CN111837256A - 电化学元件用负极和锂离子二次电池 - Google Patents

电化学元件用负极和锂离子二次电池 Download PDF

Info

Publication number
CN111837256A
CN111837256A CN201980017549.2A CN201980017549A CN111837256A CN 111837256 A CN111837256 A CN 111837256A CN 201980017549 A CN201980017549 A CN 201980017549A CN 111837256 A CN111837256 A CN 111837256A
Authority
CN
China
Prior art keywords
negative electrode
positive electrode
mass
active material
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980017549.2A
Other languages
English (en)
Inventor
青木润珠
阿部浩史
石泽政嗣
上剃春树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Publication of CN111837256A publication Critical patent/CN111837256A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供能够抑制伴随充放电的膨胀发生且充放电循环特性优异的锂离子二次电池以及能够构成上述锂离子二次电池的电化学元件用负极。本发明的电化学元件用负极的特征在于,在由金属箔形成的集电体的至少单面具有负极合剂层,上述负极合剂层含有含Si材料S和难石墨化碳材料作为负极活性物质,在将上述负极合剂层所含的负极活性物质的总量设为100质量%时,上述材料S的比例为50~90质量%,上述难石墨化碳材料的比例为10~50质量%。本发明的锂离子二次电池具有正极、负极、隔膜和非水电解液,其特征在于,将本发明的电化学元件用负极作为上述负极来构成。

