干燥活性物质层,所述未干燥隔膜层形成工序中,在所述未干燥活性物质层内包含所述分散介质的状态下涂布高分子溶液,在所述未干燥活性物质层上形成未干燥隔膜层,所述高分子溶液包含水溶性高分子、水和高沸点溶剂,所述高沸点溶剂比水更难溶解所述水溶性高分子且沸点比水高,所述高分子溶液中溶解了所述水溶性高分子,所述干燥工序中,使所述未干燥隔膜层内的水汽化,使所述水溶性高分子以三维网状析出,然后使所述高沸点溶剂汽化,形成多孔质的所述隔膜层,并且使所述未干燥活性物质层内的所述分散介质汽化,形成所述活性物质层。
所述带隔膜的电极板的制造方法中,在集电箔上形成未干燥活性物质层,然后以在未干燥活性物质层内包含分散介质的状态涂布所述高分子溶液,在未干燥活性物质层上形成未干燥隔膜层。由于未干燥活性物质层内包含分散介质,因此根据所包含的分散介质的体积,未干燥活性物质层的空隙比干燥后的活性物质层的空隙少。因此,直到使未干燥隔膜层干燥形成隔膜层为止期间,构成未干燥隔膜层的高分子溶液的一部分进入到未干燥活性物质层中的空隙中,而存在于未干燥活性物质层的空隙内的空气移动到未干燥隔膜层的现象能够被防止或抑制。因此,能够防止或抑制在未干燥隔膜层中形成孔洞和贯穿孔,在干燥后的隔膜层中也形成孔洞和贯穿孔的情况,从而能够在活性物质层上均匀地形成隔膜层。
再者,“未干燥隔膜层形成工序”以在未干燥活性物质层内包含着分散介质的状态进行即可,可以接着未干燥活性物质层形成工序实行未干燥隔膜层形成工序(可以在未干燥活性物质层刚形成后形成未干燥隔膜层),也可以在未干燥活性物质层形成工序后使未干燥活性物质层内的一部分分散介质汽化(半干燥),然后实行未干燥隔膜层形成工序。特别地,接着未干燥活性物质层形成工序实行未干燥隔膜层形成工序时,在形成未干燥隔膜层时,未干燥活性物质层内被分散介质填满,基本上没有空隙。因此,构成未干燥隔膜层的高分子溶液的一部分进入到未干燥活性物质层内的空隙中,而存在于未干燥活性物质层的空隙内的空气移动到未干燥隔膜层的现象被防止,能够在活性物质层上更均匀地形成隔膜层。
作为“水溶性高分子”,可举例如聚乙烯醇(PVA)、聚乙烯吡咯烷酮(PVP)等具有羟基的水溶性高分子、羟乙基纤维素(HEC)、羧甲基纤维素(CMC)等水溶性纤维素衍生物、具有酰胺基的水溶性高分子、具有醚的水溶性高分子、具有氨基的水溶性高分子、水溶性多糖类等。再者,相对于100g水,水溶性高分子在25℃时对于水的溶解度优选为1g以上。
作为“比水更难溶解水溶性高分子且沸点比水高的高沸点溶剂”,可举例如γ-丁内酯(GBL)(沸点204℃)、碳酸亚丙酯(PC)(沸点240℃)、碳酸亚乙酯(沸点261℃)、碳酸亚丁酯(沸点250℃)等的碳酸酯系高沸点溶剂、二甲基砜(沸点248℃)、二乙基砜(沸点246℃)等的砜系高沸点溶剂、丁二腈(沸点:265~267℃)等的腈系高沸点溶剂等。再者,高沸点溶剂优选是例如GBL之类与水相溶、或例如PC之类形成乳液并均匀分散在水中的溶剂。
作为在“未干燥活性物质层形成工序”中形成未干燥活性物质层的方法,例如,可以准备将活性物质粒子等分散在分散介质中而成的液态活性物质糊,将该活性物质糊涂布到集电箔上由此形成未干燥活性物质层。另外,如后所述,也可以准备包含活性物质粒子、分散介质等的湿润粒子凝聚而成的粒子凝聚体,通过辊压等将该粒子凝聚体压延由此形成未干燥活性物质层。
此外,所述带隔膜的电极板的制造方法可以是,所述未干燥隔膜层形成工序中,对固体成分比率NV为70重量%以上的所述未干燥活性物质层形成所述未干燥隔膜层。
形成未干燥隔膜层时的未干燥活性物质层的固体成分比率NV过低时,具体而言,固体成分比率NV低于70重量%时,未干燥活性物质层的分散介质量过多,难以在未干燥活性物质层上涂布形成未干燥隔膜层。相对于此,所述制造方法中,在未干燥隔膜层形成工序中,对固体成分比率NV为70重量%以上的未干燥活性物质层形成未干燥隔膜层,所以能够在未干燥活性物质层上合适地涂布形成未干燥隔膜层。
此外,所述带隔膜的电极板的制造方法可以是,所述未干燥活性物质层形成工序中,对包含所述活性物质粒子和所述分散介质的湿润粒子凝集而成的粒子凝聚体进行压延,形成所述未干燥活性物质层。
当通过对活性物质粒子分散在分散介质中而成的液态活性物质糊进行涂布来形成未干燥活性物质层的情况下,需要使活性物质糊的性状为液态,所以无法提高活性物质糊的固体成分比率NV。另外,如果活性物质糊的粘度过高,则变得难以制作和处理活性物质糊。因此,活性物质糊的固体成分比率NV例如低于70重量%。于是,采用该方法形成的未干燥活性物质层的固体成分比率NV也变得低于70重量%。该情况下,为了对固体成分比率NV为70重量%以上的未干燥活性物质层形成未干燥隔膜层,另行需要以下工序,即需要在未干燥活性物质层形成工序之后且未干燥隔膜层形成工序之前,使未干燥活性物质层进行半干燥,将固体成分比率NV调整为70重量%以上。另外,未干燥活性物质层形成工序中形成的未干燥活性物质层的固体成分比率NV越低,干燥后的活性物质层中的活性物质粒子的密度就越低,从而不优选。
相对于此,所述制造方法中,在未干燥活性物质层形成工序中,对包含活性物质粒子和分散介质的湿润粒子子凝聚而成的凝聚体进行压延而形成未干燥活性物质层。由于容易形成固体成分比率NV为70重量%以上的湿润粒子,因此通过对这样的湿润粒子的粒子凝聚体进行压延而形成未干燥活性物质层,能够容易地形成固体成分比率NV为70重量%以上的未干燥活性物质层。因此,在未干燥活性物质层形成工序之后不需要使未干燥活性物质层进行半干燥而将固体成分比率NV调整为70重量%以上,能够接着未干燥活性物质层形成工序实行未干燥隔膜层形成工序。另外,通过将在未干燥活性物质层形成工序中形成的未干燥活性物质层的固体成分比率NV提高到70重量%以上,能够充分提高干燥后的活性物质层中的活性物质粒子的密度。
此外,在上述任一项所述的带隔膜的电极板的制造方法中,优选所述未干燥活性物质层内所含的所述分散介质为水。
所述制造方法中,未干燥活性物质层内所含的分散介质为水。另外,如上所述,在未干燥隔膜层中也包含水。因此,在未干燥活性物质层上形成未干燥隔膜层之后,直到使干燥未干燥隔膜层干燥而形成隔膜层为止期间,即使未干燥活性物质层内的分散介质(水)向未干燥隔膜层移动,分散介质(水)也不会对未干燥隔膜层造成恶劣影响。另外,在干燥工序中,随着未干燥隔膜层内的水从未干燥隔膜层的表面汽化,为了进行补充,未干燥活性物质层内的分散介质(水)向未干燥隔膜层移动。因此,能够抑制干燥时未干燥隔膜层的组成急剧变化,能够更合适地形成多孔质隔膜层。另外,由于将水作为分散介质,因此能够降低环境负荷。