Description

电化学元件用负极和锂离子二次电池
技术领域
本发明涉及能够抑制伴随充放电的膨胀发生且充放电循环特性优异的锂离子二次电池以及能够构成上述锂离子二次电池的电化学元件用负极。
背景技术
锂离子二次电池由于为高电压、高容量,因此对其发展寄予了较大的期待。鉴于这样的缘故,对于参与电池反应的正极活性物质和负极活性物质、非水电解液、正极和负极中使用的粘合剂等在锂离子二次电池中使用的各种材料,进行了改良。
最近,对于小型化和多功能化的便携设备用的锂离子二次电池,期望进一步高容量化,针对于此,也研究了将负极活性物质从目前广泛使用的石墨变更为像低结晶性碳、Si(硅)、Sn(锡)等这样能够容纳更多Li(锂)的材料(以下也称为“高容量负极材料”。
然而,高容量负极材料一般伴随充放电的体积变化量非常大,因此,在使用其的电池中,会有因反复充放电而使负极大幅变形,产生膨胀,或者电池特性急剧下降的担忧。
鉴于此,对于使用高容量负极材料的锂离子二次电池等非水二次电池,还研究了因高容量负极材料伴随充放电的体积变化而产生的问题的解决技术。例如,专利文献1中提出了如下技术:通过在含有高容量负极活性物质的层的表面设置含有不与Li反应的绝缘性材料的层,或者在含有高容量负极活性物质的层的粘合剂中使用聚酰亚胺、聚酰胺酰亚胺、聚酰胺,并且使用具有特定物性值的负极集电体,从而抑制反复充放电时的电池容量下降、膨胀产生。
此外,专利文献2、3中提出了如下技术:通过将石墨、难石墨化碳与作为高容量负极材料的SiOx等在构成元素中含有Si和O的材料一起用作负极活性物质,从而在减少负极中的SiOx比率的同时,尽可能地抑制由此导致的负极容量下降,实现电池的高容量化和电池的充放电循环特性提高。但另一方面,专利文献2、3中记载的技术中,就全部负极活性物质中的高容量负极材料的比率受到很大限制这一点而言,仍有改进的余地。
现有技术文献
专利文献
专利文献1:国际公开第2010/050507号
专利文献2:日本特开2010-212228号公报
专利文献3:国际公开第2016/152877号
发明内容
发明要解决的课题
本发明鉴于上述情况而完成,其目的在于,提供一种能够抑制伴随充放电的膨胀发生且充放电循环特性优异的锂离子二次电池以及能够构成上述锂离子二次电池的电化学元件用负极。
解决课题的方法
本发明的电化学元件用负极的特征在于,在由金属箔形成的集电体的至少单面具有负极合剂层,上述负极合剂层含有含Si材料S和难石墨化碳材料作为负极活性物质,将上述负极合剂层所含的负极活性物质的总量设为100质量%时,上述材料S的比例为50~90质量%,上述难石墨化碳材料的比例为10~50质量%。
此外,本发明的锂离子二次电池的特征在于,具有正极、负极、隔膜和非水电解液,将本发明的电化学元件用负极作为上述负极来构成。
发明效果
根据本发明,能够抑制伴随充放电的膨胀发生且充放电循环特性优异的锂离子二次电池以及能够构成上述锂离子二次电池的电化学元件用负极。
附图说明
[图1]是示意性表示本发明的锂离子二次电池涉及的正极的一例的平面图。
[图2]是示意性表示本发明的锂离子二次电池涉及的负极的一例的平面图。
[图3]是示意性表示本发明的锂离子二次电池的一例的平面图。
[图4]是图3的I-I截面图。
[图5]是示意性表示本发明的锂离子二次电池中能够使用的第三电极的一例的立体图。
[图6]是表示将正极和负极隔着隔膜层叠而成的层叠电极体与图5所示的第三电极进行组合的状态的立体图。
[图7]是示意性表示本发明的锂离子二次电池涉及的电极体的一例的立体图。
具体实施方式
本发明的电化学元件用负极(以下,有时简称为“负极”)在由金属箔形成的集电体的单面或双面具有负极合剂层。而且,该负极合剂层含有含Si材料S和难石墨化碳材料作为负极活性物质,将上述负极合剂层所含的负极活性物质的总量设为100质量%时,上述材料S的比例为50质量%以上90质量%以下,上述难石墨化碳材料的比例为10质量%以上50质量%以下。
材料S是所谓的高容量负极材料,通过将其用作负极活性物质,能够提高负极容量,能够实现使用该负极的锂离子二次电池等电化学元件的高容量化。
但是,在对使用材料S的锂离子二次电池等电化学元件进行充放电时,其体积变化量大,因此,会使负极膨胀而导致电化学元件膨胀,此外,还会引起因反复充放电导致的电化学元件的容量下降。
在此,本发明的负极中,将难石墨化碳材料以在负极活性物质总量中为10质量%以上50质量%以下的比例与材料S一起用作负极活性物质。这种情况下,即使将负极活性物质总量中材料S的比例设为50质量%以上,也能够减小电化学元件充放电时的负极变形量而抑制电化学元件的膨胀,此外,还能提高电化学元件的充放电循环特性。
因此,使用本发明的负极而构成的本发明的锂离子二次电池能够在实现高容量化的同时抑制电池的膨胀,并且能够确保良好的充放电循环特性。
本发明的负极中,作为用作负极活性物质的材料S,可列举Si单质、含Si化合物、含Si复合体等。
材料S中,作为含Si化合物,可列举与Si之外的金属(例如,Mg、Cu、Ca等)的合金等。
材料S中,作为含Si复合体,可列举构成元素中含有Si和O但构成元素中不含Li的材料,例如,由组成式SiOx(0.5≤x≤1.5)表示的材料等。此外,Si单质、含Si化合物、含Si复合体中,也可列举未与碳材料复合化的材料(有时将其统称为“Si成分材料”)、与碳材料的复合体作为含Si复合体的例子。
SiOx可以含有Si的微晶或非晶质相,这种情况下,Si和O的原子比是包括Si的微晶或非晶质相的Si在内的比率。即,SiOx中包括在非晶质SiO2基体中分散有Si(例如,微晶Si)的结构的SiOx,该非晶质SiO2与分散在其中的Si加在一起,只要满足上述原子比x为0.5≤x≤1.5即可。例如,在非晶质SiO2基体中分散有Si的结构中SiO2与Si的摩尔比为1:1的材料时,因x=1,从而作为结构式表示为SiO。在这样结构的材料时,例如,X射线衍射分析中有时会观察不到因Si(微晶Si)的存在而产生的峰,但如果通过透射电子显微镜进行观察,则能够确认存在微细的Si。
材料S优选为SiOx等Si成分材料与碳材料的复合体。作为Si成分材料与碳材料的复合体,可例示由碳材料被覆Si成分材料粒子的表面并进行复合化而成的复合体、通过使Si成分材料和碳材料造粒而进行复合化所得的复合体等。材料S只要是Si成分材料与碳材料的复合体,就能够在负极中良好地形成导电网络。
例如,在将未与碳材料复合化的Si成分材料用作材料S时,减小负极活性物质总量中材料S的比例时,与作为其他导电性材料(作为负极活性物质与材料S一同使用的难石墨性碳材料、石墨,作为导电助剂使用的导电性材料等)的接触点易于增多,因而更容易在负极中形成导电网络。但是,在将Si成分材料与碳材料的复合体用作材料S时,即使未与上述其他导电性材料接触,通过上述复合体彼此的接触也会形成导电网络,因而即使提高负极活性物质总量中的材料S(Si成分材料与碳材料的复合体)的比例,也能容易地在负极中形成导电网络。
作为可用于形成包含Si成分材料与碳材料的复合体的材料S的碳材料,可列举例如低结晶性碳、碳纳米管、气相生长碳纤维等作为优选材料。
作为具体的碳材料,优选为从由纤维状或线圈状的碳材料、炭黑(包括乙炔黑、科琴黑)、人造石墨、易石墨化碳和难石墨化碳组成的组中选择的至少1种材料。纤维状或线圈状的碳材料在易于形成导电网络且表面积大这一点上优选。炭黑(包括乙炔黑、科琴黑)、易石墨化碳和难石墨化碳具有高导电性、高保液性,进而具有即使因电池的充放电而使材料S的粒子膨胀、收缩也易于保持与该粒子的接触的性质,因这一点而优选。
在材料S为Si成分材料与碳材料的复合体时,材料S中的Si成分材料与碳材料的比率为,相对于100质量份Si成分材料,碳材料优选为3质量份以上,更优选为5质量份以上,进一步优选为7质量份以上,此外,优选为20质量份以下,更优选为17质量份以下。理由虽未确定,但在掺杂Li离子时,通过将上述复合体中的碳材料的比率如上所述进行调整,能更加提高电池的充放电循环特性。
作为Si成分材料与碳材料的复合体的料S可以通过例如如下方法来获得。
在用碳材料被覆Si成分材料的表面而制成复合体时,例如,将Si成分材料(例如上述SiOx)的粒子与烃系气体在气相中加热,使因烃系气体热分解而产生的碳堆积在粒子表面上。这样,根据气相生长(CVD)法,能够使烃系气体遍及至材料S的粒子的各处,在粒子表面形成包含具有导电性的碳材料的薄且均匀的皮膜(碳材料被覆层),从而通过少量碳材料即可对材料S的粒子均匀性良好地赋予导电性。
在由碳材料被覆的材料S的制造中,对于CVD法的处理温度(气氛温度),虽因烃系气体的种类不同而不同,但通常适合为600~1200℃,其中,优选为700℃以上,进一步优选为800℃以上。这是因为,处理温度高时,能形成杂质的残存少且含有导电性高的碳的被覆层。
作为烃系气体的液体源,可以使用甲苯、苯、二甲苯、均三甲苯等,特别优选易于操作的甲苯。通过使它们气化(例如,用氮气进行鼓泡),能够得到烃系气体。此外,也可以使用甲烷气体、乙炔气体等。
如果材料S的平均粒径过小,则材料S的分散性下降,有不能充分得到本发明的效果的担忧,由于材料S伴随电池充放电的体积变化大,因此如果平均粒径过大,则容易因膨胀/收缩而产生材料S的崩坏(该现象会导致材料S的容量劣化),因此优选为0.1μm以上10μm以下。
作为负极活性物质而使用的难石墨化碳材料(硬碳),可列举通过将糠醇树脂(PFA)、聚对苯撑(PPP)和酚醛树脂进行低温烧成而得到的非晶质碳等。
难石墨化碳材料在X射线衍射中的d002优选为0.34~0.42nm。d002满足上述值的难石墨化碳材料与广泛用于锂离子二次电池的负极活性物质的石墨相比,接受Li离子的速率尤其快。因此,在由在负极活性物质中使用这样的难石墨化碳材料的负极构成电化学元件时,即使以大电流充电,单位时间内Li离子从正极的放出量增大,也能抑制Li离子在负极附近停滞,从而抑制Li枝晶的析出,能够抑制例如快速充电时容量的下降、短路的发生。
负极活性物质中也可以仅使用材料S和难石墨化碳材料,也可以进一步使用其他负极活性物质。作为这样的其他负极活性物质,可列举石墨、热分解碳类、焦炭类、玻璃状碳类、有机高分子化合物的烧成体、中碳微珠、碳纤维、活性炭等碳材料;Sn的单质;含Sn合金;含Sn氧化物等。其中,优选石墨。
从提高使用负极的锂离子二次电池等电化学元件的容量的观点出发,将负极合剂层所含的负极活性物质的总量设为100质量%时,材料S的比例为50质量%以上,优选为60质量%以上。进而,从负极中含有能够良好确保上述效果(抑制电化学元件的膨胀、提高充放电循环特性的效果)的量的难石墨化碳材料的观点出发,将负极合剂层所含的负极活性物质的总量设为100质量%时,材料S的比例为90质量%以下,优选为80质量%以下。
此外,从良好确保上述效果(抑制电化学元件的膨胀、提高充放电循环特性的效果)的观点出发,将负极合剂层所含的负极活性物质的总量设为100质量%时,难石墨化碳材料的比例为10质量%以上,优选为20质量%以上。进而,例如从抑制因材料S的量变少而导致高容量化的效果变小的观点出发,将负极合剂层所含的负极活性物质的总量设为100质量%时,难石墨化碳材料的比例为50质量%以下,优选为40质量%以下。
需说明的是,作为Si成分材料与碳材料的复合体的材料S中的上述碳材料为难石墨化碳材料时,负极合剂层所含的负极活性物质的总量中材料S的比例中也包括复合体中难石墨化碳材料的量。即,负极合剂层所含的负极活性物质的总量中的难石墨化碳材料的比例中,不包括构成作为材料S的复合体的难石墨化碳材料的量。
负极合剂层涉及的粘合剂可以使用聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、苯乙烯丁二烯橡胶(SBR)、羧甲基纤维素(CMC)、聚酰亚胺、聚酰胺、聚酰胺酰亚胺等,优选使用具有由下述式(1)表示的单元和由下述式(2)表示的单元的共聚物(以下称为“共聚物(A)”)。
[化1]
Figure BDA0002668849390000071
[化2]
Figure BDA0002668849390000072
上述式(2)中,R为氢或甲基,M’为碱金属元素。
上述共聚物(A)与作为例如锂离子二次电池的负极合剂层的粘合剂而广泛使用的SBR等相比,粘结力强,此外,柔软性也优异。因此,即使在负极活性物质中使用材料S这样的高容量负极材料时,也能良好地抑制负极活性物质从负极合剂层脱落、负极合剂层与集电体剥离。
此外,在对负极的预掺杂中使用的Li会与水分反应而形成氢氧化锂,或者锂离子二次电池的非水电解液中广泛使用的电解质盐所含的F与水分会形成氟化氢,这些有时也会引起负极合剂层的粘合剂劣化,但共聚物(A)对于这些的耐性高,不易发生劣化。
因此,在负极合剂层的粘合剂中使用共聚物(A)时,负极不易发生劣化,因而锂离子二次电池的充放电循环特性更加提高。
进而,通过在负极合剂层的粘合剂中使用共聚物(A),电池的负荷特性也提高。认为这有可能是因为在粘合剂中使用了共聚物(A)的负极合剂层中,在内部形成了使非水电解液良好浸透那样的结构。此外,通过在粘合剂中使用共聚物(A),还能高度抑制有伴随电池使用而产生的担忧的在负极表面的Li析出。
具有由上述式(1)表示的单元和由上述式(2)表示的单元的共聚物(A)可以通过将乙烯酯与丙烯酸酯和甲基丙烯酸酯中的至少一者作为单体进行共聚而得到的共聚物进行皂化来得到。
作为用于得到共聚物(A)的上述乙烯酯,可列举乙酸乙烯酯、丙酸乙烯酯、新戊酸乙烯酯等,可以使用其中的1种或2种以上。这些乙烯酯中,更优选乙酸乙烯酯。
此外,用于得到共聚物(A)的乙烯酯与丙烯酸酯和甲基丙烯酸酯中的至少一者的共聚物还可以具有来自除乙烯酯、丙烯酸酯和甲基丙烯酸酯以外的单体的单元。
乙烯酯与丙烯酸酯和甲基丙烯酸酯中的至少一者的共聚物例如可以在含有聚合催化剂和分散剂的水溶液中通过在使这些单体悬浮的状态下进行聚合的悬浮聚合法来进行聚合。这时的聚合催化剂可以使用:过氧化苯甲酰、过氧化月桂酰等有机过氧化物;偶氮二异丁腈,偶氮双二甲基戊腈等偶氮化合物等。此外,悬浮聚合时的分散剂可以使用水溶性高分子(聚乙烯醇、聚(甲基)丙烯酸或其盐、聚乙烯吡咯烷酮、甲基纤维素、羧甲基纤维素、羟乙基纤维素、羟丙基纤维素等)、无机化合物(磷酸钙、硅酸镁等)等。
进行悬浮聚合时的温度只要相对于聚合催化剂的10小时半衰期温度设为-20~+20℃程度即可,聚合时间只要设为数小时~数十小时即可。
乙烯酯与丙烯酸酯和甲基丙烯酸酯中的至少一者的共聚物的皂化,可以使用含有碱金属的碱(氢氧化钠、氢氧化钾、氢氧化锂等)在水性有机溶剂和水的混合溶剂中进行。通过该皂化,来自乙烯酯的单元成为在共聚物的主链上直接结合羟基的单元(即,由上述式(1)表示的单元),来自丙烯酸酯和甲基丙烯酸酯中的至少一个单体的单元成为在共聚物的主链上直接结合羧基的碱金属盐(基)的单元(即,由上述式(2)表示的单元)。因此,上述式(2)中的M’可列举钠、钾、锂等。
作为皂化中所使用的水性有机溶剂,可列举低级醇(甲醇、乙醇等)、酮类(丙酮、甲乙酮)等)等。水性有机溶剂与水的使用比率以质量比计优选为3/7~8/2。
皂化时的温度只要设为20~60℃即可,皂化时的时间只要设为数小时程度即可。
皂化后的共聚物只要从反应液中取出、洗净后干燥即可。
经过上述皂化得到的共聚物(A)所具有的由上述式(1)表示的单元具有乙烯醇的不饱和键打开而进行聚合所得的结构,此外,由上述(2)表示的单元具有丙烯酸盐、甲基丙烯酸盐(以下,将二者合称为“(甲基)丙烯酸盐”,将丙烯酸和甲基丙烯酸合称为“(甲基)丙烯酸”)的不饱和键打开而进行聚合所得的结构。因此,共聚物(A)即使不是通过在单体中使用乙烯醇、(甲基)丙烯酸盐并将它们共聚而得到的共聚物,为了方便起见,有时也被称为“乙烯醇与(甲基)丙烯酸盐((甲基)丙烯酸的碱金属中和物)的共聚物”。
共聚物(A)中,由上述式(1)表示的单元和由上述式(2)表示的单元的组成比,在将这些单元的合计设为100mol%时,由上述式(1)表示的单元的比例优选为5mol%以上,更优选为50mol%以上,进一步优选为60mol%以上,此外,优选为95mol%以下,更优选为90mol%以下。即,将由上述式(1)表示的单元和由上述式(2)表示的单元的合计设为100mol%时,由上述式(2)表示的单元的比例优选为5mol%以上,更优选为10mol%以上,此外,优选为95mol%以下,更优选为50mol%以下,进一步优选为40mol%以下。
关于负极合剂层中的共聚物(A)的含量,从良好地确保其使用效果(提高电池的负荷特性的效果和抑制负极活性物质脱落、负极合剂层与集电体剥离的效果)的观点出发,优选为2质量%以上,更优选为5质量%以上。但是,如果负极合剂层中的共聚物(A)的量过多,则难以将负极合剂层的密度调整为后述的值,此外,有电池容量、负荷特性降低的担忧。因此,负极合剂层中的共聚物(A)的含量优选为15质量%以下,更优选为10质量%以下。
负极合剂层中,也可以与共聚物(A)一起使用通常的锂离子二次电池的负极涉及的负极合剂层所使用的粘合剂,例如SBR、CMC、聚偏二氟乙烯(PVDF)等。其中,负极合剂层所含有的粘合剂总量中除共聚物(A)以外的粘合剂的含量优选为50质量%以下。
负极合剂层中,根据需要,还可以含有导电助剂。作为负极合剂层所含的导电助剂,优选使用乙炔黑、科琴黑、槽法炭黑、炉黑、灯黑、热裂法炭黑等炭黑类、碳纤维等碳材料,此外,也可以使用金属纤维等导电性纤维类、氟化碳、铝等金属粉末类、氧化锌、钛酸钾等导电性晶须类、氧化钛等导电性金属氧化物、聚苯撑衍生物等有机导电性材料等。导电助剂可以单独使用上述例示中的1种,也可以并用2种以上。
在负极合剂层中含有导电助剂时,负极合剂层中的导电助剂的含量优选为10质量%以下。
负极例如可以经过如下工序来制造:使含有负极活性物质和粘合剂以及根据需要的导电助剂等的负极合剂分散在N-甲基-2-吡咯烷酮(NMP)、水等溶剂中,调制成糊剂状、浆料状的含有负极合剂的组合物(其中,粘合剂也可以溶解于溶剂中),将其涂布于集电体的单面或双面,进行干燥后根据需要实施轧光处理等压制处理。但是,负极不限于通过上述方法来制造,也可以通过其他方法来制造。
负极的集电体可以使用铜制、镍制的箔等金属箔,但通常使用铜箔。为了得到高能量密度的电池而使负极整体的厚度变薄时,该负极集电体的厚度的上限优选为30μm,为了确保机械强度,下限希望是5μm。
此外,根据需要,负极中还可以按照常规方法形成用于与锂离子二次电池内的其他部件电连接的引线体。
负极合剂层的厚度(在集电体的双面具有负极合剂层时为每一单面的厚度)优选为10~100μm。
需说明的是,在负极中,优选在负极合剂层所含的负极活性物质的至少一部分(尤其是材料S)中掺杂Li离子。
在使用材料S这样的高容量负极材料来构成的电化学元件中,一般而言,因充电而从正极放出的Li中进入到高容量负极材料并在下一次放电时不放出而残留的Li的比例较大,会有不能充分得到电化学元件本来具有的容量的担忧。但是,通过在负极活性物质中预先掺杂(预掺杂)Li离子,能够提高充放电时能够在正极与负极之间往来的Li的比例而降低电化学元件的不可逆容量,因此能够形成更高容量的电化学元件。
为了在负极活性物质中掺杂Li离子,还有在锂离子二次电池等电化学元件内进行的方法(体系内预掺杂),但为了在组装入锂离子二次电池等电化学元件之前的负极所涉及的负极活性物质中掺杂Li离子,可以采用例如如下的体系外预掺杂(i)或(ii)。
体系外预掺杂法(i)
使用未掺杂Li离子的负极活性物质而制造负极,使用该负极,在该负极活性物质中掺杂Li离子。
在体系外预掺杂法(i)中,在负极的负极合剂层中的负极活性物质中掺杂Li离子,例如可以通过在使联苯、多环芳香族化合物(蒽、萘等)、对苯醌、金属Li等溶解于四氢呋喃、乙醚等溶剂中而得的溶液中浸渍负极,然后用溶剂洗净并干燥来实施(以下,称为体系外预掺杂法(i-1))。这时的Li离子的掺杂量,可以通过调整上述溶液中的各成分量等来控制,例如,只要调节至后述的摩尔比Li/M满足后述的合适值即可。
此外,在体系外预掺杂法(i)中,通过将负极(工作电极)和锂金属箔(对电极。包括锂合金箔)浸渍于非水电解液中,在二者之间通电的方法,也能够在负极合剂层中的负极活性物质中掺杂Li离子(以下,称为体系外预掺杂法(i-2))。非水电解液可以使用与锂离子二次电池用的非水电解液(详见后文)相同的非水电解液。这时的Li离子的掺杂量可以通过调整负极(负极合剂层)的单位面积的电流密度、通电的电量来控制,例如,只要调节至后述的摩尔比Li/M满足后述的合适值即可。
体系外预掺杂法(ii)
在未掺杂Li离子的负极活性物质中直接掺杂Li离子。这时,在体系外预掺杂法(i-1)的说明中预先记载的浸渍负极的上述溶液中,通过替代负极而浸渍负极活性物质(Li离子掺杂前的负极活性物质),能够在负极活性物质中掺杂Li离子。
在采用该体系外预掺杂法(ii)时,通过使用由此得到的负极活性物质(掺杂有Li离子的负极活性物质)并按照上述方法等制造负极,能够得到含有掺杂有Li离子的负极活性物质的负极。需说明的是,这时,在负极制造中所使用的负极活性物质中,其一部分或全部可以使用通过体系外预掺杂法(ii)掺杂有Li离子的负极活性物质。负极的制造中所使用的负极活性物质中通过体系外预掺杂法(ii)掺杂有Li离子的负极活性物质的比例、负极活性物质中的Li离子掺杂量,例如只要调节至后述的摩尔比Li/M满足后述的合适值即可。
通过体系外预掺杂法(ii)来掺杂Li离子的负极活性物质希望Li离子的接受量大且不可逆容量大,优选在材料S(尤其是上述SiOx)中掺杂Li离子。
本发明的负极,如上所述,可以用作锂离子二次电池、超级电容等具有非水电解液且可反复进行充放电的电化学元件的负极,但其特别主要的用途是锂离子二次电池。
使用本发明的负极的锂离子二次电池(本发明的锂离子二次电池)具有上述负极、正极、隔膜和非水电解液。
锂离子二次电池涉及的正极具有含有正极活性物质和粘合剂的正极合剂层,例如,可列举具有在集电体的单面或双面形成有该正极合剂层的结构的正极、由正极合剂层构成的正极(正极合剂成型体)。
正极活性物质可以使用由Li和除Li以外的金属M(Co、Ni、Mn、Fe、Mg、Al等)构成的金属氧化物(含锂复合氧化物)。作为这样的含锂复合氧化物,可列举例如LiCoO2等锂钴氧化物,LiMnO2、Li2MnO3等锂锰氧化物,LiNiO2等锂镍氧化物,LiCo1-xNiO2等层状结构的含锂复合氧化物,LiMn2O4、Li4/3Ti5/3O4等尖晶石结构的含锂复合氧化物,LiFePO4等橄榄石结构的含锂复合氧化物,以上述氧化物为基本组成且由各种元素置换后的氧化物等。
这样的正极活性物质中,优选至少含有Co以及从由Mg、Zr、Ni、Mn、Ti和Al组成的组中选择的至少1种元素M1的锂钴氧化物(钴酸锂)。而且,正极合剂层更优选含有这样的钴酸锂粒子的表面被含Al氧化物被覆而成的正极材料。在使用上述正极材料时,由于能够增大电池充电时正极中的电阻,因而不易引起Li在负极析出,因此即使增大负极合剂层中材料S的比例,也能更加提高锂离子二次电池的充放电循环特性。
在将Co以及从由Mg、Zr、Ni、Mn、Ti和Al组成的组中选择的至少1种元素M1以及可进一步含有的其他元素总称为元素组Ma时,上述钴酸锂可以由组成式LiMaO2来表示。
上述钴酸锂中,元素M1具有提高上述钴酸锂在高电压区域的稳定性、抑制Co离子溶出的作用,此外,还具有提高上述钴酸锂的热稳定性的作用。
对于上述钴酸锂中的元素M1的量,从更有效发挥上述作用的观点出发,与Co的原子比M1/Co优选为0.003以上,更优选为0.008以上。
但是,如果上述钴酸锂中元素M1的量过多,则Co的量变得过少,有不能充分确保它们所发挥的作用的担忧。因此,对于上述钴酸锂中元素M1的量,与Co的原子比M1/Co优选为0.06以下,更优选为0.03以下。
上述钴酸锂中,Zr具有如下作用:吸附因非水电解液中所含的含氟锂盐(LiPF6等)而可能产生的氟化氢,抑制钴酸锂劣化。
如果锂离子二次电池中使用的非水电解液中不可避免地混入了若干水分、或水分吸附于其他电池材料,则会与非水电解液所含的含氟锂盐反应,生成氟化氢。若在电池内生成氟化氢,则因其作用会引起正极活性物质的劣化。
但是,如果以还含有Zr的方式合成上述钴酸锂,则Zr氧化物会在该粒子表面析出,该Zr氧化物会吸附氟化氢。因此,能够抑制因氟化氢导致的上述钴酸锂的劣化。
需说明的是,如果正极活性物质中含有Zr,则电池的负荷特性会提高。正极材料所含的上述钴酸锂是平均粒径不同的2种材料的情况下,将平均粒径大的设为钴酸锂(A),平均粒径小的设为钴酸锂(B)。一般而言,如果使用粒径大的正极活性物质,则会有电池的负荷特性下降的倾向。因此,在构成上述正极材料的正极活性物质中,优选在平均粒径更大的钴酸锂(A)中含有Zr。另一方面,钴酸锂(B)可以含有Zr,也可以不含有Zr。
对于上述钴酸锂中的Zr的量,从更良好地发挥上述作用的观点出发,与Co的原子比Zr/Co优选为0.0002以上,更优选为0.0003以上。但是,如果上述钴酸锂中的Zr的量过多,则其他元素的量会变少,会有不能充分确保它们的作用的担忧。因此,关于上述钴酸锂中的Zr的量,与Co的原子比Zr/Co优选为0.005以下,更优选为0.001以下。
上述钴酸锂可以通过将含Li化合物(氢氧化锂、碳酸锂等)、含Co化合物(氧化钴、硫酸钴等)以及含Mg化合物(硫酸镁等)、含Zr化合物(氧化锆等)等含有元素M1的化合物(氧化物、氢氧化物、硫酸盐等)混合并对该原料混合物进行烧成等来合成。需说明的是,为了以更高纯度合成上述钴酸锂,优选将含有Co和元素M1的复合化合物(氢氧化物、氧化物等)与含Li化合物等混合并对该原料混合物进行烧成。
用于合成上述钴酸锂的原料混合物的烧成条件例如可以设为800~1050℃、1~24小时,但优选暂时加热至比烧成温度低的温度(例如,250~850℃),并在该温度保持从而进行预加热,然后再升温至烧成温度来进行反应。对于预加热的时间没有特别限定,通常只要设为0.5~30小时程度即可。此外,烧成时的气氛可以设为含氧气氛(即,大气中)、非活性气体(氩、氦、氮等)与氧气的混合气氛、氧气气氛等,但此时的氧浓度(体积基准)优选为15%以上,优选为18%以上。
上述正极材料中,上述钴酸锂粒子的表面被含Al氧化物被覆(例如,上述钴酸锂粒子的表面的全部面积中的90~100%以上存在含Al氧化物)。作为被覆上述钴酸锂粒子表面的含Al氧化物,可列举Al2O3、AlOOH、LiAlO2、LiCo1-wAlwO2(其中,0.5<w<1)等,可以仅使用这些中的1种,也可以并用2种以上。需说明的是,例如在通过后述方法在上述钴酸锂的表面被覆Al2O3时,Al2O3中形成混合存在一部分含有从上述钴酸锂转移的Co、Li、Al等元素的含Al氧化物的被膜,但由覆盖构成上述正极材料的上述钴酸锂表面的含Al氧化物形成的被膜也可以是含有这样的成分的被膜。
从含Al氧化物阻碍上述正极材料涉及的电池充放电时的正极活性物质中锂离子的出入而使电阻增加,抑制负极中的Li析出而使电池的充放电循环特性更加提高的观点,以及良好地抑制上述正极材料涉及的正极活性物质与非水电解液的反应的观点出发,上述正极材料涉及的含Al氧化物的平均被覆厚度优选为5nm以上,更优选为15nm以上。此外,从抑制因含Al氧化物阻碍电池充放电时正极活性物质中锂离子的出入而导致的电池负荷特性降低的观点出发,上述正极材料涉及的含Al氧化物的平均被覆厚度优选为50nm以下,更优选为35nm以下。
本说明书中所说的“含Al氧化物的平均被覆厚度”是指,使用透射电子显微镜以40万倍的倍率观察通过聚焦离子束法进行加工而得到的正极材料的截面,对于在500×500nm的视野内存在的正极材料粒子中截面大小为正极材料的平均粒径(d50)±5μm以内的粒子,任意选择10个视野,对于各个视野,分别在任意的10处测定含Al氧化物的被膜的厚度,对于全部视野中得到的全部厚度(100处的厚度),算出的平均值(数均值)。
上述正极材料的比表面积优选为0.1m2/g以上,更优选为0.2m2/g以上,此外,优选为0.4m2/g以下,更优选为0.3m2/g以下。正极材料的比表面积处于上述值时,能够更加提高电池充放电时的电阻,因而电池的充放电循环特性变得更加良好。
需说明的是,在由含Al氧化物被覆构成上述正极材料的上述钴酸锂的表面、或者在上述钴酸锂粒子表面析出Zr氧化物的情形下,通常,正极材料的表面会变粗糙,比表面积增大。因此,上述正极材料设为较大的粒径而且被覆上述钴酸锂粒子表面的含Al氧化物的被膜的性状良好时,易于成为上述那样的较小比表面积,因而优选。
对于上述正极材料所含的上述钴酸锂,可以是1种,也可以是上述那样平均粒径不同的2种材料,还可以是平均粒径不同的3种以上的材料。
为了将上述正极材料的比表面积调整为上述值而使用1种上述钴酸锂时,上述正极材料的平均粒径优选为10~35μm。