另外,其他方案是一种电池的制造方法,所述电池具备电极体,所述电极体具有带隔膜的电极板,所述带隔膜的电极板包含集电箔、形成于该集电箔上的活性物质层、以及形成于该活性物质层上的多孔质隔膜层,所述制造方法具备电极板制造工序、电极体形成工序和组装工序,所述电极板制造工序中,采用上述任一项所述的带隔膜的电极板的制造方法制造所述带隔膜的电极板,所述电极体形成工序中,使用所述带隔膜的电极板形成所述电极体,所述组装工序中,使用所述电极体组装所述电池。
所述电池的制造方法中,采用所述带隔膜的电极板的制造方法制造带隔膜的电极板,因此可得到在活性物质层上均匀地形成有隔膜层的带隔膜的电极板。并且,使用该带隔膜的电极板形成电极体,并进一步组装电池,所以能够制造可靠性高的电池。
附图说明
以下,参考附图说明本发明的示例性实施例的特征、优点、技术和工业意义,相同的附图标记表示相同的元件。
图1是实施方式的电池的立体图。
图2是实施方式的带隔膜的负极板的立体图。
图3是实施方式的电池的制造方法的流程图。
图4是表示实施方式的在负极集电箔上形成第1负极活性物质层和第1隔膜层的状态的说明图。
图5是比较形态的带隔膜的负极板的制造方法的流程图。
图6A是实施例1的带隔膜的负极板中的第1隔膜层的表面照片。
图6B是比较例1的带隔膜的负极板中的第1隔膜层的表面照片。
具体实施方式
以下,参照附图对本发明的实施方式进行说明。图1表示本实施方式的电池1的立体图。该电池1是混合动力汽车、插电式混合动力汽车、电动汽车等车辆等所搭载的方型且密封型锂离子二次电池。电池1由方型电池壳体10、收纳在其内部的扁平卷绕型电极体20和电解液17、以及由电池壳体10支持的正极端子部80和负极端子部90等构成。
其中,电池壳体10由长方体箱状的金属(本实施方式中为铝)制成。该电池壳体10由仅上侧开口的有底方筒状的壳体主体构件11、以及矩形板状的壳体盖构件13构成,壳体盖构件13以堵塞该壳体主体构件11的开口的形态被焊接而成。对于壳体盖构件13,以与壳体盖构件13绝缘的状态固定设置有由铝制成的正极端子部80。该正极端子部80在电池壳体10内与电极体20中的正极板21连接导通,且贯穿壳体盖构件13延伸到电池外部。另外,对于壳体盖构件13,以与壳体盖构件13绝缘的状态固定设置有由铜制成的负极端子部90。该负极端子部90在电池壳体10内与电极体20中的带隔膜的负极板(带隔膜的电极板)31连接导通,且贯穿壳体盖部件13延伸到电池外部。
电极体20为扁平状,以横倒的状态被收纳在电池壳体10内。该电极体20是将带状的正极板21和带状的带隔膜的负极板31重叠,并绕轴线以扁平状卷绕而成的。
首先,对带隔膜的负极板31进行说明(参照图2)。再者,以下,将带隔膜的负极板31的长度方向EH、宽度方向FH和厚度方向GH定为图2所示方向进行说明。该带隔膜的负极板31具有在长度方向EH上延伸的带状铜箔制成的负极集电箔(集电箔)33。在该负极集电箔33的一方的第1主面33a上,除了宽度方向FH的一个端部以外,在长度方向EH上以带状形成有第1负极活性物质层(活性物质层)41。另外,在负极集电箔33的相反侧的第2主面33b上,除了宽度方向FH的一个端部以外,在长度方向EH上以带状形成有第2负极活性物质层(活性物质层)42。该第1负极活性物质层41和第2负极活性物质层42由负极活性物质粒子(活性物质粒子)45、增稠剂46和其他添加剂47构成。本实施方式中,将石墨粒子用作负极活性物质粒子45,将羧甲基纤维素(CMC)用作增稠剂46,并将勃姆石用作其他添加剂47。
此外,在第1负极活性物质层41上,遍及其整个表面地形成了孔径为0.5~2.0μm左右的多孔质第1隔膜层51。另外,在第2负极活性物质层42上,也遍及其整个表面地形成了孔径为0.5~2.0μm左右的多孔质第2隔膜层52。该第1隔膜层51和第2隔膜层52由水溶性高分子55构成。本实施方式中,作为水溶性高分子55,使用聚乙烯醇(PVA),具体而言,使用了可乐丽株式会社制的“Kuraray Poval 105”。
再者,带隔膜的负极板31中的宽度方向FH的一个端部以在长度方向EH上延伸的带状成为负极集电部31m,负极集电部31m中,负极集电箔33在厚度方向GH上露出,且厚度方向GH上不具有第1负极活性物质层41、第2负极活性物质层42、第1隔膜层51和第2隔膜层52的每一层。对于该负极集电部31m连接(焊接)有所述负极端子部90(参照图1)。
接着,对正极板21进行说明。该正极板21具有带状铝箔构成的正极集电箔(未图示)。在该正极集电箔的一方的主面上,除了宽度方向的一个端部以外,在长度方向上以带状形成有正极活性物质层(未图示)。另外,在正极集电箔的相反侧的主面上,除了宽度方向的一个端部以外,在长度方向上也以带状形成有正极活性物质层(未图示)。这些正极活性物质层由正极活性物质粒子、导电粒子和粘结剂构成。本实施方式中,将锂过渡金属复合氧化物粒子、具体而言将锂镍钴锰氧化物粒子用作正极活性物质粒子,将乙炔黑(AB)粒子用作导电粒子,并将聚偏二氟乙烯(PVDF)用作粘结剂。再者,正极板21中的宽度方向的一个端部以在长度方向上延伸的带状成为正极集电部21m,正极集电部21m中,正极集电箔在厚度方向上露出而不具有正极活性物质层。对于该正极集电部21m连接(焊接)有所述正极端子部80(参照图1)。
接着,对于带隔膜的负极板31的制造方法和电池1的制造方法进行说明(参照图3和图4)。首先,对于带隔膜的负极板31的制造方法(负极板制造工序S1)进行说明。预先形成固体成分比率NV为70重量%以上(本实施方式中为72.0重量%)的负极用的湿润粒子43凝聚而成的粒子凝聚体44。即,准备由负极活性物质粒子(本实施方式中为石墨粒子)45、增稠剂(本实施方式中为CMC)46、添加物(本实施方式中为勃姆石)47、分散介质(本实施方式中为水)48构成的湿润粒子43的粒子凝聚体44。