在上述正极材料所含的上述钴酸锂使用平均粒径不同的2种材料时,优选至少含有:钴酸锂(A)的粒子表面由含Al氧化物被覆而成且平均粒径为1~40μm的正极材料(a);以及钴酸锂(B)的粒子表面由含Al氧化物被覆而成、平均粒径为1~40μm且平均粒径比正极材料(a)小的正极材料(b)。进一步优选为由平均粒径为24~30μm的大粒子(正极材料(a))和平均粒径为4~8μm的小粒子(正极材料(b))构成的方式。而且,在正极材料包含正极材料(a)和正极材料(b)时,正极材料总量中的正极材料(a)的比例优选为75~90质量%。由此,不仅能调整比表面积,还能在正极合剂层的压制处理中,使小粒径的正极材料进入大粒径的正极材料的间隙,从而使对正极合剂层施加的应力分散至整体,良好地抑制正极材料粒子的破裂,更加良好地发挥因含Al氧化物的被覆所产生的作用。
本说明书中所说的正极材料的粒度分布是指使用日机装株式会社制造的Microtrac粒度分布测定装置“HRA9320”,通过从粒度分布小的粒子开始求出积分体积的方法而得到的粒度分布。此外,本说明书中的正极材料、其他粒子(上述材料S等)的平均粒径是指:使用上述装置,从粒度分布小的粒子开始求出积分体积时的体积基准的累积分率中的50%直径的值(d50)。
为了由含Al氧化物被覆上述钴酸锂粒子表面而形成上述正极材料,可以采用例如如下的方法。在pH为9~11、温度为60~80℃的氢氧化锂水溶液中,投入上述钴酸锂粒子并搅拌使其分散,在其中滴入Al(NO3)3·9H2O和用于抑制pH变动的氨水,生成Al(OH)3共沉淀物,使其附着于上述钴酸锂粒子的表面。然后,从该反应液中取出附着有Al(OH)3共沉淀物的上述钴酸锂粒子,洗净后干燥,然后进行热处理,在上述钴酸锂粒子的表面形成含Al氧化物的被膜,得到上述正极材料。附着有Al(OH)3共沉淀物的上述钴酸锂粒子的热处理优选在大气气氛中进行,此外,优选热处理温度为200~800℃、热处理时间为5~15小时。在通过该方法对上述钴酸锂粒子的表面用含Al氧化物进行被覆时,通过调整上述热处理温度,能够使构成被膜的主成分即含Al氧化物为Al2O3、或AlOOH、或LiAlO2、或LiCo1-wAlwO2(其中,0.5<w<1)。
在使用上述正极材料和其他正极活性物质时,从在电池的连续充电特性更加提高的同时不损害由上述正极材料形成的锂离子二次电池在高温下的充放电循环特性、储存特性出发,作为上述其他正极活性物质,优选使用含有Ni和Co以及从由Mg、Mn、Ba、W、Ti、Zr、Mo和Al组成的组中选择的元素M2的镍酸锂。
在将Ni、Co和元素M2以及可进一步含有的其他元素统设为元素组Mb时,上述镍酸锂由化学式LiMbO2表示,在元素组M2的总原子数100mol%中的Ni、Co和元素M2的量分别由s(mol%)、t(mol%)和u(mol%)表示时,优选为30≤s≤97、0.5≤t≤40、0.5≤u≤40,更优选为70≤s≤97、0.5≤t≤30、0.5≤u≤5。
上述镍酸锂可以通过将含Li化合物(氢氧化锂、碳酸锂等)、含Ni化合物(硫酸镍等)、含Co化合物(硫酸钴、氧化钴等)和根据需要的含有元素Mb的化合物(氧化物、氢氧化物、硫酸盐等)混合并将该原料混合物进行烧成等来制造。需说明的是,为了以更高纯度合成上述镍酸锂,优选将含有Ni、Co和根据需要含有的元素Mb中的多种元素的复合化合物(氢氧化物、氧化物等)与其他原料化合物(含Li化合物等)混合并将该原料混合物进行烧成。
用于合成上述镍酸锂的原料混合物的烧成条件也与上述钴酸锂的情形同样,可以设为例如800~1050℃、1~24小时,但优选加热至比临时烧成温度低的温度(例如,250~850℃),并在该温度保持从而进行预加热,然后再升温至烧成温度来进行反应。对于预加热的时间没有特别限定,通常只要为0.5~30小时程度即可。此外,烧成时的气氛可以设为含氧气氛(即,大气中)、非活性气体(氩、氦、氮等)与氧气的混合气氛、氧气气氛等,但此时的氧浓度(体积基准)优选为15%以上,优选为18%以上。
在正极活性物质使用上述正极材料和其他正极活性物质(例如上述镍酸锂)时,上述正极材料和其他正极活性物质的合计100质量%中的上述正极材料的量优选为50质量%以上,更优选为80质量%以上(即,与上述正极材料一同使用的其他正极活性物质的量在上述正极材料和其他正极活性物质的合计100质量%中,优选为50质量%以下,更优选为20质量%以下)。需说明的是,正极活性物质可以仅使用上述正极材料,因此,上述正极材料与其他正极活性物质的合计100质量%中的上述正极材料的量的合适上限值为100质量%。但是,为了更良好地确保因使用上述镍酸锂带来的提高电池的连续充电特性的效果,上述正极材料与上述镍酸锂的合计100质量%中的上述镍酸锂的量优选为5质量%以上,更优选为10质量%以上。
作为正极合剂层涉及的导电助剂,可列举天然石墨(鳞片状石墨等)、人造石墨等石墨(石墨质碳材料),乙炔黑、科琴黑、槽法炭黑、炉黑、灯黑、热裂法炭黑等炭黑,碳纤维等碳材料等。此外,正极合剂层涉及的粘合剂可以适合使用PVDF、聚四氟乙烯(PTFE)、偏二氟乙烯-氯三氟乙烯共聚物(P(VDF-CTFE))、SBR、CMC等。
正极例如可以经过如下工序来制造:使正极活性物质(上述正极材料等)、导电助剂和粘合剂等分散于NMP等溶剂中,调制成糊剂状、浆料状的含有正极合剂的组合物(其中,粘合剂也可以溶解在溶剂中),将其涂布在集电体的单面或双面,干燥后根据需要实施轧光处理等压制处理。
但是,正极不限于由上述制造方法制造,也可以由其他方法制造。例如,在将正极制成颗粒状的正极合剂成型体时,可以通过将含有正极活性物质、导电助剂和粘合剂等的正极合剂进行压制处理并成型为颗粒状的方法来制造正极。
集电体可以使用与以往已知的锂离子二次电池的正极中所使用的集电体同样的集电体,例如可列举铝制的箔、冲孔金属、网、金属扩张网等,优选厚度为5~30μm。
作为正极合剂层、正极合剂成型体的组成,正极活性物质(包含上述正极材料)的量优选为60~95质量%,粘合剂的量优选为1~15质量%,导电助剂的量优选为3~20质量%。此外,在具有正极合剂层和集电体的形态的正极的情形下,正极合剂层的厚度(集电体的每单面的厚度)优选为30~150μm。另一方面,在由正极合剂成型体形成的正极的情形下,其厚度优选为0.15~1mm。
锂离子二次电池中,可以以将负极和正极隔着隔膜层叠而成的层叠体(层叠电极体)、将该层叠体进一步卷绕为涡旋状而成的卷绕体(卷绕电极体)等形态来使用。
隔膜优选为由聚乙烯、聚丙烯、乙烯-丙烯共聚物等聚烯烃,聚对苯二甲酸乙二醇酯、共聚聚酯等聚酯等构成的多孔质膜。需说明的是,隔膜优选具有在100~140℃时其孔闭塞的性质(即关闭功能)。因此,隔膜更优选将熔点(即,基于JIS K7121的规定,使用差示扫描量热计(DSC)测定的熔融温度)为100~140℃的热塑性树脂作为成分,优选为以聚乙烯为主成分的单层多孔质膜,或者将聚乙烯和聚丙烯层叠2~5层而成的层叠多孔质膜等以多孔质膜为构成要素的层叠多孔质膜。在将聚乙烯和聚丙烯等熔点比聚乙烯高的树脂混合或层叠使用时,作为构成多孔质膜的树脂,聚乙烯优选为30质量%以上,更优选为50质量%以上。
作为这样的树脂多孔质膜,例如,可以使用以往已知的锂离子二次电池等中使用的上述例示的由热塑性树脂构成的多孔质膜,即,通过溶剂萃取法、干式或湿式延伸法等制作的离子透过性多孔质膜。
隔膜的平均孔径优选为0.01μm以上,更优选为0.05μm以上,此外,优选为1μm以下,更优选为0.5μm以下。
作为上述隔膜,还可以使用具有以热塑性树脂为主体的多孔质膜(I)和含有耐热温度为150℃以上的填料作为主体的多孔质层(II)的层叠型隔膜。上述隔膜兼具关闭特性、耐热性(耐热收缩性)和高机械强度。此外,通过使用层叠型隔膜,电池的充放电循环特性进一步提高。其理由虽未确定,但推测的理由是:层叠型隔膜所具有的高机械强度对于伴随电池的充放电循环的负极的膨胀、收缩显示出高耐性,能够抑制隔膜的浮粉,保证负极-隔膜-正极间的密合性。
本说明书中的“耐热温度为150℃以上”是指至少在150℃时未发现软化等变形。
隔膜涉及的多孔质膜(I)主要用于确保关闭功能,在电池达到作为多孔质膜(I)的主体成分的热塑性树脂的熔点以上时,多孔质膜(I)涉及的热塑性树脂熔融而堵塞隔膜的空孔,产生抑制电化学反应进行的关闭。
作为多孔质膜(I)主体的热塑性树脂,优选熔点为140℃以下的树脂,具体而言,例如可列举聚乙烯。此外,作为多孔质膜(I)的形态,可列举作为电池用隔膜通常使用的微多孔膜、在无纺布等基材上涂布含有聚乙烯粒子的分散液并进行干燥等而获得的材料等片状物。在此,多孔质膜(I)的构成成分的总体积中(不包括空孔部分的总体积。与隔膜涉及的多孔质膜(I)和多孔质层(II)的构成成分的体积含有率相关,以下相同)中,作为主体的熔点为140℃以下的树脂的体积含有率为50体积%以上,更优选为70体积%以上。需说明的是,例如在由上述聚乙烯的微多孔膜形成多孔质膜(I)时,熔点为140℃以下的树脂的体积含有率为100体积%。
隔膜涉及的多孔质层(II)具有在电池的内部温度上升时也防止正极与负极直接接触所导致的短路的功能,通过耐热温度为150℃以上的填料而确保了该功能。即,在电池为高温时,例如即使多孔质膜(I)收缩,由于难以收缩的多孔质层(II),也能防止在隔膜热收缩的情形下可能产生的因正负极的直接接触而导致的短路。此外,由于该耐热性的多孔质层(II)作为隔膜的骨架发挥作用,因此也能抑制多孔质膜(I)的热收缩,即隔膜整体的热收缩自身。
多孔质层(II)涉及的填料只要是耐热温度为150℃以上,相对于电池所具有的非水电解液稳定,进而在电池的工作电压范围内不易氧化还原的电化学稳定的填料,就可以是无机粒子或有机粒子,从分散等方面考虑优选为微粒,此外,优选无机氧化物粒子,更具体而言,优选氧化铝、氧化硅、勃姆石。氧化铝、氧化硅、勃姆石的耐氧化性高,能够将粒径、形状调整为所希望的数值等,因此,容易精度良好地控制多孔质层(II)的空孔率。需说明的是,耐热温度为150℃以上的填料可以单独使用例如上述例示中的1种,也可以并用2种以上。
多孔质层(II)的“含有耐热温度为150℃以上的填料作为主成分”是指:在多孔质层(II)的构成成分的总体积中,含有70体积%以上的上述填料。多孔质层(II)中的上述填料的量在多孔质层(II)的构成成分的总体积中优选为80体积%以上,更优选为90体积%以上。通过使多孔质层(II)中的上述填料如上所述为高含量,能够良好地抑制隔膜整体的热收缩,赋予高耐热性。
此外,多孔质层(II)中,为了使上述填料彼此粘结、或使多孔质层(II)与多孔质膜(I)粘结,优选含有有机粘合剂,从该观点出发,多孔质层(II)中的填料(B)量的合适上限值,例如在多孔质层(II)的构成成分的总体积中为99体积%。需说明的是,如果多孔质层(II)中的填料(B)的量小于70体积%,则例如产生增加多孔质层(II)中的有机粘合剂量的需要,这种情况下,多孔质层(II)的空孔会被有机粘合剂填埋,有例如丧失作为隔膜的功能的担心。
作为在多孔质层(II)中使用的有机粘合剂,只要能够将上述填料彼此、多孔质层(II)与多孔质膜(I)良好地粘接,电化学稳定且相对于电化学元件用的非水电解液稳定,就没有特别限制。具体而言,可列举氟树脂(PVDF等)、氟系橡胶、SBR、CMC、羟乙基纤维素(HEC)、聚乙烯醇(PVA)、聚乙烯醇缩丁醛(PVB)、聚乙烯吡咯烷酮(PVP)、聚N-乙烯基乙酰胺、交联丙烯酸树脂、聚氨酯、环氧树脂等。这些有机粘合剂可以单独使用1种,也可以并用2种以上。
上述层叠型隔膜例如可以通过在多孔质膜(I)上涂布含有上述填料、有机粘合剂等和溶剂(水、酮类等有机溶剂等)的多孔质层(II)形成用组合物(浆料、糊剂等)后,在预定温度进行干燥,形成多孔质层(II)来制造。
上述层叠型隔膜可以具有各1层的多孔质膜(I)和多孔质层(II),也可以具有多层。具体而言,可以是仅在多孔质膜(I)的单面配置多孔质层(II)而制成上述层叠型隔膜,还可以例如在多孔质膜(I)的双面配置多孔质层(II)而制成上述层叠型隔膜。但是,如果上述层叠型隔膜所具有的层数过多,则会增加隔膜厚度,会有导致电池的内部电阻增大、能量密度降低的担忧,因而不优选,上述层叠型隔膜中的层数优选为5层以下。
从更确实地隔离正极和负极的观点出发,隔膜(上述层叠型隔膜和其以外的隔膜)的厚度优选为6μm以上,更优选为10μm以上。另一方面,如果隔膜过厚,则有时电池的能量密度会下降,因此,其厚度优选为50μm以下,更优选为30μm以下。
此外,多孔质膜(I)厚度(存在多个多孔质膜(I)时为其总厚度)优选为5~30μm。进而,多孔质层(II)的厚度(存在多个多孔质层(II)时为其总厚度)优选为1μm以上,更优选为2μm以上,进一步优选为4μm以上,此外,优选为20μm以下,更优选为10μm以下,进一步优选为6μm以下。
隔膜(上述层叠型隔膜和其以外的隔膜)的空孔率优选为30~70%。
此外,隔膜(上述层叠型隔膜和其以外的隔膜)优选在其单面或双面具有粘接层。在形成层叠电极体、卷绕电极体时,在利用隔膜的粘接层将隔膜和电极一体化时,即使对使用这样的电极体的电池反复充放电,也能抑制电极体的形状变化,因而电池的充放电循环特性更加提高。在使用将横截面成形为扁平状的扁平状卷绕电极体时,由上述粘接层带来的充放电循环特性的提高效果尤其显著。
隔膜的粘接层优选含有通过加热而呈现粘接性的粘接性树脂。在含有粘接性树脂的粘接层的情形下,经过在加热电极体的同时进行按压的工序(加热压制),能够将隔膜和电极一体化。粘接性树脂呈现粘接性的最低温度需要为比隔膜中粘接层以外的层实现关闭的温度低的温度,具体而言,优选为60℃以上120℃以下。此外,在隔膜为上述层叠型隔膜时,粘接性树脂呈现粘接性的最低温度需要为比作为多孔质膜(I)主成分的热塑性树脂的熔点低的温度。
通过使用这样的粘接性树脂,从而在将隔膜与正极和/或负极进行加热压制而一体化时,能够良好地抑制隔膜的劣化。
通过存在粘接性树脂,使得在构成电极体的电极(例如负极)与隔膜之间实施180°剥离试验时所得到的剥离强度在加热压制前的状态下优选为0.05N/20mm以下,尤其优选为0N/20mm(完全没有粘接力的状态),优选在60~120℃的温度进行加热压制后的状态下具有0.2N/20mm以上的迟延粘性。
但是,如果上述剥离强度过强,则会有电极的合剂层(正极合剂层和负极合剂层)从电极的集电体剥离而使导电性降低的担忧,因此,由上述180°剥离试验得到的剥离强度在60~120℃温度进行加热压制后的状态下优选为10N/20mm以下。
需说明的是,本说明书中所说的电极与隔膜之间的180°剥离强度是由以下方法测定的值。将隔膜和电极分别切出长度5cm×宽度2cm的尺寸并将切出的隔膜和电极重叠。在求取加热压制后的状态的剥离强度时,从一端开始对2cm×2cm的区域进行加热压制,制作试验片。将该试验片的未对隔膜和电极进行加热压制的一侧的端部打开,将隔膜和负极弯折以使二者的角度成为180°。然后,使用拉伸试验机,将试验片的打开为180°的隔膜的一端侧和电极的一端侧固定,以拉伸速度10mm/min进行拉伸,测定在对隔膜和电极进行了加热压制的区域中二者剥离时的强度。此外,关于将隔膜和电极加热压制前的状态下的剥离强度,将如上所述切出的各隔膜和电极重叠,不进行加热而压制,除此之外与上述同样地制作试验片,按照与上述相同的方法进行剥离试验。
由此,希望粘接性树脂在室温(例如25℃)几乎没有粘接性(粘着性),且呈现粘接性的最低温度比隔膜关闭的温度低,优选具有60℃以上120℃以下的迟延粘性。需说明的是,将隔膜和电极一体化时的加热压制的温度更优选为使隔膜不怎么产生明显热收缩的80℃以上100℃以下,粘接性树脂呈现粘接性的最低温度也更优选为80℃以上100℃以下。
作为具有迟延粘性的粘接性树脂,优选为具有如下特性的树脂:在室温几乎没有流动性而在加热时发挥流动性,并通过压制而密合。此外,也可以使用室温下为固体、经加热而熔融、通过化学反应而发挥粘接性这类树脂作为粘接性树脂。
粘接性树脂的以熔点、玻璃化转变点等作为指标的软化点优选处于60℃以上120℃以下的范围内。粘接性树脂的熔点和玻璃化转变点例如可以通过JIS K 7121中规定的方法来测定,此外,粘接性树脂的软化点例如可以通过JIS K7206中规定的方法来测定。
作为这样的粘接性树脂的具体例,可列举例如低密度聚乙烯(LDPE)、聚-α-烯烃(聚丙烯(PP)、聚1-丁烯等)、聚丙烯酸酯、乙烯-乙酸乙烯酯共聚物(EVA)、乙烯-甲基丙烯酸酯共聚物(EMA)、乙烯-丙烯酸乙酯共聚物(EEA)、乙烯-丙烯酸丁酯共聚物(EBA)、乙烯-甲基丙烯酸甲酯共聚物(EMMA)、离聚物树脂等。
此外,也可以将以上述各树脂、SBR、丁腈橡胶(NBR)、氟橡胶、乙烯-丙烯橡胶等在室温下显示粘着性的树脂作为核,以熔点、软化点处于60℃以上120℃以下范围内的树脂作为壳的核-壳结构的树脂用作粘接性树脂。这种情况下,壳中可以使用各种丙烯酸树脂、聚氨酯等。进而,粘接性树脂中,还可以使用通过单液型的聚氨酯、环氧树脂等在60℃以上120℃以下范围内显示粘接性的粘接性树脂。
粘接性树脂可以单独使用上述例示的树脂中的1种,也可以并用2种以上。
需说明的是,在形成由粘接性树脂构成的实质上不含空孔的粘接层时,会有在与隔膜一体化的电极表面难以与电池所具有的非水电解液接触的担忧,因此,在正极、负极和隔膜中的粘接性树脂的存在面上,优选形成有存在粘接性树脂的部位和不存在粘接性树脂的部位。具体而言,例如可以将存在粘接性树脂的部位和不存在粘接性树脂的部位交替地形成为槽状,此外,也可以不连续地形成有多个在平面图中为圆形等的粘接性树脂的存在部位。这些情形下,粘接性树脂的存在部位可以规则地配置,也可以无规地配置。
需说明的是,在正极、负极和隔膜中的粘接性树脂的存在面上,形成存在粘接性树脂的部位和不存在粘接性树脂的部位时,粘接性树脂的存在面上的存在粘接性树脂的部位的面积(总面积)例如只要使得在将隔膜和电极加热压接后二者的180°剥离强度为上述值即可,虽可能根据所使用的粘接性树脂的种类而改变,但具体而言,在平面图中,在粘接性树脂的存在面的面积中,优选以10~60%存在粘接性树脂。
此外,在粘接性树脂的存在面中,为了使与电极的粘接良好,例如,为了将使隔膜和电极加压粘接后二者的180°剥离强度调整为上述值,粘接性树脂的单位面积重量优选为0.05g/m2以上,更优选为0.1g/m2以上。但是,在粘接性树脂的存在面中,如果粘接性树脂的单位面积重量过大,则电极体会变得过厚,或者粘接性树脂会堵塞隔膜的空孔,有阻碍电池内部的离子移动的担忧。因此,粘接性树脂的存在面中,粘接性树脂的单位面积重量优选为1g/m2以下,更优选为0.5g/m2以下。
粘接层可以经过如下工序来形成:将含有粘接性树脂和溶剂等的粘接层形成用组合物(粘接性树脂的溶液或乳液)涂布于隔膜所使用的多孔质膜、多孔质膜(I)与多孔质层(II)的层叠体的单面或双面。
锂离子二次电池涉及的非水电解液可以使用例如通过在如下的非水系溶剂中溶解锂盐而调制的溶液。
非水系溶剂可以单独使用1种或作为混合有2种以上的混合溶剂来使用以下物质:碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(MEC)、γ-丁内酯(γ-BL),1,2-二甲氧基乙烷(DME)、四氢呋喃(THF)、2-甲基四氢呋喃、二甲基亚砜(DMSO)、1,3-二氧戊环、甲酰胺、二甲基甲酰胺(DMF)、二氧戊环、乙腈、硝基甲烷、甲酸甲酯、乙酸甲酯、磷酸三酯、三甲氧基甲烷、二氧戊环衍生物、环丁砜、3-甲基-2-
Figure BDA0002668849390000241
唑烷酮、碳酸亚丙酯衍生物、四氢呋喃衍生物、乙醚、1,3-丙烷磺内酯等非质子性有机溶剂。
作为非水电解液涉及的锂盐,例如可列举从LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiCF3CO2、Li2C2F4(SO3)2、LiN(CF3SO2)2、LiC(CF3SO2)3、LiCnF2n+1SO3(n≥2)、LiN(RfOSO2)2(这里,Rf为氟烷基)等锂盐中选择的至少1种。作为这些锂盐在非水电解液中的浓度,优选为0.6~1.8mol/l,更优选为0.9~1.6mol/l。
此外,非水电解液中,为了进一步改善电池的充放电循环特性,提高高温储存性、防止过充电等安全性,还可以适当添加碳酸亚乙烯酯、碳酸乙烯亚乙酯、酸酐、磺酸酯、二腈、1,3-丙烷磺酸内酯、二苯基二硫化物、环己基苯、联苯、氟苯、叔丁基苯等添加剂(也包括这些的衍生物)。
进而,非水电解液中,还可以使用通过添加聚合物等公知的凝胶化剂而进行了凝胶化的非水电解液(凝胶状电解质)。
对于锂离子二次电池的形态,没有特别限定。例如,可以为小型的圆筒型、硬币形、纽扣形、扁平形、方形、用于电动汽车等的大型电池等的任一形态。
本发明的锂离子二次电池中,如上所述,可以使用至少含有掺杂有Li离子的负极活性物质的负极,但也可以使用含有未掺杂Li离子的负极活性物质的负极来组装电池,在该电池内,对负极的负极合剂层中的负极活性物质掺杂Li离子(体系内预掺杂)。
对负极的负极合剂层中的负极活性物质的体系内预掺杂例如可以通过如下方式来实施:使用与正极和负极不同的具有Li供给源(锂金属箔、锂合金箔等)的电极(即,用于向负极活性物质中掺杂Li离子的预掺杂用电极)来组装电池,通过对该预掺杂用电极通电,从而在电池内从上述Li供给源向负极合剂层中的负极活性物质中掺杂Li离子。由此,在通过体系内预掺杂向负极活性物质中掺杂Li离子的形式的电池的情形下,即使在Li离子的掺杂结束的时间点,Li供给源的一部分残存或全部消失了的预掺杂用电极也会残存在电池内。
另一方面,在使用含有通过体系外预掺杂而预先掺杂有Li离子的负极活性物质的负极而组装的锂离子二次电池的情况下,在内部不会有在Li离子的掺杂中所使用的(或使用后的)预掺杂用电极。
需说明的是,锂离子二次电池中,在通过体系外预掺杂或体系内预掺杂在负极的负极合剂层中的负极活性物质中掺杂有Li离子的锂离子二次电池,可以通过在将电池以0.1C的放电电流速率进行放电直至电压到达2.0V时,正极活性物质中所含的Li和除Li以外的金属M的摩尔比(Li/M)来把握。在锂离子二次电池中,优选使用按照摩尔比Li/M成为0.7以上1.05以下的方式调整了负极合剂层中的负极活性物质的Li离子掺杂量的负极。此外,在具有未对含有不含Li的负极活性物质的负极合剂层中的上述负极活性物质进行体系外预掺杂Li离子和体系内预掺杂Li离子的负极的电池中,通常摩尔比Li/M会变得比上述下限值小。
而且,为了在制成电池时使摩尔比Li/M为0.7以上1.05以下而对负极活性物质掺杂的Li离子,如果换算成电池容量,则是与负极活性物质的不可逆容量相同或比之少的量。
在以0.1C的放电电流速率放电至电压到达2.0V时的正极活性物质的组成分析可以使用ICP(Inductive Coupled Plasma,电感耦合等离子体)法如下进行。首先,取作为测定对象的正极活性物质0.2g,放入100mL容器中。然后,依次加入纯水5mL、王水2mL、纯水10mL并进行加热溶解,冷却后进一步以纯水稀释至25倍,使用JARRELASH公司制造的ICP分析装置“ICP-757”,通过标准曲线法来分析组成。从所得到的结果可以导出组成量。后述的实施例中记载的摩尔比Li/M就是依照该方法求出的值。
需说明的是,本说明书中所说的求出摩尔比Li/M的正极活性物质也包括用特定材料(含Al氧化物等)被覆上述正极活性物质粒子的表面而成的正极材料,这种情况下,存在于上述正极材料的表面的上述特定材料中所含的金属的量也包含在用于求出摩尔比Li/M的金属M的量中。
此外,对于摩尔比Li/M,以后述的实施例1为例进行说明,实施例1中,使用了在LiCo0.9795Mg0.011Zr0.0005Al0.009O2的钴酸锂(A1)的表面形成有含Al氧化物的被膜的正极材料(a1)和在LiCo0.97Mg0.012Al0.009O2的钴酸锂(B1)的表面形成有含Al氧化物的被膜的正极材料(b1),此时的除Li以外的金属M是指Co、Mg、Zr、Al。即,在制作锂离子二次电池后,将预定的充放电后的电池进行分解,从正极合剂层中取正极材料(该实施例1中为混合物)并进行分析,导出摩尔比Li/M。
根据具有含有通过体系外预掺杂而掺杂有Li离子的负极活性物质的负极且使用通过调整该Li离子的掺杂程度以使正极活性物质中的上述摩尔比Li/M为上述范围内的负极而组装的电池、通过体系内预掺杂而对负极活性物质掺杂Li离子且调整该Li离子的掺杂程度以使正极活性物质中的上述摩尔比Li/M为上述范围的电池,由于掺杂了对于降低负极活性物质的不可逆容量而言合适的量的Li离子,因此能够抑制例如Li枝晶的产生,并能够良好地抑制因Li枝晶的产生而发生电池的微短路。
实施例
以下,基于实施例对本发明进行详细描述。但以下实施例不限定本发明。
(实施例1)
<正极的制作>
将作为含Li化合物的Li2CO3、作为含Co化合物的Co3O4、作为含Mg化合物的Mg(OH)2、作为Zr化合物的ZrO2和作为含Al化合物的Al(OH)3以合适的混合比例放入研钵中混合后,凝固成颗粒状,使用马弗炉在大气气氛中(大气压下)在950℃进行24小时烧成,合成由ICP(Inductive Coupled Plasma)法求出的组成式为LiCo0.9795Mg0.011Zr0.0005Al0.009O2的钴酸锂(A1)。
接着,在pH为10且温度为70℃的氢氧化锂水溶液200g中投入上述钴酸锂(A1)10g,搅拌分散后,用5小时向其中滴加0.0154g Al(NO3)3·9H2O和用于抑制pH变动的氨水,生成Al(OH)3共沉淀物,使其附着在上述钴酸锂(A1)的表面。然后,从该反应液中取出附着了Al(OH)3共沉淀物的上述钴酸锂(A1),洗净后干燥,然后在大气气氛中在400℃的温度进行10小时热处理,从而在上述钴酸锂(A1)的表面形成含Al氧化物的被膜,得到正极材料(a1)。
对于所得到的正极材料(a1),按照上述方法测定平均粒径,结果为27μm。
将作为含Li化合物的Li2CO3、作为含Co化合物的Co3O4、作为含Mg化合物的Mg(OH)2和作为含Al化合物的Al(OH)3以合适的混合比例放入研钵中混合后,凝固成颗粒状,使用马弗炉在大气气氛中(大气压下)在950℃进行4小时烧成,合成由ICP法求出的组成式为LiCo0.97Mg0.012Al0.009O2的钴酸锂(B1)。
接着,在pH为10且温度为70℃的氢氧化锂水溶液200g中投入上述钴酸锂(B1)10g,搅拌分散后,用5小时向其中滴加0.077g Al(NO3)3·9H2O和用于抑制pH变动的氨水,生成Al(OH)3共沉淀物,使其附着在上述钴酸锂(B1)的表面。然后,从该反应液中取出附着了Al(OH)3共沉淀物的上述钴酸锂(B1),洗净后干燥,然后在大气气氛中在400℃的温度进行10小时热处理,从而在上述钴酸锂(B1)的表面形成含Al氧化物的被膜,得到正极材料(b1)。
对于所得到的正极材料(b1),按照上述方法测定平均粒径,结果为7μm。
然后,将正极材料(a1)和正极材料(b1)以质量比85:15的比例混合,得到电池制作用的正极材料(1)。通过上述方法测定所得正极材料(1)的表面的含Al氧化物的平均被覆厚度,结果为30nm。此外,在测定平均被覆厚度时,通过元素分布来确认被膜的组成,结果主成分为Al2O3。进而,通过上述方法确认正极材料(1)的体积基准的粒度分布,结果确认到:平均粒径为25μm,在正极材料(a1)和正极材料(b1)的各平均粒径的位置具有峰值的2个峰。此外,正极材料(1)的BET比表面积使用基于氮吸附法的比表面积测定装置来测定,结果为0.25m2/g。
使用双螺杆混炼机对正极材料(1)96.5质量份、作为粘合剂的以10质量%浓度含有P(VDF-CTFE)的NMP溶液20质量份、和作为导电助剂的乙炔黑1.5质量份进行混炼,进而加入NMP调节粘度,调制含正极合剂的糊剂。将该糊剂涂布于厚度为15μm的铝箔的双面,在120℃进行12小时的真空干燥,在铝箔的双面形成正极合剂层,进行压制处理,以预定大小切断,得到带状的正极。需说明的是,在铝箔上涂布含正极合剂的糊剂时,要露出铝箔的一部分,且铝箔的表面中作为含正极合剂的糊剂的涂布部的位置的背面也成为涂布部。所得的正极的正极合剂层的厚度(铝箔的每个单面的厚度)为55μm。
对于在铝箔的双面形成有正极合剂层的带状正极,用汤姆森刀片进行冲切,使得铝箔(正极集电体)的露出部的一部分突出而作为极耳部,并且使得正极合剂层的形成部成为四角为曲线状的大体四边形状,得到在正极集电体的双面具有正极合剂层的电池用正极。图1中示出了示意性表示上述电池用正极的平面图(其中,为了易于理解正极的结构,图1中所示的正极尺寸不一定与实际一致)。正极10是具有以正极集电体12的露出部的一部分突出的方式冲切出的极耳部13的形状,正极合剂层11的形成部的形状是四角为曲线状的大体四边形,图中a、b和c的长度分别为8mm、37mm和2mm。
<负极的制作>
使共聚物(A)中仅具有由上述式(1)表示的单元和由上述(2)式表示的单元且上述式(2)中的R为氢、M’为钾,由上述式(1)表示的单元与由上述式(2)表示的单元的摩尔比为6/4,将该共聚物(A)溶解于离子交换水,调制共聚物(A)的浓度为8质量%的水溶液。在该水溶液中,加入作为负极活性物质的由碳材料被覆SiO表面而得的复合体Si-1(平均粒径为5μm,比表面积为8.8m2/g,复合体中的碳材料的量相对于100质量份SiO为10质量份)、X射线衍射中的d002为0.346nm的难石墨化碳HC-1(平均粒径为8μm),进而加入作为导电助剂的炭黑,通过搅拌混合而得到含负极合剂的糊剂。需说明的是,该糊剂中的复合体Si-1:HC-1:炭黑:共聚物(A)的组成比(质量比)为81:9:2:8。需说明的是,实施例1的锂离子二次电池所使用的负极中,将负极活性物质中的总量设为100质量%时,复合体Si-1的比例为90质量%,HC-1的比例为10质量%。
将上述含负极合剂的糊剂涂布于厚度为10μm的铜箔并进行干燥,在铜箔的单面和双面形成负极合剂层,进行压制处理将负极合剂层的密度调整为1.2g/cm3后,以预定大小切断,得到带状的负极。需说明的是,在向铜箔涂布含负极合剂的糊剂时,铜箔的一部分露出且在双面形成了负极合剂层时,在表面形成涂布部的位置,其背面也成为涂布部。
将上述带状的负极用汤姆森刀片冲切,使得铜箔(负极集电体)的露出部的一部分突出而作为极耳部,并且使得负极合剂层的形成部成为四角为曲线状的大体四边形状,得到在负极集电体的双面和单面具有负极合剂层的电池用负极。图2中示出了示意性表示上述电池用负极的平面图(其中,为了易于理解负极的结构,图2中所示的负极尺寸不一定与实际一致)。负极20是具有以负极集电体22的露出部的一部分突出的方式冲切出的极耳部23的形状,负极合剂层21的形成部的形状是四角为曲线状的大体四边形,图中d、e和f的长度分别为9mm、38mm和2mm。
<隔膜的制作>
将改性聚丙烯酸丁酯的树脂粘合剂3质量份、勃姆石粉末(平均粒径1μm)97质量份和水100质量份混合,调制多孔质层(II)形成用浆料。将该浆料涂布于厚度12μm的锂离子电池用聚乙烯制微多孔膜(多孔质层(I))的单面上,干燥。得到在多孔质层(I)的单面形成有以勃姆石为主体的多孔质层(II)的隔膜。需说明的是,多孔质层(II)的厚度为3μm。
准备在负极集电体的单面形成有负极合剂层的电池用负极2片、在负极集电体的双面形成有负极合剂层的电池用负极16片和在正极集电体的双面形成有正极合剂层的电池用正极17片。进而将在负极集电体的单面形成有负极合剂层的电池用负极、在正极集电体的双面形成有正极合剂层的电池用正极和在双面形成有负极合剂层的电池用负极交替配置,在各正极与各负极之间隔着1片上述隔膜并且使多孔质层(II)与正极相对,进行层叠,得到层叠电极体。
<电池的组装>
将正极彼此的极耳部、负极彼此的极耳部分别焊接。然后,在以容纳上述层叠电极体50的方式形成有凹部的厚度0.15mm、宽度34mm、高度50mm的铝层压膜的上述凹部中,插入上述层叠电极体,在其上放置与上述相同尺寸的铝层压膜,并将两铝层压膜的3边进行热熔接。然后,从两铝层压膜的剩余1边注入非水电解液(在碳酸亚乙酯和碳酸二乙酯的体积比30:70的混合溶剂中以1mol/l的浓度溶解LiPF6,并添加碳酸亚乙烯酯4质量%、4-氟-1,3-二氧戊环-2-酮5质量%、己二腈0.5质量%、和1,3-二
Figure BDA0002668849390000301
烷0.5质量%的量的溶液)。然后,将两铝层压膜的上述剩余1边进行真空热封,制作图3所示外观、图4所示截面结构的锂离子二次电池。
在此,对图3和图4进行说明,图3是示意性表示锂离子二次电池的平面图,图4是图3的I-I线截面图。锂离子二次电池100中,在由2片铝层压膜构成的铝层压膜外装体101内容纳有层叠电极体102和非水电解液(未图示),铝层压膜外装体101在其外周部通过将上下铝层压膜热熔接而密封。需说明的是,图4中,为了避免附图变得复杂,没有区别示出构成铝层压膜外装体101的各层、构成层叠电极体102的正极、负极和隔膜。
层叠电极体102所具有的各正极通过将极耳部彼此焊接而一体化,将该焊接成的极耳部的一体化物在电池100内与正极外部端子103连接,此外,虽未图示,但层叠电极体102所具有的各负极也通过将极耳部彼此焊接而一体化,并将该焊接成的极耳部的一体化物在电池100内与负极外部端子104连接。然后,正极外部端子103和负极外部端子104从一端侧引出至铝层压膜外装体101的外侧,以便能够与外部设备等连接。
(实施例2)
使复合体Si-1:难石墨化碳HC-1:炭黑:共聚物(A)的组成比(质量比)为72:18:2:8,除此之外与实施例1同样地调制含负极合剂的糊剂,除使用该糊剂之外与实施例1同样地制作锂离子二次电池。需说明的是,实施例2的锂离子二次电池中所用的负极,在将负极活性物质中的总量设为100质量%时,复合体Si-1的比例为80质量%,HC-1的比例为20质量%。
(实施例3)
使复合体Si-1:难石墨化碳HC-1:炭黑:共聚物(A)的组成比(质量比)为63:27:2:8,除此之外与实施例1同样地调制含负极合剂的糊剂,除使用该糊剂之外与实施例1同样地制作锂离子二次电池。需说明的是,实施例3的锂离子二次电池中所用的负极,在将负极活性物质中的总量设为100质量%时,复合体Si-1的比例为70质量%,HC-1的比例为30质量%。
(实施例4)
使复合体Si-1:难石墨化碳HC-1:炭黑:共聚物(A)的组成比(质量比)为54:36:2:8,除此之外与实施例1同样地调制含负极合剂的糊剂,除使用该糊剂之外与实施例1同样地制作锂离子二次电池。需说明的是,实施例4的锂离子二次电池中所用的负极,在将负极活性物质中的总量设为100质量%时,复合体Si-1的比例为60质量%,HC-1的比例为40质量%。
(实施例5)
使复合体Si-1:难石墨化碳HC-1:炭黑:共聚物(A)的组成比(质量比)为45:45:2:8,除此之外与实施例1同样地调制含负极合剂的糊剂,除使用该糊剂之外与实施例1同样地制作锂离子二次电池。需说明的是,实施例5的锂离子二次电池中所用的负极,在将负极活性物质中的总量设为100质量%时,复合体Si-1的比例为50质量%,HC-1的比例为50质量%。
(实施例6)
替代Si-1,使用SiO表面未被碳材料被覆的材料Si-2(平均粒径为5μm,比表面积为6.8m2/g),除此之外与实施例5同样地制作锂离子二次电池。
(实施例7)
替代HC-1,使用在X射线衍射中的d002为0.380nm的难石墨化碳HC-2(平均粒径为12μm),除此之外与实施例5同样地制作锂离子二次电池。
(实施例8)
除了Si-1和HC-1之外,使用石墨G-1(其为在由天然石墨形成的母粒子的表面被覆以沥青为碳源的非晶质质碳而成的石墨,平均粒径为10μm,d002为0.336nm,由BET法得到的比表面积为3.9m2/g,氩离子激光拉曼光谱中的R值为0.40),使复合体Si-1:难石墨化碳HC-1:石墨G-1:炭黑:共聚物(A)的组成比(质量比)为54:32:4:2:8,除此之外与实施例1同样地调制含负极合剂的糊剂,除使用该糊剂之外与实施例1同样地制作锂离子二次电池。需说明的是,实施例8的锂离子二次电池中所用的负极,在将负极活性物质中的总量设为100质量%时,复合体Si-1的比例为60质量%,HC-1的比例为35质量%,石墨G-1的比例为5质量%。
(实施例9)
使复合体Si-1:难石墨化碳HC-1:石墨G-1:炭黑:共聚物(A)的组成比(质量比)为45:41:4:2:8,除此之外与实施例1同样地调制含负极合剂的糊剂,除使用该糊剂之外与实施例1同样地制作锂离子二次电池。需说明的是,实施例9的锂离子二次电池中所用的负极,在将负极活性物质中的总量设为100质量%时,复合体Si-1的比例为50质量%,HC-1的比例为45质量%,石墨G-1的比例为5质量%。
(实施例10)
<第三电极的制作>
如下所示制作图5所示形状的第三电极(预掺杂用电极)30。将具有从一个面向另一面贯通的贯通孔的铜箔(厚度为10μm,贯通孔的直径为0.1mm,气孔率为47%)切断为45×25mm的大小,制作具有2×2mm见方的第三电极极耳部31的第三电极集电体32。进而,将厚度为200μm、质量为18mg的Li箔33分别压接在第三电极集电体32的两端附近,使得Li箔33、33成为内侧而折成字母C字状来得到第三电极30。
<电池的组装>
接着,使用与实施例2同样制作的层叠电极体,将其与第三电极重叠来制作电极体。图6中示出了示意性表示将层叠电极体102与第三电极30重叠的方式的立体图,在层叠电极体102上重叠第三电极30时,使二者的位置关系与图6所示的层叠电极体102与第三电极30的位置关系同样,即,成为层叠电极体102的端面与Li箔33、33相对的位置关系。
然后,在将层叠电极体与第三电极重叠的层叠体中,将各电池用正极的极耳部彼此焊接而一体化,将该一体化物与电池用的正极外部端子焊接。此外,将上述层叠体中的各电池用负极的极耳部彼此和第三电极的极耳部焊接而一体化,将该一体化物与电池用的负极外部端子焊接,得到电极体。图7中示出了示意性表示所得的电极体的立体图。图7中,虽未图示由正极、负极和隔膜重叠而构成的层叠体,但电极体102b中,以上述层叠体的端面与Li箔33、33相对的方式使第三电极与上述层叠体重叠,与上述层叠体中的全部正极的正极极耳部合在一起焊接而成的一体化物连接的正极外部端子103、以及与上述层叠体中的全部负极的负极极耳部和第三电极的极耳部合在一起焊接而成的一体化物连接的负极外部端子104,从电极体102的主体突出来。
除了替代层叠电极体而使用上述电极体(具有第三电极的电极体)之外,与实施例2同样制作锂离子二次电池。然后,制作后的锂离子二次电池在45℃的恒温槽内保管1周。
(比较例1)
除了不使用难石墨化碳HC-1(即,复合体Si-1:炭黑:共聚物(A)的组成比(质量比)为90:2:8)之外,与实施例1同样地调制含负极合剂的糊剂,除使用该糊剂之外与实施例1同样地制作锂离子二次电池。即,比较例1的锂离子二次电池中所用的负极中,负极活性物质的总量(100质量%)为复合体Si-1。
(比较例2)
使复合体Si-1:难石墨化碳HC-1:炭黑:共聚物(A)的组成比(质量比)为36:54:2:8,除此之外与实施例1同样地调制含负极合剂的糊剂,除使用该糊剂之外与实施例1同样地制作锂离子二次电池。需说明的是,比较例2的锂离子二次电池中所用的负极,在将负极活性物质中的总量设为100质量%时,复合体Si-1的比例为40质量%,HC-1的比例为60质量%。
(比较例3)
除了Si-1和HC-1之外,还使用石墨G-1,使复合体Si-1:难石墨化碳HC-1:石墨G-1:炭黑:共聚物(A)的组成比(质量比)为45:4:41:2:8,除此之外与实施例1同样地调制含负极合剂的糊剂,除使用该糊剂之外与实施例1同样地制作锂离子二次电池。需说明的是,比较例3的锂离子二次电池中所用的负极,在将负极活性物质中的总量设为100质量%时,复合体Si-1的比例为50质量%,HC-1的比例为5质量%,石墨G-1的比例为45质量%。
对于实施例和比较例的锂离子二次电池和它们所涉及的负极,进行下述的各评价。
<初期容量测定>
将实施例和比较例的各10个锂离子二次电池,以0.5C的电流值恒流充电至4.4V,紧接着以4.4V的固恒压进行充电,直至电流值达到0.02C。然后,以0.2C的恒流进行放电至2.0V,求出初次放电容量。结果示于表1。
<充放电循环特性评价>
对于上述测定了初期容量的各电池中的5个,以1C的电流值恒流充电至4.4V,紧接着以4.4V的恒压进行充电,直至电流值达到0.05C,然后,以1C的电流值放电至2.0V,将这一系列的操作作为1个循环,将其实施300次循环。然后,对于各电池,在与初次放电容量测定时相同的条件下进行恒流-恒压充电和恒流放电,求出放电容量。然后,将这些放电容量除以初次放电容量得到的值表示为百分比,求出容量维持率,并分别算出5个的平均值。结果示于表1。
<负极膨胀率的评价>
将上述测定了初期容量的各电池和反复进行300次充放电循环后的各电池以0.5C的电流值恒流充电直至4.4V,紧接着以4.4V的恒压进行充电直至电流值达到0.02C。将充电后的各电池解体,取出负极,浸渍于碳酸二乙酯中洗净后,真空干燥。用千分尺测定干燥后的负极厚度,将300次循环后的负极厚度除以初期容量测定后的负极厚度得到的值表示为百分比,作为负极膨胀率。结果示于表1。
[表1]
Figure BDA0002668849390000341
如表1所示,使用以合适比例含有作为负极活性物质的材料S和难石墨化碳的负极的实施例1~10的锂离子二次电池中,初期容量大,且抑制了伴随充放电循环的负极膨胀,基于该原因,充放电循环特性评价时的容量维持率高,具有优异的充放电循环特性。
与之相对,使用不含难石墨化碳的负极的比较例1的电池和使用负极活性物质中难石墨化碳的比例小的负极的比较例3的电池中,伴随充放电循环的负极的膨胀率大,基于该原因,充放电循环特性评价时的容量维持率低。此外,使用了负极活性物质中难石墨化碳的比例过大的负极的比较例2的电池,初期容量比实施例的电池小。
本发明在不脱离其宗旨的范围内,能够以上述以外的方式来实施。本申请所公开的实施方式只是一例,本发明不限定于这些实施方式。本发明的范围相比于上述说明书的记载,由附加的权利要求书的记载来优先解释,在与权利要求书均等范围内的全部变更都包括在权利要求书中。
产业上的可利用性
本发明的锂离子二次电池能够适用于与以往已知的锂离子二次电池的用途相同的用途。
符号说明
10:正极,11:正极合剂层,12:正极集电体,13:极耳部,20:负极,21:负极合剂层,22:负极集电体,23:极耳部,30:第三电极,31:第三电极极耳部,32:第三电极集电体,33:Li供给源(Li箔),40:隔膜,100:锂离子二次电池,101:金属层压膜外装体,102:层叠电极体,103:正极外部端子,104:负极外部端子。

Claims (6)

1.一种电化学元件用负极,其为在由金属箔形成的集电体的至少单面具有负极合剂层的电化学元件用负极,其特征在于,
所述负极合剂层含有含Si材料S和难石墨化碳材料作为负极活性物质,
将所述负极合剂层所含的负极活性物质的总量设为100质量%时,所述材料S的比例为50~90质量%,所述难石墨化碳材料的比例为10~50质量%。
2.如权利要求1所述的电化学元件用负极,
所述难石墨化碳材料在X射线衍射中的d002为0.34~0.42nm。
3.如权利要求1或2所述的电化学元件用负极,
作为所述材料S,含有SiOx,其中,0.5≤x≤1.5。
4.如权利要求3所述的电化学元件用负极,
所述SiOx与碳材料构成复合体。
5.如权利要求1~4中任一项所述的电化学元件用负极,
所述负极合剂层所含的负极活性物质的至少一部分掺杂有Li离子。
6.一种锂离子二次电池,其是含有正极、负极、隔膜和非水电解液的锂离子二次电池,其特征在于,
将权利要求1~5中任一项所述的电化学元件用负极作为所述负极来构成。
CN201980017549.2A 2018-03-07 2019-02-20 电化学元件用负极和锂离子二次电池 Pending CN111837256A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018-040585 2018-03-07
JP2018040585A JP7187156B2 (ja) 2018-03-07 2018-03-07 電気化学素子用負極およびリチウムイオン二次電池
PCT/JP2019/006200 WO2019171942A1 (ja) 2018-03-07 2019-02-20 電気化学素子用負極およびリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
CN111837256A true CN111837256A (zh) 2020-10-27

Family

ID=67845636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980017549.2A Pending CN111837256A (zh) 2018-03-07 2019-02-20 电化学元件用负极和锂离子二次电池

Country Status (5)

Country Link
US (1) US20210020918A1 (zh)
JP (1) JP7187156B2 (zh)
KR (1) KR20200129098A (zh)
CN (1) CN111837256A (zh)
WO (1) WO2019171942A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102553610B1 (ko) * 2020-05-11 2023-07-11 한국과학기술연구원 사전리튬화 용액 및 이를 이용한 사전리튬화된 음극의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103688393A (zh) * 2011-03-25 2014-03-26 学校法人东京理科大学 电池用电极及使用该电池用电极的锂离子二次电池
CN103915620A (zh) * 2013-01-07 2014-07-09 日立麦克赛尔株式会社 非水电解质二次电池
WO2017077986A1 (ja) * 2015-11-06 2017-05-11 株式会社日立製作所 リチウムイオン二次電池およびリチウムイオン二次電池の製造方法
CN106803569A (zh) * 2015-11-26 2017-06-06 日立麦克赛尔株式会社 锂离子二次电池及其制备方法
CN107112581A (zh) * 2014-11-18 2017-08-29 国立研究开发法人产业技术综合研究所 锂离子电池
JP2017199510A (ja) * 2016-04-26 2017-11-02 日立マクセル株式会社 リチウムイオン二次電池の製造方法
JP2018006284A (ja) * 2016-07-08 2018-01-11 マクセルホールディングス株式会社 リチウムイオン二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167276A (ja) * 1997-08-15 1999-03-09 Sony Corp 非水電解液二次電池
KR100913177B1 (ko) * 2007-09-17 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이의 제조 방법
JPWO2009063902A1 (ja) * 2007-11-12 2011-03-31 日立マクセル株式会社 非水二次電池用電極およびそれを用いた非水二次電池、並びに電極の製造方法
JP5416128B2 (ja) 2008-10-31 2014-02-12 日立マクセル株式会社 非水二次電池
JP4954270B2 (ja) 2009-02-13 2012-06-13 日立マクセルエナジー株式会社 非水二次電池
CN103515666B (zh) * 2012-06-22 2017-03-01 日立麦克赛尔株式会社 锂二次电池
CN105247714B (zh) 2013-07-31 2018-04-17 株式会社Lg 化学 用于具有提高的寿命特性的二次电池的负极活性材料
JP5713071B2 (ja) * 2013-09-17 2015-05-07 株式会社豊田自動織機 リチウムイオン二次電池
JP6278804B2 (ja) 2014-04-04 2018-02-14 住友精化株式会社 リチウムイオン二次電池電極用合剤、この合剤を含むリチウムイオン二次電池用電極およびこの電極を備えたリチウムイオン二次電池並びに電気機器
WO2016076387A1 (ja) 2014-11-13 2016-05-19 住友電気工業株式会社 蓄電デバイス用負極組成物、その組成物を含む負極および蓄電デバイスならびに蓄電デバイス用負極の製造方法
WO2016104489A1 (ja) 2014-12-24 2016-06-30 住友ベークライト株式会社 二次電池負極用炭素材、二次電池負極用活物質、二次電池負極および二次電池
WO2016152877A1 (ja) 2015-03-24 2016-09-29 日本電気株式会社 リチウムイオン二次電池
JP2017168323A (ja) 2016-03-16 2017-09-21 株式会社東芝 非水電解質二次電池および電池パック

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103688393A (zh) * 2011-03-25 2014-03-26 学校法人东京理科大学 电池用电极及使用该电池用电极的锂离子二次电池
CN103915620A (zh) * 2013-01-07 2014-07-09 日立麦克赛尔株式会社 非水电解质二次电池
CN107112581A (zh) * 2014-11-18 2017-08-29 国立研究开发法人产业技术综合研究所 锂离子电池
WO2017077986A1 (ja) * 2015-11-06 2017-05-11 株式会社日立製作所 リチウムイオン二次電池およびリチウムイオン二次電池の製造方法
CN106803569A (zh) * 2015-11-26 2017-06-06 日立麦克赛尔株式会社 锂离子二次电池及其制备方法
JP2017199510A (ja) * 2016-04-26 2017-11-02 日立マクセル株式会社 リチウムイオン二次電池の製造方法
JP2018006284A (ja) * 2016-07-08 2018-01-11 マクセルホールディングス株式会社 リチウムイオン二次電池

Also Published As

Publication number Publication date
WO2019171942A1 (ja) 2019-09-12
US20210020918A1 (en) 2021-01-21
JP2019160400A (ja) 2019-09-19
KR20200129098A (ko) 2020-11-17
JP7187156B2 (ja) 2022-12-12

Similar Documents

Publication Publication Date Title
KR102309192B1 (ko) 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법
KR102361368B1 (ko) 리튬 이온 이차전지
JP5619359B2 (ja) 電極組立体及びそれを含むリチウム二次電池
JP5791432B2 (ja) 正極活物質、その製造方法及びそれを採用した正極並びにリチウム電池
WO2015111710A1 (ja) 非水二次電池
KR102419885B1 (ko) 비수 전해질 이차 전지용 정극, 비수 전해질 이차 전지 및 그 시스템
KR20160077075A (ko) 부극 활물질, 부극 활물질의 제조 방법, 및 리튬 이온 이차 전지
CN105576279B (zh) 锂二次电池
WO2012014998A1 (ja) リチウム二次電池
CN108701824B (zh) 负极活性物质、混合负极活性物质、二次电池用负极、二次电池、及负极活性物质的制造
WO2018047656A1 (ja) リチウムイオン二次電池およびその製造方法
JP2018120811A (ja) リチウムイオン二次電池およびその製造方法
JP6986077B2 (ja) リチウムイオン二次電池およびその製造方法
KR20160036577A (ko) 리튬 2 차 전지 및 리튬 2 차 전지용 전해액
JP2018147783A (ja) リチウムイオン二次電池の製造方法およびリチウムイオン二次電池
JP2018098021A (ja) 非水電解液系電気化学素子用負極、その製造方法、リチウムイオン二次電池およびその製造方法
JP2019175657A (ja) リチウムイオン二次電池。
JP2018081753A (ja) 非水電解液系電気化学素子用負極、その製造方法、リチウムイオン二次電池およびその製造方法
JP2018113167A (ja) リチウムイオン二次電池
WO2018110188A1 (ja) リチウムイオン二次電池、その製造方法およびリチウムイオン二次電池の前駆体
JP2018006284A (ja) リチウムイオン二次電池
JP2016170945A (ja) 非水二次電池
JP2015195167A (ja) 非水二次電池用負極、非水二次電池、非水二次電池のシステム、および非水二次電池の製造方法
WO2018088311A1 (ja) 非水電解液系電気化学素子用負極、その製造方法、リチウムイオン二次電池およびその製造方法
JP2018142487A (ja) 非水電解液系電気化学素子用負極、その製造方法、リチウムイオン二次電池およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Kyoto Japan

Applicant after: MAXELL, Ltd.

Address before: Kyoto Japan

Applicant before: MAXELL HOLDINGS, Ltd.

CB02 Change of applicant information