具体而言,以固体成分比率NV变为72.0重量%的方式,使用未图示的双轴捏合机对负极活性物质粒子45、添加物47和将增稠剂46分散在分散介质48中得到的增稠剂分散液进行捏合,得到它们均匀分散了的粘土状混合物。随后,将该粘土状混合物送入未图示的挤出机。挤出机具备:在缸体内部配置有挤出螺杆的挤压筒;以及设在挤压筒的顶端部的切削刃,所述切削刃将从多个挤出孔挤出到缸体外部的粘土状混合物进行切削。从双轴捏合机送至挤出机的粘土状混合物通过挤出螺杆而在挤压筒内移动,从挤压筒顶端部的挤出孔被挤出到缸体外部,并被切削刃切削。由此,圆柱状且固体成分比率NV为72.0重量%的湿润粒子43被造粒,生产出湿润粒子43凝聚而成的粒子凝聚体44。
然后,在“负极板形成工序(电极板制造工序)S1”的“第1未干燥活性物质层形成工序S11”(参照图3)中,在负极集电箔33的第1主面33a上形成对所述粒子凝聚体44压延而得到的第1未干燥活性物质层41X。再者,使用电极板制造装置100(参照图4)实行从该第1未干燥活性物质层形成工序S11到后述的第1干燥工序S13。该电极板制造装置100具备:形成第1未干燥活性物质层41X的第1形成部110、形成后述的第1未干燥隔膜层51X的第2形成部130、以及使第1未干燥活性物质层41X和第1未干燥隔膜层51X同时干燥的干燥炉150。
其中,第1形成部110具有在负极集电箔33上形成第1未干燥活性物质层41X的3根辊,具体而言,具有:第1辊111、与该第1辊111隔着第1辊间隙G1平行配置的第2辊112、以及与该第2辊112隔着第2辊间隙G2平行配置的第3辊113。对于该第1辊111~第3辊113,连结有使各个辊旋转驱动的马达(未图示)。
另外,第1形成部110在第1辊111与第2辊112之间的第1辊间隙G1上方具有凝聚体供给部115,凝聚体供给部115向该第1辊间隙G1供给由湿润粒子43构成的粒子凝聚体44。另外,第1形成部110具有未图示的集电箔供给辊,从该集电箔供给辊引出的负极集电箔33以负极集电箔33的第2主面33b与第3辊113接触的方式卷绕在第3辊113上,利用第3辊113输送负极集电箔33。
第2形成部130具有2根输送辊(第1输送辊131和第2输送辊132)。对于该第1输送辊131和第2输送辊132连结有使各个辊旋转驱动的马达(未图示)。第1输送辊131设在第1形成部110的第3辊113的下游,并与形成于负极集电箔33的第1主面33a上的第1未干燥活性物质层41X接触,用于输送负极集电箔33和第1未干燥活性物质层41X。另外,第2输送辊132设在第1输送辊131的下游,并与第1输送辊131相反地与负极集电箔33的第2主面33b接触,用于输送负极集电箔33和第1未干燥活性物质层41X。
另外,第2形成部130在第2输送辊132附近具有溶液涂布部135和溶液刮取部136。溶液涂布部135是将后述高分子溶液53涂布到由第2输送辊132输送的负极集电箔33和第1未干燥活性物质层41X中的第1未干燥活性物质层41X的部位。另外,溶液刮除单元136具有刮刀,对涂布到第1未干燥活性物质层41X上的多余的高分子溶液53进行刮取。通过该溶液涂布部135和溶液刮取部136来形成第1未干燥隔膜层51X。
在干燥炉150内设有多个输送辊(未图示)和吹出热风的多个热风吹出部(未图示),从各热风吹出口吹出的热风吹到第1未干燥隔膜层51X上。
实行第1未干燥活性物质层形成工序S11时,使第1辊111、第2辊112、第3辊113、第1输送辊131和第2输送辊132沿图4中用箭头表示的旋转方向分别旋转。即,第1辊111、第3辊113和第2输送辊132沿相同的旋转方向(本实施方式中为顺时针)旋转,第2辊112和第1输送辊131沿与它们相反的方向(本实施例中为逆时针方向)旋转。另外,使第2辊112的圆周速度V2比第1辊111的圆周速度V1快,而且使第3辊113的圆周速度V3比第2辊112的圆周速度V2快(V1<V2<V3)。另外,第3辊113和第2输送辊132的圆周速度V4、V5等于第3辊113的圆周速度V3(V3=V4=V5)。
投入到第1形成部110的凝聚体供给部115的湿润粒子43的粒子凝聚体44朝向第1辊111与第2辊112之间的第1辊间隙G1供给,并被第1辊111和第2辊112压延,成为第1未干燥活性物质层41X,在第2辊112上成膜。该第2辊112上的第1未干燥活性物质层41X向第3辊113侧输送。
随后,该第2辊112上的第1未干燥活性物质层41X在第2辊112与第3辊113之间与由第3辊113输送的负极集电箔33接触。并且,在第2辊112与第3辊113之间,第1未干燥活性物质层41X被转印到负极集电箔33的第1主面33a上,在负极集电箔33的第1主面33a上连续形成第1未干燥活性物质层41X。再者,将在该负极集电箔33上形成有第1未干燥活性物质层41X的电极板也称为“电极板31A”。
如上所述,用于形成第1未干燥活性物质层41X的湿润粒子43的固体成分比率NV为70重量%以上(本实施方式中为72.0重量%),因此在该工序中形成的第1未干燥活性物质层41X的固体成分比率NV也为70重量%以上(本实施方式中约为72重量%)。这样,通过将第1未干燥活性物质层41X的固体成分比率NV提高到70重量%以上,能够充分提高干燥后的第1负极活性物质层41中的负极活性物质粒子45的密度。
随后,在“第1未干燥隔膜层形成工序S12”中,在所述电极板31A的第1未干燥活性物质层41X上形成第1未干燥隔膜层51X。在该第1未干燥隔膜层形成工序S12之前,制作用于形成第1未干燥隔膜层51X的高分子溶液53。即,准备包含水溶性高分子(本实施方式中为PVA:可乐丽株式会社制造的“Kuraray Poval 105”)55、水56和与水56相比更难溶解水溶性高分子55且沸点比水56高的高沸点溶剂(γ-丁内酯(GBL)(沸点204℃))57的高分子溶液53,高分子溶液53中溶解有水溶性高分子55。
具体而言,以PVA:水=2:10的重量比混合水溶性高分子55和水56,加热至85℃,混合搅拌直到水溶性高分子55完全溶解在水56中为止。然后,在该PVA水溶液中将高沸点溶剂57以PVA水溶液:GBL=12:7的重量比(PVA:水:GBL=2:10:7的重量比)混合,并在85℃下搅拌混合。然后,将其自然冷却至室温,得到了溶解有水溶性高分子55的状态的高分子溶液53。
第1未干燥隔膜层形成工序S12在电极板制造装置100的第2形成部130中实行。在负极集电箔33上形成有第1未干燥活性物质层41X的电极板31A通过第1输送辊131和第2输送辊132来输送。然后,在溶液涂布部135中,在电极板31A的第1未干燥活性物质层41X上涂布所述高分子溶液53。随后,在溶液刮取部136中,刮去多余的高分子溶液53。由此,在第1未干燥活性物质层41X上连续形成第1未干燥隔膜层51X。再者,将在该负极集电箔33上形成第1未干燥活性物质层41X,进而在第1未干燥活性物质层41X上形成第1未干燥隔膜层51X的电极板也称为“电极板31B”。
在本实施方式中,接着第1未干燥活性物质层形成工序S11实行了第1未干燥隔膜层形成工序S12,因此在形成第1未干燥活性物质层41X后,直到在其上形成第1未干燥隔膜层51X为止期间,第1未干燥活性物质层41X内所含的分散介质48基本上不汽化。因此,形成第1未干燥隔膜层51X时的第1未干燥活性物质层41X的固体成分比率NV与形成第1未干燥活性物质层41X时的固体成分NV基本上不变,约为72重量%。
在此,虽然没有示出详细结果,但如果在形成第1未干燥隔膜层51X时的第1未干燥活性物质层41X的固体成分比率NV过低,具体而言如果固体成分比率NV低于70重量%,则第1未干燥活性物质层41X的分散介质48的量变得过多,难以在第1未干燥活性物质层41X上涂布形成第1未干燥隔膜层51X。因此,可知形成第1未干燥隔膜层51X时的第1未干燥活性物质层41X的固体成分比率NV优选为70重量%以上。
随后,在“第1干燥工序S13”中,使第1未干燥隔膜层51X干燥形成第1隔膜层51,并且使第1未干燥活性物质层41X干燥形成第1负极活性物质层41。具体而言,将所述电极板31B搬入干燥炉150内,在干燥箱150内一边搬送一边从热风出口温度向电极板31B中的第1未干燥隔膜层51X吹送120℃的热风。首先,第1未干燥隔膜层51X内的水56从第1未干燥隔膜层51X的表面逐渐汽化,溶解了的水溶性高分子55以三维网状析出。随后,高沸点溶剂57汽化形成多孔质第1隔膜层51。另外,与此同时,第1未干燥活性物质层41X内的分散介质48也通过第1未干燥隔膜层51X从第1未干燥隔膜层51X的表面逐渐汽化,形成第1负极活性物质层41。再者,将在该负极集电箔33上形成第1负极活性物质层41,并在第1负极活性物质层41上进一步形成第1隔膜层51的电极板也称为“电极板31C”。
接着,在“第2未干燥活性物质层形成工序S14”中,使用另行准备的电极板制造装置100,与所述第1未干燥活性物质层形成工序S11同样地在所述电极板31C的负极集电箔33的第2主面33b上形成第2未干燥活性物质层42X。即,被投入凝聚体供给部115中的粒子凝聚体44被第1辊111和第2辊112辊压延,变为第2未干燥活性物质层42X,在第2辊112上成膜。随后,该第2未干燥活性物质层42X在第2辊112与第3辊113之间被转印到电极板31C的负极集电箔33的第2主面33b上,在第2主面33b上连续形成第2未干燥活性物质层42X。再者,将该电极板也称为“电极板31D”。
随后,在“第2未干燥隔膜层形成工序S15”中,与所述第1未干燥隔膜层形成工序S12同样地在所述电极板31D的第2未干燥活性物质层42X上形成第2未干燥隔膜层52X。即,电极板31D通过第1输送辊131和第2输送辊132来输送,在溶液涂布部135中,在电极板31D的第2未干燥活性物质层42X上涂布所述高分子溶液53,再在溶液刮取部136中,刮去多余的高分子溶液53,从而在第2未干燥活性物质层42X上连续形成第2未干燥隔膜层52X。再者,将该电极板也称为“电极板31E”。
随后,在“第2干燥工序S16”中,与所述第1干燥工序S13同样地使第2未干燥隔膜层52X干燥,形成第2隔膜层52,并且使第2未干燥活性物质层42X干燥,形成第2负极活性物质层42。即,所述电极板31E被搬入干燥炉150内,对电极板31E中的第2未干燥隔膜层52X吹送120℃的热风。首先,第2未干燥隔膜层52X内的水56逐渐汽化,水溶性高分子55以三维网状析出。随后,高沸点溶剂57汽化,形成多孔质第2隔膜层52。另外,与此同时,第2未干燥活性物质层42X内的分散介质48也通过第2未干燥隔膜层52X汽化,形成第2负极活性物质层42。再者,将该电极板也称为“电极板31F”。
接着,在“切断工序S17”中,将所述电极板31F在宽度方向FH的中央沿长度方向EH切成两半。于是,制造出图2所示带隔膜的负极板31。再者,在该切断工序S17之前,可以实行辊压所述电极板31F的辊压工序。
另外,另行在“正极板制造工序S2”中制造正极板21。预先形成正极用的湿润粒子凝聚而成的粒子凝聚体(未图示)。即,准备由正极活性物质粒子(本实施方式中为锂镍钴锰氧化物粒子)、导电粒子(本实施方式中为AB粒子)、粘结剂(本实施方式中为PVDF)和分散介质(本实施方式中为N-甲基吡咯烷酮(NMP))构成的湿润粒子的粒子凝聚体。具体而言,与形成负极用的湿润粒子43的粒子凝聚体44的情况同样地,使用未图示的双轴捏合机将正极活性物质粒子、导电粒子、粘结剂和分散介质捏合,得到它们均匀分散了的粘土状混合物。随后,使用未图示的挤出机,对圆柱状湿润粒子造粒,得到湿润粒子聚集而成的粒子凝聚体。
接着,与所述电极板制造装置100的第1形成部110同样地使用具备3根辊的辊压装置,在正极集电箔的一个主面上形成第1未干燥活性物质层。然后,在干燥炉内使该第1未干燥活性物质层干燥,在正极集电箔上形成第1正极活性物质层。同样地,在正极集电箔的另一个主面上也形成第2未干燥活性物质层并使其干燥,在正极集电箔上形成第2正极活性物质层。然后,对该正极板进行辊压,提高第1正极活性物质层和第2正极活性物质层的密度。然后,将该正极板在宽度方向的中央沿长度方向切成两半。于是,制造出正极板21。
接着,在“电极体形成工序S3”中形成电极体20。具体而言,将带状的正极板21和带状的带隔膜的负极板31重叠,利用卷绕芯绕轴线卷绕。此外,将其压缩成扁平状,形成扁平状卷绕电极体20(参照图1)。
接着,在“组装工序S4”中组装电池1。即,准备壳体盖构件13,并对其固定设置正极端子部80和负极端子部90(参照图1)。然后,将正极端子部80和负极端子部90分别焊接到电极体20的正极板21的正极集电部21m和带隔膜的负极板31的负极集电部31m上。接着,将未图示的绝缘膜包围体覆盖在电极体20上,将它们插入到壳体主体构件11内,并且利用壳体盖构件13堵塞壳体主体构件11的开口。然后,将壳体主体构件11与壳体盖构件13焊接而形成电池壳体10。然后,将电解液17从注液孔13h注入到电池壳体10内,浸渍于电极体20内。然后,用密封构件15密封注液孔13h。
然后,对该电池1进行初次充电。另外,对该电池1进行各种检查。这样,制成电池1。
(实施例1和比较例1)
接着,对于为验证本发明效果而进行的试验的结果进行说明。作为实施例1,与所述实施方式同样地制造了带隔膜的负极板31。即,该实施例1中,将PVA(可乐丽株式会社制造的“Kuraray Povar 105”)用作水溶性高分子55,并将GBL用作高沸点溶剂57,将水溶性高分子55、水56和高沸点溶剂按PVA:水:GBL=2:10:7的重量比混合,制作了高分子溶液53(也参照下表1)。
然后,接着第1未干燥活性物质层形成工序S11,在第1未干燥隔膜层形成工序S12中,通过该高分子溶液53在第1未干燥活性物质层41X上形成第1未干燥隔膜层51X,然后在第1干燥工序S13中,使第1未干燥隔膜层51X和第1未干燥活性物质层41X同时干燥,形成了第1隔膜层51和第1负极活性物质层41。另外,接着第2未干燥活性物质层形成工序S14,在第2未干燥隔膜层形成工序S15中,通过该高分子溶液53在第2未干燥活性物质层42X上形成第2未干燥隔膜层52X,然后,在第2干燥工序S16中,使第2未干燥隔膜层52X和第2未干燥活性物质层42X同时干燥,形成了第2隔膜层52和第2负极活性物质层42。
表1
Figure BDA0002443448960000161
另一方面,作为比较例1,使用与实施例1(实施方式)相同的高分子溶液53,但采用与实施例1不同的方法制造了带隔膜的负极板31(参照图5)。具体而言,在与实施例1的第1未干燥活性物质层形成工序S11同样的第1未干燥活性物质层形成工序S81中,在负极集电箔33的第1主面33a上形成第1未干燥活性物质层41X,然后在干燥工序S82中,使该第1未干燥活性物质层41X加热干燥,形成了第1负极活性物质层41。然后,在第1未干燥隔膜层形成工序S83中,在干燥后的第1负极活性物质层41上形成第1未干燥隔膜层51X,然后,在干燥工序S84中,使该第1未干燥隔膜层51X加热干燥,形成了第1隔膜层51。
接着,第2未干燥活性物质层形成工序S85中,在负极集电箔33的第2主面33b上形成第2未干燥活性物质层42X,然后在干燥工序S86中,使该第2未干燥活性物质层42X加热干燥,形成了第2负极活性物质层42。然后,第2未干燥隔膜层形成工序S87中,在干燥后的第2负极活性物质层42上形成第2未干燥隔膜层52X,然后在干燥工序S88中,使该第2未干燥隔膜层52X加热干燥,形成了第2隔膜层52。然后,实行与实施例1的切断工序S17同样的切断工序S89,得到了带隔膜的负极板31。
(实施例2和比较例2)
另外,作为实施例2,使用与实施例1的高分子溶液53不同的高分子溶液53,形成未干燥隔膜层51X、52X,除此以外与实施例1(参照图4)同样地制造了带隔膜的负极板31。具体而言,该实施例2中,如表1所示,将水溶性高分子55、水56和高沸点溶剂57按PVA:水:GBL=2:9:7的重量比混合,制作了高分子溶液53。另一方面,比较例2中,使用与实施例2相同的高分子溶液53,除此以外与所述比较例1(参照图5)同样地制造了带隔膜的负极板31。
(实施例3和比较例3)
另外,作为实施例3,使用与实施例1、2的高分子溶液53不同的高分子溶液53,形成未干燥隔膜层51X、52X,除此以外与实施例1、2(参照图4)同样地制造了带隔膜的负极板31。具体而言,该实施例3中,如表1所示,使用PVA、具体而言使用可乐丽株式会社制的“KurarayPoval205”作为水溶性高分子55,并使用碳酸亚丙酯(PC)(沸点240℃)作为高沸点溶剂57。另外,将水溶性高分子55、水56和高沸点溶剂57按PVA:水:PC=2:10:5的重量比混合,制作了高分子溶液53。另一方面,比较例3中,使用与实施例3相同的高分子溶液53,除此以外与所述比较例1、2(参照图5)同样地制造了带隔膜的负极板31。
接着,对于实施例1~3和比较例1~3的带隔膜的负极板31,用目视观察隔膜层(第1隔膜层)51。再者,图6A表示实施例1的各隔膜层51的表面照片,图6B表示比较例1的各隔膜层51的表面照片。在比较例1~3的隔膜层51中,在有些地方产生了直径3~10mm左右的大贯穿孔(贯穿隔膜层51使负极活性物质层41在底部露出的孔)KH(图6B中发黑的部分)。另外,虽然图6B的照片中不清楚,但在比较例1~3的隔膜层51中,有些地方在隔膜层的内部形成了孔洞。相对于此,实施例1~3的隔膜层51中没有贯穿孔KH和孔洞,均匀地形成了隔膜层51。
认为产生这样结果的原因如下。即,比较例1~3中,在干燥了的活性物质层上涂布高分子溶液53,形成未干燥隔膜层51X,因此直到使该未干燥隔膜层51X干燥形成隔膜层51为止期间,构成未干燥隔膜层51X的高分子溶液53的一部分会进入到负极活性物质层41内的空隙中,而存在于负极活性物质层41的空隙中的空气会移动到未干燥隔膜层51X中。于是,由于该移动的空气使未干燥隔膜层51X内产生孔洞,而且孔洞变大使未干燥隔膜层51X形成贯穿孔KH。并且,干燥后的隔膜层51中也残留这些孔洞和贯穿孔。
相对于此,实施例1~3中,在负极集电箔33上形成未干燥活性物质层41X之后,没有使未干燥的活性物质层41X干燥而是涂布高分子溶液53形成未干燥隔膜层51X。未干燥活性物质层41X内基本上没有空隙,因此直到使未干燥隔膜层51X干燥形成隔膜层51为止期间,构成未干燥隔膜层51X的高分子溶液53的一部分进入到未干燥活性物质层41X内的空隙中,而存在于未干燥活性物质层41X的空隙内的空气移动到未干燥隔膜层51X的现象被防止。因此,认为在未干燥隔膜层51X内形成孔洞和贯穿孔KH,干燥后的隔膜层51中也形成孔洞和贯穿孔KH的情况被防止,均匀地形成了隔膜层51。
如以上说明的那样,带隔膜的负极板31的制造方法中,在负极集电箔33上形成未干燥活性物质层41X、42X之后,分散介质48包含在未干燥活性物质层41X、42X内,在该状态下涂布高分子溶液53并在未干燥活性物质层41X、42X上形成未干燥隔膜层51X、52X。特别地,所述实施方式中,接着未干燥活性物质层41X、42X的形成而形成未干燥隔膜层51X、52X,因此未干燥活性物质层41X、42X内被分散介质48充满,在未干燥活性物质层41X、42X内基本上没有空隙。因此,直到使未干燥隔膜层51X、52X干燥形成隔膜层51、52为止期间,构成未干燥隔膜层51X、52X的高分子溶液的一部分进入到未干燥活性物质层41X、42X内的空隙中,而存在于未干燥活性物质层41X、42X的空隙内的空气移动到未干燥隔膜层51X、52X的现象能够被防止。因此,在未干燥的隔膜层51X、52X内形成孔洞和通孔KH,且在干燥后的隔膜层51、52中也形成孔洞和通孔KH的情况被防止,能够在负极活性物质层41、42上均匀地形成隔膜层51、52。
另外,带隔膜的负极板31的制造方法中,在未干燥隔膜层形成工序S12、S15中,对固体成分比率NV为70重量%以上的未干燥活性物质层41X、42X形成未干燥隔膜层51X、52X,所以能够在未干燥活性物质层41X、42X上适当地涂布形成未干燥隔膜层51X、52X。
另外,当通过涂布液态的负极活性物质糊来形成未干燥活性物质层41X、42X的情况下,需要使负极活性物质糊的性状为液态,所以无法提高负极活性物质糊的固体成分比率NV。另外,如果负极活性物质糊的粘度过高,则变得难以制作和处理负极活性物质糊。因此,负极活性物质糊的固体成分比率NV例如低于70重量%。于是,采用该方法形成的未干燥活性物质层41X、42X的固体成分比率NV也变得低于70重量%。该情况下,为了对固体成分比率NV为70重量%以上的未干燥活性物质层41X、42X形成未干燥隔膜层51X、52X,另行需要以下工序,即在未干燥活性物质层形成工序S11、S14之后且未干燥隔膜层形成工序S12、S15之前,使未干燥活性物质层41X、42X进行半干燥,将固体成分比率NV调整为70重量%以上。另外,未干燥活性物质层形成工序S11、S14中形成的未干燥活性物质层41X、42X的固体成分比率NV越低,干燥后的负极活性物质层41、42中的负极活性物质粒子45的密度就越低,从而不优选。
相对于此,在带隔膜的负极板31的制造方法中,将湿润粒子43凝聚而成的粒子凝聚体44压延形成未干燥活性物质层41X、42X。由于容易形成固体成分比率NV为70重量%以上的湿润粒子43,因此通过对这样的湿润粒子43的粒子凝聚体44进行压延而形成未干燥活性物质层41X、42X,由此能够容易地形成固体成分比率NV为70重量%以上的未干燥活性物质层41X、42X。因此,在未干燥活性物质层形成工序S11、S14之后不需要使未干燥活性物质层41X、42X进行半干燥而将固体成分比率NV调整为70重量%以上,能够接着未干燥活性物质层形成工序S11、S14实行未干燥隔膜层形成工序S12、S15。另外,通过将在未干燥活性物质层形成工序S11、S14中形成的未干燥活性物质层41X、42X的固体成分比率NV提高到70重量%以上,能够充分提高干燥后的负极活性物质层41、42中的负极活性物质粒子45的密度。
另外,带隔膜的负极板31的制造方法中,未干燥活性物质层41X、42X内所含的分散介质48为水,未干燥隔膜层51X、52X中也包含水56。因此,在未干燥活性物质层41X、42X上形成未干燥隔膜层51X、52X之后,直到使未干燥隔膜层51X、52X干燥而形成隔膜层51、52为止期间,即使未干燥活性物质层41X、42X内的分散介质(水)48向未干燥隔膜层51X、52X移动,分散介质(水)48也不会对未干燥隔膜层51X、52X造成恶劣影响。另外,在干燥工序S13、S16中,随着未干燥隔膜层51X、52X内的水56从未干燥隔膜层51X、52X的表面汽化,为了对其补充,未干燥活性物质层41X、42X内的分散介质(水)48向未干燥隔膜层51X、52X移动。因此,能够抑制未干燥隔膜层51X、52X的组成在干燥时急剧变化,能够更合适地形成多孔质隔膜层51、52。
另外,电池1的制造方法中,采用带隔膜的负极板31的制造方法制造带隔膜的负极板31,所以可得到在负极活性物质层41、42上均匀地形成有隔膜层51、52的带隔膜的负极板31。并且,使用该带隔膜的负极板31形成电极体20,进一步组装电池1,所以能够制造可靠性高的电池1。
以上,基于实施方式和实施例1~3说明了本发明,但本发明不限于实施方式和实施例1~3,当然可以在不脱离其主旨的范围进行适当修改变更后应用。例如,本实施方式中,对于在负极集电箔33的两侧具有负极活性物质层41、42,且在它们之上还具有隔膜层51、52的带隔膜的负极板31,应用了本发明的制造方法,但应用本发明制造方法的带隔膜的电极板不限于该方式。例如,对于仅在负极集电箔33的一侧具有负极活性物质层,且仅在该负极活性物质层上具有隔膜层的带隔膜的负极板,也能够应用本发明的制造方法。
另外,实施方式中,将水溶性高分子55、水56和高沸点溶剂57加热,搅拌混合直到水溶性高分子55溶解为止,然后自然冷却至室温,由此得到了高分子溶液53,但高分子溶液53的制作方法不限于此。例如,可以通过不加热而在室温下对水溶性高分子55、水56和高沸点溶剂57进行搅拌混合直到水溶性高分子55溶解为止,由此制作高分子溶液53。
另外,实施方式中,通过将湿润粒子43凝聚而成的粒子凝聚体44进行压延来形成了未干燥活性物质层41X、42X,但未干燥活性物质层41X、42X的形成方法不限于此。例如,也可以通过将包含负极活性物质粒子45、增稠剂46、添加物47和分散介质48的液态负极活性物质糊涂布到负极集电箔33上,来形成未干燥活性物质层41X、42X。
另外,实施方式中,作为电池1的电极体20,形成了带状正极板21与带状带隔膜的负极板31重叠卷绕成扁平状的扁平状卷绕型电极体20,但电极体20的形态不限于此。例如,可以将带状正极板21切断形成矩形正极板,并且将带状的带隔膜的负极板31切断形成矩形的带隔膜的负极板,并将矩形正极板与矩形的带隔膜的负极板交替层叠多个,形成长方体层叠型电极体。

Claims (2)

1.一种带隔膜的电极板的制造方法,所述带隔膜的电极板具备集电箔、形成于该集电箔上的活性物质层、以及形成于该活性物质层上的多孔质的隔膜层,所述制造方法具备未干燥活性物质层形成工序、未干燥隔膜层形成工序和干燥工序,
所述未干燥活性物质层形成工序中,在所述集电箔上形成包含活性物质粒子和分散介质的未干燥活性物质层,
所述未干燥隔膜层形成工序中,在所述未干燥活性物质层内包含所述分散介质的状态下涂布高分子溶液,在所述未干燥活性物质层上形成未干燥隔膜层,所述高分子溶液包含水溶性高分子、水和高沸点溶剂,所述高沸点溶剂比水更难溶解所述水溶性高分子且沸点比水高,所述高分子溶液中溶解了所述水溶性高分子,
所述干燥工序中,使所述未干燥隔膜层内的水汽化,使所述水溶性高分子以三维网状析出,然后使所述高沸点溶剂汽化,形成多孔质的所述隔膜层,并且使所述未干燥活性物质层内的所述分散介质汽化,形成所述活性物质层,
所述未干燥活性物质层形成工序中,准备包含所述活性物质粒子和所述分散介质的固体成分比率NV为70重量%以上的湿润粒子,通过对所述湿润粒子凝集而成的粒子凝聚体进行压延,来形成所述未干燥活性物质层,
所述未干燥活性物质层内所含的所述分散介质为水。
2.一种电池的制造方法,所述电池具备电极体,所述电极体具有带隔膜的电极板,所述带隔膜的电极板包含集电箔、形成于该集电箔上的活性物质层、以及形成于该活性物质层上的多孔质的隔膜层,所述制造方法具备电极板制造工序、电极体形成工序和组装工序,
所述电极板制造工序中,采用权利要求1所述的带隔膜的电极板的制造方法制造所述带隔膜的电极板,
所述电极体形成工序中,使用所述带隔膜的电极板形成所述电极体,
所述组装工序中,使用所述电极体组装所述电池。
CN202010272051.5A 2019-04-25 2020-04-09 带隔膜的电极板的制造方法和电池的制造方法 Active CN111864184B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-083518 2019-04-25
JP2019083518A JP7131472B2 (ja) 2019-04-25 2019-04-25 セパレータ付き電極板の製造方法及び電池の製造方法

Publications (2)

Publication Number Publication Date
CN111864184A CN111864184A (zh) 2020-10-30
CN111864184B true CN111864184B (zh) 2023-07-11

Family

ID=72921835

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010272051.5A Active CN111864184B (zh) 2019-04-25 2020-04-09 带隔膜的电极板的制造方法和电池的制造方法

Country Status (3)

Country Link
US (1) US11424434B2 (zh)
JP (1) JP7131472B2 (zh)
CN (1) CN111864184B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022177606A (ja) * 2021-05-18 2022-12-01 株式会社豊田自動織機 電極の製造方法
CN114464816B (zh) * 2022-04-12 2022-07-12 瑞浦兰钧能源股份有限公司 一种具有造孔功能涂层的集流体、极片以及锂离子电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057993A1 (ja) * 2012-10-10 2014-04-17 日本ゼオン株式会社 二次電池用正極の製造方法、二次電池及び二次電池用積層体の製造方法
JP2017143013A (ja) * 2016-02-11 2017-08-17 トヨタ自動車株式会社 電池の製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180281B1 (en) * 1997-12-12 2001-01-30 Johnson Research & Development Company, Inc. Composite separator and electrode
JP2000067870A (ja) * 1998-08-21 2000-03-03 Japan Storage Battery Co Ltd 多孔性高分子電解質を備えた電極及び非水電解質電池
JP2005267997A (ja) * 2004-03-18 2005-09-29 Matsushita Electric Ind Co Ltd 非水電解質電池用電極板の製造方法
JP2007103356A (ja) * 2005-09-12 2007-04-19 Matsushita Electric Ind Co Ltd 非水系二次電池
JP5078330B2 (ja) 2006-11-29 2012-11-21 三洋電機株式会社 非水電解質二次電池用負極極板及びこの負極極板を用いた非水電解質二次電池
JP2009277598A (ja) * 2008-05-16 2009-11-26 Panasonic Corp 塗工方法、表層膜形成装置、表層膜、並びに非水電解液二次電池
JP5262323B2 (ja) * 2008-06-11 2013-08-14 ソニー株式会社 多孔性保護膜付き負極、及び多孔性保護膜付き負極の製造方法
JP2012069457A (ja) 2010-09-27 2012-04-05 Konica Minolta Holdings Inc 多孔質層及びリチウムイオン二次電池
KR101198806B1 (ko) * 2010-12-06 2012-11-07 현대자동차주식회사 다공절연층을 포함하는 이차전지 전극 및 그 제조 방법
JP5828502B2 (ja) 2011-06-01 2015-12-09 国立大学法人大阪大学 ポリビニルアルコール多孔質体およびその製造方法
WO2013005796A1 (ja) * 2011-07-06 2013-01-10 日本ゼオン株式会社 二次電池用多孔膜、二次電池用セパレーター及び二次電池
KR101511732B1 (ko) * 2012-04-10 2015-04-13 주식회사 엘지화학 다공성 코팅층이 형성된 전극, 이의 제조방법 및 이를 포함하는 전기화학소자
CN104335389A (zh) * 2012-05-17 2015-02-04 丰田自动车株式会社 电池的制造方法
JP2014127438A (ja) * 2012-12-27 2014-07-07 Nissan Motor Co Ltd 電極の製造方法及び乾燥装置
CN104823307B (zh) * 2013-01-07 2018-05-04 尤尼吉可株式会社 锂二次电池用电极及其制造方法
JP2015153658A (ja) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 非水電解質二次電池および該電池用の負極
JP6406544B2 (ja) * 2014-10-29 2018-10-17 トヨタ自動車株式会社 非水電解液二次電池および該電池に用いられる電極体
JP6206421B2 (ja) 2015-01-14 2017-10-04 トヨタ自動車株式会社 電極の製造方法
JP6699351B2 (ja) 2016-05-25 2020-05-27 日本電気株式会社 電極の製造方法および電極の検査方法
JP7002094B2 (ja) 2016-10-31 2022-01-20 株式会社エンビジョンAescジャパン 電気化学デバイス用の電極と、電気化学デバイスと、それらの製造方法
JP6683159B2 (ja) 2017-03-22 2020-04-15 トヨタ自動車株式会社 非水電解液二次電池用負極の製造方法、および非水電解液二次電池の製造方法
JP6567126B2 (ja) * 2017-04-28 2019-08-28 住友化学株式会社 非水電解液二次電池用絶縁性多孔質層
JP6874617B2 (ja) 2017-09-21 2021-05-19 トヨタ自動車株式会社 負極シートの製造方法
JP7000914B2 (ja) 2018-02-26 2022-01-19 トヨタ自動車株式会社 水素ポンプ
JP6992701B2 (ja) 2018-08-06 2022-01-13 トヨタ自動車株式会社 セパレータ一体型電極の製造方法、及び、セパレータ一体型電極

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057993A1 (ja) * 2012-10-10 2014-04-17 日本ゼオン株式会社 二次電池用正極の製造方法、二次電池及び二次電池用積層体の製造方法
JP2017143013A (ja) * 2016-02-11 2017-08-17 トヨタ自動車株式会社 電池の製造方法

Also Published As

Publication number Publication date
JP2020181688A (ja) 2020-11-05
US11424434B2 (en) 2022-08-23
JP7131472B2 (ja) 2022-09-06
CN111864184A (zh) 2020-10-30
US20200343528A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP4593488B2 (ja) 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
JP6212951B2 (ja) 電池用電極部材の製造方法
US9917306B2 (en) Manufacturing method of electrode and wet granules
JP5163439B2 (ja) 繊維含有高分子膜及びその製造方法、並びに、電気化学デバイス及びその製造方法
JP5842407B2 (ja) リチウムイオン二次電池の製造方法
CN103380519B (zh) 锂离子二次电池及其制造方法
WO2012046305A1 (ja) 電池の製造方法
CN105579226A (zh) 多孔层、层叠多孔层而成的间隔件、及包含多孔层或间隔件的非水电解液二次电池
CN111864184B (zh) 带隔膜的电极板的制造方法和电池的制造方法
JP2010135338A (ja) 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
JP2008179903A (ja) 多孔質膜、電気化学素子用セパレータ、多孔質膜の製造方法、非水電解質電池および非水電解質電池の製造方法
US11217826B2 (en) Methods of making sulfide-impregnated solid-state battery
KR102310732B1 (ko) 이차 전지용 바인더 조성물
JP6876880B2 (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
CN111247669A (zh) 用于储能装置电极制备的方法和设备
JP5798144B2 (ja) リチウムイオン電池の製造装置およびリチウムイオン電池の製造方法
JP5348488B2 (ja) 電池用電極の製造方法
KR102625579B1 (ko) 리튬 복합 음극, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN115050919A (zh) 二次电池用电极的制造方法及二次电池的制造方法
JP2014143064A (ja) 二次電池およびその製造方法
CN113875039A (zh) 制备全固态电池的正极混合物的方法和使用该方法制备的全固态电池的正极混合物
JPH1064522A (ja) シート状極板の製造方法および非水電解質電池
JP2004327319A (ja) 電極製造方法
US11183687B2 (en) Method of producing electrode plate and electrode plate
WO2014128844A1 (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant