CN111448530A - 作业车辆用的目标路径生成系统 - Google Patents

作业车辆用的目标路径生成系统 Download PDF

Info

Publication number
CN111448530A
CN111448530A CN201880079167.8A CN201880079167A CN111448530A CN 111448530 A CN111448530 A CN 111448530A CN 201880079167 A CN201880079167 A CN 201880079167A CN 111448530 A CN111448530 A CN 111448530A
Authority
CN
China
Prior art keywords
target route
target
unit
route
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880079167.8A
Other languages
English (en)
Inventor
西井康人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Power Technology Co Ltd
Original Assignee
Yanmar Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Power Technology Co Ltd filed Critical Yanmar Power Technology Co Ltd
Publication of CN111448530A publication Critical patent/CN111448530A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明能够通过简易的操作来获得适合于用户的价值观等的自动行驶用的目标路径。作业车辆用的目标路径生成系统具有:存储部(30A),该存储部(30A)对生成自动行驶用的目标路径(P)所需的基本数据进行存储;优先项目选择部(34),该优先项目选择部(34)对与目标路径(P)的生成相关的优先项目进行选择;以及目标路径生成部(30D),该目标路径生成部(30D)基于基本数据和所选择的优先项目来生成目标路径(P)。

Description

作业车辆用的目标路径生成系统
技术领域
本发明涉及一种生成目标路径的作业车辆用的目标路径生成系统,该目标路径用于如下车辆自动行驶:拖拉机、乘坐式插秧机、联合收割机、乘坐式割草机、轮式装载机、除雪车等乘坐式作业车辆;以及无人割草机等无人作业车辆。
背景技术
作为上述那样的作业车辆用的目标路径生成系统,存在如下路径生成装置等(例如参照专利文献1),即,其构成为:例如,用户基于通过拖拉机(作业车辆)沿田地(作业地)的外周行驶而获取到的田地的大小、形状等作业地数据,根据用户的价值观等而手动输入田地的角位置、拐点等多个作业区域确定地点、作业开始位置、作业开始方向、作业结束位置等,来作为目标路径生成用的任意设定数据,由此生成基于所输入的任意设定数据的与用户的价值观等相应的自动行驶用的目标路径。
现有技术文献
专利文献
专利文献1:日本特开2017-173986号公报
发明内容
在专利文献1所记载的作业车辆用的目标路径生成系统中,用户输入生成目标路径所需的任意设定数据的全部。这对习惯于输入任意设定数据的用户来说,能够基于用户的价值观等来输入任意设定数据,所以,能够利用目标路径生成系统生成与用户的价值观等相应的目标路径。
然而,在不擅长任意设定数据的输入操作的用户中,大多在输入任意设定数据时需要花费工夫,所以,希望输入的简化。另外,在不能基于用户的价值观等而适当地输入任意设定数据的情况下,可能因此而生成如下不利于基于自动行驶进行的作业的不合适的目标路径:例如根据由目标路径生成系统生成的目标路径而获得的作业面积变得较窄的目标路径,或者,在由目标路径生成系统生成的目标路径中非作业行驶距离变长这样的不符合用户的价值观等的目标路径。
鉴于该实际情况,本发明的主要课题在于如下方面,即,无需强迫用户输入任意设定数据,就能够生成适合于用户的价值观等的自动行驶用的目标路径,实现基于自动行驶进行的作业的有益化。
本发明的第1特征结构在于如下方面,即,在作业车辆用的目标路径生成系统中,具备:存储部,该存储部对生成自动行驶用的目标路径所需的基本数据进行存储;优先项目选择部,该优先项目选择部对与所述目标路径的生成相关的优先项目进行选择;以及目标路径生成部,该目标路径生成部基于所述基本数据和所选择的优先项目来生成所述目标路径。
根据本结构,若用户在优先项目选择部中进行与自身的价值观等相应的优先项目的选择操作,则目标路径生成部基于存储于存储部的基本数据和由用户选择的优先项目来生成适合于用户的价值观等的目标路径。
据此,用户即使不输入例如多个作业区域确定地点、作业开始位置、作业开始方向、作业结束位置等生成目标路径所需的任意设定数据,也能够仅通过进行与自身的价值观等相应的优先项目的选择操作来获得适合于自身的价值观等的目标路径。
也就是说,无需强迫用户输入任意设定数据,就能够生成适合于用户的价值观等的自动行驶用的目标路径,能够实现基于自动行驶进行的作业的有益化。
本发明的第2特征结构在于如下方面,即,具有路径选择部,在所述目标路径生成部生成了多个所述目标路径的情况下,该路径选择部从这些多个所述目标路径中择一地进行选择。
根据本结构,例如,在目标路径生成部生成了多个目标路径的情况下,用户能够从多个目标路径中选择更适合于自身的价值观等的自动行驶用的目标路径,能够更有效地实现基于自动行驶进行的作业的有益化。
本发明的第3特征结构在于如下方面,即,所述目标路径生成部针对一个所述优先项目生成多个所述目标路径。
根据本结构,例如,即使用户在优先项目选择部中选择与自身的价值观等相应的单个优先项目的情况下,也能够利用目标路径生成部生成与该优先项目相应的多个目标路径,所以,用户能够从与所选择的单个优先项目相应的多个目标路径中选择更适合于自身的价值观等的自动行驶用的目标路径,能够更有效地实现基于自动行驶进行的作业的有益化。
本发明的第4特征结构在于如下方面,即,具有任意数据输入部,该任意数据输入部输入目标路径生成用的任意设定数据,所述目标路径生成部生成包含第1目标路径和第2目标路径在内的多个所述目标路径,所述第1目标路径基于所述基本数据和所述优先项目而生成;所述第2目标路径基于所述基本数据和所述任意设定数据而生成。
根据本结构,在生成自动行驶用的目标路径的情况下,用户能够选择:在优先项目选择部中仅选择优先项目的简易操作、以及在任意数据输入部中任意地输入生成目标路径所需的任意设定数据的全部的通常操作。
据此,在用户不擅长输入任意设定数据的情况下,通过进行简易操作,不花费功夫就能够获得适合于自身的价值观等的第1目标路径。另外,在用户习惯于输入任意设定数据的情况下,通过进行通常操作,能够获得基于自身的价值观等生成的第2目标路径。
其结果,对于不擅长输入任意设定数据的用户,通过进行简易的选择操作,就能够实现基于自动行驶进行的作业的有益化。另外,对于习惯于输入任意设定数据的用户,通过适当地进行任意设定数据的输入,能够更有效地实现基于自动行驶进行的作业的有益化。
本发明的第5特征结构在于如下方面,即,具有对所述目标路径进行显示的显示部,在所述目标路径生成部生成了多个所述目标路径的情况下,所述显示部将多个所述目标路径的差与这些多个所述目标路径一起进行显示。
根据本结构,在目标路径生成部生成多个目标路径的情况下,用户能够容易地目视确认它们的差,据此,能够容易地选择更适合于自身的价值观等的目标路径。
本发明的第6特征结构在于如下方面,即,具有任意数据输入部,该任意数据输入部输入目标路径生成用的任意设定数据中的至少一部分,所述目标路径生成部基于所述任意设定数据来校正所述目标路径。
根据本结构,在用户对基于自身所选择的优先项目而由目标路径生成部生成的目标路径感到不满的情况下,在任意数据输入部中输入适合于消除该不满的任意设定数据。于是,目标路径生成部基于由用户输入的任意设定数据,对与优先项目相应的目标路径进行校正。据此,用户能够获得消除了不满的目标路径。
具体而言,在用户感到目标路径的自动行驶开始地点、自动行驶结束地点远离作业地中的作业车辆的出入口这样的不满的情况下,若在任意数据输入部中输入适合于消除该不满的自动行驶开始地点、自动行驶结束地点,则目标路径生成部基于由用户输入的自动行驶开始地点、自动行驶结束地点,对与优先项目相应的目标路径进行校正,所以,用户能够获得将自动行驶开始地点、自动行驶结束地点设定于与作业地中的作业车辆的出入口接近的位置的目标路径。
其结果,用户通过进行比较简易的操作,就能够获得更适合于自身的价值观等的目标路径,能够更有效地实现基于自动行驶进行的作业的有益化。
本发明的第7特征结构在于如下方面,即,所述优先项目中包含:作业面积的最大化、非作业行驶距离的最短化、沿着所述作业地的外周的环绕行驶路径部的适当化、以及避免重复路径部分的生成之中的至少1个。
根据本结构,例如,如果优先项目是作业面积的最大化,则基于该优先项目,目标路径生成部生成通过作业车辆的自动行驶而能进行的作业面积变为最大的目标路径。
例如,如果优先项目是非作业行驶距离的最短化,则基于该优先项目,目标路径生成部生成在作业车辆的自动行驶中实现非作业行驶所需的燃料消耗量的削减、作业时间的缩短等的目标路径。
例如,如果优先项目是环绕行驶路径部的适当化,则基于该优先项目,目标路径生成部生成如下目标路径,即,在作业车辆的自动行驶中,在作业地的中央侧行驶并进行作业之后的成为未作业区域的环绕行驶路径部的横向宽度不论作业地的形状如何,都与作业车辆的作业宽度的整数倍相同或者大致相同。据此,容易通过作业车辆的自动行驶或者手动驾驶而进行环绕作业行驶。该目标路径适合于如下情况,即,通过自动行驶,进行作为作业车辆的一个例子的耕耘形式的拖拉机所进行的耕耘作业、乘坐式插秧机所进行的栽植作业等。
例如,如果优先项目是避免重复路径部的生成,则基于该优先项目,目标路径生成部生成不存在重复的路径部分的目标路径。据此,在作业车辆的自动行驶中,能够避免产生如下不良情况,即,通过作业车辆在目标路径的重复的同一路径部分行驶多次的重复行驶,该路径部分被踩实而难以进行作业。该目标路径适合于如下情况,即,通过自动行驶,进行作为作业车辆的一个例子的耕耘形式的拖拉机所进行的耕耘作业、乘坐式田植机所进行的栽植作业等。
也就是说,能够生成与各个优先项目相应的目标路径,据此,能够容易实现适合于因用户不同而不同的价值观等的基于自动行驶进行的作业的有益化。
附图说明
图1是拖拉机的左视图。
图2是表示与拖拉机的自动行驶相关的控制结构的框图。
图3是目标路径生成控制的流程图。
图4是表示目标路径生成部所进行的作业区域的确定和基准作业方向等的选定的图。
图5是表示由目标路径生成部生成的目标路径中的第1例示路径的图。
图6是表示由目标路径生成部生成的目标路径中的第2例示路径的图。
图7是表示由目标路径生成部生成的目标路径中的第3例示路径的图。
图8是表示由目标路径生成部生成的目标路径中的第4例示路径的图。
图9是表示由目标路径生成部生成的目标路径中的第5例示路径的图。
图10是表示由目标路径生成部生成的目标路径中的第6例示路径的图。
图11是表示由目标路径生成部生成的目标路径中的第7例示路径的图。
图12是表示由目标路径生成部生成的目标路径中的第8例示路径的图。
图13是表示由目标路径生成部生成的目标路径中的第9例示路径的图。
图14是表示由目标路径生成部生成的目标路径中的第10例示路径的图。
图15是表示由目标路径生成部生成的目标路径中的第11例示路径的图。
图16是表示由目标路径生成部生成的目标路径中的第12例示路径的图。
图17是表示由目标路径生成部生成的目标路径中的第13例示路径的图。
图18是表示由目标路径生成部生成的目标路径上的方向转换路径部中的第1例示路径部的图。
图19是表示由目标路径生成部生成的目标路径上的方向转换路径部中的第2例示路径部的图。
具体实施方式
基于附图,对将本发明所涉及的作业车辆用的目标路径生成系统应用于作业车辆的一个例子亦即拖拉机的实施方式进行说明。
此外,本发明所涉及的作业车辆用的目标路径生成系统还能够应用于拖拉机以外的、乘坐式插秧机、联合收割机、乘坐式割草机、轮式装载机、除雪车等乘坐式作业车辆;以及无人割草机等无人作业车辆。
如图1~2所示,本实施方式中例示的拖拉机1通过使用作业车辆用的自动行驶系统,能够在作为作业地的一个例子的田地中进行自动行驶。作业车辆用的自动行驶系统具备:搭载于拖拉机1的自动行驶单元2;以及以能够与自动行驶单元2通信的方式进行通信设定的便携式通信终端3。便携式通信终端3采用具有可触摸操作的液晶面板(显示部的一个例子)4等的平板型个人电脑等。
此外,便携式通信终端3能够采用笔记本型个人电脑或智能手机等。
如图1所示,拖拉机1在其后部借助3点连杆机构5而以能够升降且能够翻滚的方式连结有作为作业装置的一个例子的旋耕装置6。据此,拖拉机1构成为旋耕形式。。
此外,在拖拉机1的后部,也可以代替旋耕装置6而连结犁、播种装置、撒布装置等作业装置。
如图1~2所示,拖拉机1具备:能够驱动且能够转向的左右前轮7;能够驱动的左右后轮8;形成搭乘式驾驶部的驾驶室;具有共轨系统的电子控制式柴油发动机(以下,称为发动机)10;对来自发动机10的动力进行变速的电子控制式变速装置11;对左右前轮7进行转向的全液压式动力转向机构12;对左右后轮8进行制动的左右侧制动器(未图示);能够对左右侧制动器进行液压操作的电子控制式制动操作机构13;能够使朝向旋耕装置6的动力传递通断的作业离合器(未图示);能够对作业离合器进行液压操作的电子控制式离合器操作机构14;对旋耕装置6进行升降驱动的电子液压控制式升降驱动机构15;具有与本车(拖拉机)1的自动行驶等相关的各种控制程序等的车载电子控制单元16;对本车1的车速进行检测的车速传感器17;对前轮7的转向角进行检测的转向角传感器18;以及对本车1的当前位置及当前方位进行测定的定位单元19等。
此外,发动机10也可以采用具备电子调速器的电子控制式汽油发动机。变速装置11能够采用液压机械式无级变速装置(HMT)、静液压式无级变速装置(HST)、或者带式无级变速装置等。动力转向机构12也可以采用具备电动马达的电动式动力转向机构等。
如图1所示,在驾驶室9的内部配备有:能够借助动力转向机构12而对左右前轮7进行手动转向的方向盘20、以及用户用的座椅21。另外,虽然省略图示,但是,具备:能够对变速装置11进行手动操作的变速杆;能够对左右侧制动器进行人为操作的左右制动踏板;以及能够对旋耕装置6进行手动升降操作的升降杆等。
如图2所示,车载电子控制单元16具有:对变速装置11的动作进行控制的变速控制部16A;对左右侧制动器的动作进行控制的制动控制部16B;对旋耕装置6的动作进行控制的作业装置控制部16C;对包含本车1的最小转弯半径与作业宽度在内的车身数据、预先生成的自动行驶用的目标行驶路径P(例如,参照图3)等进行存储的非易失性车载存储部16D;以及在自动行驶时设定左右前轮7的目标转向角并将其输入到动力转向机构12的转向角设定部16E等。
如图1~图2所示,定位单元19具备:利用作为全球导航卫星系统(GNSS:GlobalNavigation Satellite System)的一个例子的GPS(GlobalPositioning System)来测定本车1的当前位置与当前方位的卫星导航装置22;以及具有3轴陀螺仪及3方向加速度传感器等并对本车1的姿势与方位等进行测定的惯性测量装置(IMU:Inertial MeasurementUnit)23等。使用了GPS的定位方法有:DGPS(Differential GPS:相对定位方式)、RTK-GPS(Real Time Kinematic GPS:干扰定位方式)等。在本实施方式中,采用适合于对移动体进行定位的RTK-GPS。因此,在田地周边的已知位置,设置有能够利用RTK-GPS进行定位的基站24。
拖拉机1和基站24分别具备:对由GPS卫星25(参照图1)发送来的电波进行接收的GPS天线26、27;以及能够在拖拉机与基站24之间进行包含定位数据在内的各种数据的无线通信的通信模块28、29等。据此,卫星导航装置22能够基于拖拉机侧的GPS天线26对来自GPS卫星25的电波进行接收而获得的定位数据、以及基站侧的GPS天线27对来自GPS卫星25的电波进行接收而获得的定位数据,以较高的精度测定本车1的当前位置以及当前方位。另外,定位单元19由于具备卫星导航装置22与惯性测量装置23,而能够高精度地测定本车1的当前位置、当前方位、姿势角(偏航角、翻滚角、俯仰角)。
如图2所示,便携式通信终端3具备终端电子控制单元30以及通信模块31等,该终端电子控制单元30具有对液晶面板4等的动作进行控制的各种控制程序等,该通信模块31能够在其与拖拉机侧的通信模块28之间进行各种数据的无线通信。
终端电子控制单元30具有:对通过与拖拉机侧进行无线通信等而获得的车身数据等进行存储的终端存储部(存储部的一个例子)30A;通过与拖拉机侧进行无线通信而获取定位数据的定位数据获取部30B;根据所获取的定位数据而获取包含田地的大小和形状在内的田地数据的田地数据获取部30C;以及生成自动行驶用的目标路径P的目标路径生成部30D等。另外,终端电子控制单元30在通过对液晶面板4触摸操作而选择了目标路径生成模式的情况下,在液晶面板4上显示:对目标路径P进行选择的路径选择部32;输入目标路径生成用的任意设定数据的任意数据输入部33;对与目标路径P的生成相关的优先项目进行选择的优先项目选择部34;以及向目标路径生成部30D发出生成目标路径P的指令的生成指令部35等。也就是说,在本实施方式中,利用便携式通信终端3来构成生成用于使拖拉机1自动行驶的目标路径P的目标路径生成系统。
终端存储部30A存储车身数据以及田地数据来作为生成目标路径P所需的基本数据。输入到任意数据输入部33的任意设定数据中包含:用于确定田地中的作业区域A的作业区域确定地点、自动行驶开始地点ps、自动行驶结束地点pe、基准作业方向θp、以及转弯方法等。由优先项目选择部34选择的优先项目中包含:作业面积的最大化、非作业行驶距离的最短化、沿着田地的外周的环绕行驶路径部P1的适当化、以及避免重复路径部P0的生成。
在通过对液晶面板4触摸操作而选择了目标路径生成模式的情况下,目标路径生成部30D执行目标路径生成控制。
以下,基于图3所示的流程图,对目标路径生成控制下的目标路径生成部30D的控制动作进行说明。
在目标路径生成控制中,目标路径生成部30D首先进行田地数据确认处理(步骤#1),在该田地数据确认处理(步骤#1)中,随着对目标路径生成模式进行选择,基于定位数据获取部30B所获取的拖拉机1的当前位置,确认终端存储部30A中是否存储有与此相应的田地数据。
在田地数据确认处理(步骤#1)中存储有相应的田地数据的情况下,进行目标路径确认处理(步骤#2),在该目标路径确认处理(步骤#2)中,基于该田地数据、以及存储于终端存储部30A的车身数据,确认终端存储部30A中是否存储有与它们相应的目标路径P。
在目标路径确认处理(步骤#2)中存储有相应的目标路径P的情况下,进行存储路径选择处理(步骤#3),在该存储路径选择处理(步骤#3)中,从终端存储部30A读取所存储的目标路径P,并且,使所读取的目标路径P与前述的路径选择部32显示在液晶面板4上,使用户选择是否采用所读取的目标路径P。然后,在用户选择了采用所读取的目标路径P的情况下,结束目标路径生成控制。
在田地数据确认处理(步骤#1)中未存储有相应的田地数据的情况下,进行田地数据获取引导显示处理(步骤#4),在该田地数据获取引导显示处理(步骤#4)中,使用于获得田地数据的田地数据获取行驶的执行引导显示在液晶面板4上,使用户进行使拖拉机1沿着田地外周行驶的田地数据获取行驶。另外,使定位数据获取部30B进行定位数据获取处理(步骤#5),在该定位数据获取处理(步骤#5)中,通过与拖拉机侧进行无线通信而获取在田地数据获取行驶中拖拉机1的定位单元19定位所得的定位数据。然后,使田地数据获取部30C进行田地数据获取处理(步骤#6),在该田地数据获取处理(步骤#6)中,根据定位数据获取部30B所获取的定位数据,获取包含田地的大小、形状在内的田地数据。据此,获取与拖拉机1的当前位置对应的田地的田地数据。
在目标路径确认处理(步骤#2)中未存储有相应的目标路径P的情况下、在用户选择了不采用在存储路径选择处理(步骤#3)中读出的目标路径P的情况下、或者、在田地数据获取处理(步骤#6)中获取了田地数据的情况下,进行操作画面显示处理(步骤#7),在该操作画面显示处理(步骤#7)中,使前述的任意数据输入部33、优先项目选择部34、以及生成指令部35等与田地数据所包含的田地的形状等一起显示在液晶面板4上。据此,使用户进行与目标路径P的生成相关的任意设定数据的输入或者优先项目的选择。
在操作画面显示处理(步骤#7)中用户不利用任意数据输入部33输入任意设定数据而是利用优先项目选择部34选择了优先项目之后利用生成指令部35进行指令操作的情况下,进行第1目标路径生成处理(步骤#8),在该第1目标路径生成处理(步骤#8)中,基于前述的车身数据、田地数据以及所选择的优先项目,生成与优先项目相应的第1目标路径来作为目标路径P。
在操作画面显示处理(步骤#7)中用户不利用优先项目选择部34选择优先项目而是利用任意数据输入部33输入各任意设定数据之后利用生成指令部35进行了指令操作的情况下,进行第2目标路径生成处理(步骤#9),在该第2目标路径生成处理(步骤#9)中,基于前述的车身数据田地数据以及所输入各任意设定数据而生成第2目标路径来作为目标路径P。
在通过上述的各目标路径生成处理(步骤#8~9)生成目标路径P之后,进行生成路径选择处理(步骤#10),在该生成路径选择处理(步骤#10)中,将所生成的目标路径P与田地的形状、前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的目标路径P。
在生成路径选择处理(步骤#10)中用户选择了采用所生成的目标路径P的情况下,结束目标路径生成控制。
在生成路径选择处理(步骤#10)中用户选择了不采用所生成的目标路径P的情况下,返回到操作画面显示处理(步骤#7),再次使用户进行利用任意数据输入部33所进行的任意设定数据的输入、或者利用优先项目选择部34所进行的优先项目的选择等。而且,在此时的操作画面显示处理(步骤#7)中用户进行了利用任意数据输入部33所进行的任意设定数据的校正输入或追加输入、或者利用优先项目选择部34所进行的优先项目的追加选择等校正操作之后,利用生成指令部35进行了指令操作的情况下,移至目标路径校正处理(步骤#11),基于此次输入的任意设定数据或者此次选择的优先项目,对前次生成的目标路径P进行校正,然后,移至生成路径选择处理(步骤#10)。
接着,基于图2、图4~19,对通过目标路径生成部30D的第1目标路径生成处理或者第2目标路径生成处理所进行的目标路径P的生成进行详细叙述。
目标路径生成部30D在第1目标路径生成处理中,首先,基于前述的车身数据、田地数据以及所选择的优先项目,自动选定用于确定适合于田地的形状(例如图4中用虚线表示的田地的外周形状)的作业区域A的多个作业区域确定地点(图4中为4个部位的作业区域确定地点Ap1~Ap4)来确定作业区域A,将所选定的各作业区域确定地点Ap1~Ap4以及所确定的作业区域A与田地的形状等一起显示在液晶面板4上而告知给用户(参照图4)。
此外,若在确定作业区域A时,增多作业区域确定地点的数量,则能够确定忠实于田地的形状的作业区域A,但是,确定作业区域A所需的控制负荷变重。而且,忠实于田地的形状而确定的作业区域A未必适合于生成用于使拖拉机1自动行驶的目标路径P,需要考虑拖拉机1的作业宽度等来选定作业区域确定地点,以便实现针对田地的形状的作业区域A的适当简化。因此,能够选定的作业区域确定地点的数量被限制为规定数量(例如30个部位),以便能够抑制控制负荷变得过大并且能够确定适合于田地的形状的作业区域A。
接着,考虑优先项目等而自动地选定基准作业方向θp、自动行驶开始地点ps以及自动行驶结束地点pe,使所选定的基准作业方向θp、自动行驶开始地点ps以及自动行驶结束地点pe与作业区域A等一起显示在液晶面板4上而告知给用户(参照图4)。
然后,基于所确定的作业区域A、所选定的基准作业方向θp、自动行驶开始地点ps以及自动行驶结束地点pe,生成第1目标路径作为与优先项目相应的目标路径P,并使所生成的第1目标路径与作业区域A等一起显示在液晶面板4上而告知给用户。
目标路径生成部30D在通过用户利用任意数据输入部33(参照图2)进行触摸操作而选择了用于确定作业区域A的作业区域确定地点的输入并任意输入了多个作业区域确定地点(图4中为4个部位的作业区域确定地点Ap1~Ap4)的情况下,基于任意输入的各作业区域确定地点Ap1~Ap4而确定作业区域A,并使任意输入的各作业区域确定地点Ap1~Ap4以及所确定的作业区域A与田地的形状等一起显示在液晶面板4上而告知给用户(参照图4)。
另外,在通过用户利用任意数据输入部33进行触摸操作而选择了基准作业方向θp的输入并任意输入了基准作业方向θp的情况下,使任意输入的基准作业方向θp与作业区域A等一起显示在液晶面板4上而告知给用户(参照图4)。
此外,在通过用户利用任意数据输入部33进行触摸操作而选择了自动行驶开始地点ps以及自动行驶结束地点pe的输入并任意输入了自动行驶开始地点ps和自动行驶结束地点pe的情况下,使任意输入的自动行驶开始地点ps以及自动行驶结束地点pe与作业区域A等一起显示在液晶面板4上而告知给用户(参照图4)。
而且,在通过用户对生成指令部35(参照图2)进行操作而接收到来自生成指令部35的指令的情况下,通过第2目标路径生成处理,生成所确定的作业区域A和第2目标路径,第2目标路径是基于任意输入的基准作业方向θp、自动行驶开始地点ps以及自动行驶结束地点pe而生成的目标路径P,并使所生成的第2目标路径与作业区域A等一起显示在液晶面板4上而告知给用户。
目标路径生成部30D在通过用户在针对例如图5~6所示那样的矩形田地的操作画面显示处理中进行操作,如图5所示那样任意输入了用于确定能够在与田地的外周缘之间确保环绕行驶路径部(环绕行驶区域)P1的矩形作业区域A的多个作业区域确定地点(图5~6中为4个部位的作业区域确定地点Ap1~Ap4),并以与田地的出入口对应的方式任意输入了自动行驶开始地点ps与自动行驶结束地点pe,并且将基准作业方向θp任意输入为沿着作业区域A的短边的方向的状态下,接收到来自生成指令部35的指令的情况下,通过第2目标路径生成处理,生成图5所示的第2目标路径来作为目标路径P。然后,通过生成路径选择处理,使所生成的第2目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的第2目标路径。
图5所示的第2目标路径具有:多个第1直行作业路径部P2a,它们具有与作业区域A的短边相同的长度,且以隔开与作业宽度对应的一定距离的方式平行地配置设定;以及多个方向转换路径部P3,它们从相邻的第1直行作业路径部P2a的终端地点到始端地点为止,由此能够使拖拉机1从由用户任意输入的自动行驶开始地点ps自动行驶到自动行驶结束地点pe。
目标路径生成部30D在通过用户在针对例如图5~6所示那样的矩形田地的操作画面显示处理中进行操作,如图6所示那样任意输入了用于确定能够在与田地的外周缘之间确保环绕行驶路径部(环绕行驶区域)P1的矩形作业区域A的多个作业区域确定地点(图5~6中为4个部位的作业区域确定地点Ap1~Ap4),并以与田地的出入口对应的方式任意输入了自动行驶开始地点ps和自动行驶结束地点pe,并将基准作业方向θp任意输入为沿着作业区域A的长边的方向的此状态下,接收到来自生成指令部35的指令的情况下,通过第2目标路径生成处理,生成图6所示的第2目标路径来作为目标路径P。然后,通过生成路径选择处理,使所生成的第2目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的第2目标路径。
图6所示的第2目标路径具有:多个第2直行作业路径部P2b,它们具有与作业区域A的长边相同的长度,且以隔开与作业宽度对应的一定距离的方式平行地配置设定;以及多个方向转换路径部P3,它们从相邻的第2直行作业路径部P2b的终端地点到始端地点为止,由此能够使拖拉机1从由用户任意输入的自动行驶开始地点ps自动行驶到自动行驶结束地点pe。
而且,图6所示的第2目标路径与图5所示的第2目标路径相比,方向转换路径部P3的数量较少,拖拉机1的行驶距离较短,从而能够实现燃料消耗量的削减、作业时间的缩短等。另外,构成目标路径P的路径部数量较少,从而能够减轻生成目标路径P所需的负荷。
目标路径生成部30D在通过用户在针对例如图5~6所示那样的矩形田地的操作画面显示处理中进行操作而选择了环绕行驶路径部P1的适当化来作为优先项目的状态下,接收到来自生成指令部35的指令的情况下,如图5~6所示,通过第1目标路径生成处理,以可获得能够在与田地的外周缘之间确保环绕行驶路径部(环绕行驶区域)P1的矩形作业区域A的方式,自动地确定多个作业区域确定地点(图5~6中为4个部位的作业区域确定地点Ap1~Ap4)、自动行驶开始地点ps、自动行驶结束地点pe等,生成图5~6所示的2个系统的第1目标路径来作为与环绕行驶路径部P1的适当化相应的目标路径P。然后,通过生成路径选择处理,使所生成的2个系统的第1目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的2个系统的第1目标路径。
图5所示的第1目标路径具有前述的多个第1直行作业路径部P2a和多个方向转换路径部P3,由此能够使拖拉机1从目标路径生成部30D所确定的自动行驶开始地点ps自动行驶到自动行驶结束地点pe。
图6所示的第1目标路径具有前述的多个第2直行作业路径部P2b和多个方向转换路径部P3,由此能够使拖拉机1从目标路径生成部30D所确定的自动行驶开始地点ps自动行驶到自动行驶结束地点pe。
在该情况下,用户能够利用路径选择部32来选择是否将2个系统的第1目标路径采用为目标路径P。而且,在将这些第1目标路径中的任一个选择为目标路径P的情况下,能够使由未作业区域构成的环绕行驶路径部P1的横向宽度与作业宽度的整数倍相同或者大致相同,该未作业区域是在田地中央侧的作业区域A中通过拖拉机1的自动行驶而进行了耕耘作业之后剩余在作业区域A的周围的区域。其结果,容易通过拖拉机1的手动驾驶或者自动行驶来使拖拉机1进行环绕作业行驶。
在此,在针对图5~6所示的第1目标路径,用户例如根据与田地中的拖拉机1的出入口的关系而希望将自动行驶开始地点ps与自动行驶结束地点pe的位置对调的情况下,利用路径选择部32选择不采用图5~6所示的第1目标路径,之后,在进行了用于将自动行驶开始地点ps与自动行驶结束地点pe的位置对调的任意设定数据的输入校正后,如果利用生成指令部35进行指令操作,则通过目标路径生成部30D基于此来进行目标路径校正处理,能够生成在图5~6所示的第1目标路径中将自动行驶开始地点ps与自动行驶结束地点pe的位置进行了对调而得到的第1目标路径。
目标路径生成部30D在通过用户在针对例如图5~6所示那样的矩形田地的操作画面显示处理中进行操作而选择了作业面积的最大化和环绕行驶路径部的适当化来作为优先项目的状态下,接收到来自生成指令部35的指令的情况下,也通过第1目标路径生成处理,生成图5~6所示的2个系统的第1目标路径来作为目标路径P。然后,通过生成路径选择处理,使所生成的2个系统的第1目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的2个系统的第1目标路径。
目标路径生成部30D在通过用户在针对例如图5~6所示那样的矩形田地的操作画面显示处理中进行操作而选择了非作业行驶距离的最短化和环绕行驶路径部的适当化来作为优先项目的状态下,接收到来自生成指令部35的指令的情况下,如图6所示,通过第1目标路径生成处理,以可获得能够在与田地的外周缘之间确保环绕行驶路径部(环绕行驶区域)P1的矩形作业区域A并且使自动行驶距离所包含的非作业行驶距离变为最短的方式,自动地确定多个作业区域确定地点(图5~6中为4个部位的作业区域确定地点Ap1~Ap4)、自动行驶开始地点ps、自动行驶结束地点pe、基准作业方向θp等,从而生成图6所示的第1目标路径来作为目标路径P。然后,通过生成路径选择处理,使所生成的第1目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的第1目标路径。
图6所示的第1目标路径具有前述的多个第2直行作业路径部P2b和多个方向转换路径部P3,由此能够使拖拉机1从目标路径生成部30D所确定的自动行驶开始地点ps自动行驶到自动行驶结束地点pe。
在该情况下,图6所示的第1目标路径与图5所示的第1目标路径相比,方向转换路径部P3的数量较少,从而实现了非作业行驶距离的最短化。另外,能够使由未作业区域构成的环绕行驶路径部P1的横向宽度与作业宽度的整数倍相同或者大致相同,该未作业区域是在田地中央侧的作业区域A中通过拖拉机1的自动行驶而进行了耕耘作业之后剩余在作业区域A的周围的区域。其结果,能够实现由于非作业行驶距离的缩短而带来的燃料消耗量的削减、作业时间的缩短等,并且容易通过拖拉机1的手动驾驶或者自动行驶来使拖拉机1进行环绕作业行驶。
目标路径生成部30D在通过用户在针对例如图5~6所示那样的矩形田地的操作画面显示处理中进行操作而选择了作业面积的最大化、非作业行驶距离的最短化以及环绕行驶路径部的适当化来作为优先项目的状态下,接收到来自生成指令部35的指令的情况下,也通过第1目标路径生成处理,生成图6所示的第1目标路径来作为目标路径P。然后,通过生成路径选择处理,使所生成的第1目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的第1目标路径。
目标路径生成部30D在通过用户在针对例如图7~8所示的具有伸出部36的凹形状田地的操作画面显示处理中进行操作,如图7所示那样以使作业区域A变得最大的方式任意输入了用于将作业区域A确定为大致沿着田地的外周缘的凹形状的多个作业区域确定地点(图7中为8个部位的作业区域确定地点Ap1~Ap4),并以与田地的出入口对应的方式任意输入了自动行驶开始地点ps和自动行驶结束地点pe,并且将基准作业方向θp任意输入为沿着作业区域A的长边的方向的状态下,接收到来自生成指令部35的指令的情况下,通过第2目标路径生成处理,生成图7所示的第2目标路径来作为目标路径P。然后,通过生成路径选择处理,使所生成的第2目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的第2目标路径。
图7所示的第2目标路径具有:前述的多个第2直行作业路径部P2b;迂回作业路径部P4,其具备使耕耘作业中断而绕过伸出部36的迂回路径部分Pa,并与最终的第2直行作业路径部P2b相邻;以及多个方向转换路径部P3,它们从相邻的第2直行作业路径部P2b以及迂回作业路径部P4的终端地点到始端地点为止,由此能够使拖拉机1从由用户任意输入的自动行驶开始地点ps自动行驶到自动行驶结束地点pe。
在该情况下,在最终的第2直行作业路径部P2b中,与迂回路径部分Pa相邻的路径部分由于在拖拉机1在迂回路径部分Pa上自动行驶时被踩踏而成为未作业部分Pb,据此,最终的作业面积变得较窄。
目标路径生成部30D在通过用户在针对例如图7~8所示的具有伸出部36的凹形状田地的操作画面显示处理中进行操作,选择了作业面积的最大化来作为优先项目的状态下,接收到来自生成指令部35的指令的情况下,通过第1目标路径生成处理,首先求出因图7所示的迂回作业路径部P4的有无而产生的作业面积的差。
而且,在由于具有迂回作业路径部P4而作业面积变得较宽的情况下,如图7所示,以可获得能够生成迂回作业路径部P4的大致沿着田地的外周缘的凹形状的较宽的作业区域A的方式,自动地确定多个作业区域确定地点(图7中为8个部位的作业区域确定地点Ap1~Ap8)、自动行驶开始地点ps、自动行驶结束地点pe、基准作业方向θp等,由此生成图7所示的第1目标路径来作为目标路径P。然后,通过生成路径选择处理,使所生成的第1目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的第1目标路径。
相反,在由于具有迂回作业路径部P4而作业面积变得较窄的情况下,如图8所示,以可获得不生成迂回作业路径部P4的矩形的较窄的作业区域A的方式,自动地确定多个作业区域确定地点(图8中为4个部位的作业区域确定地点Ap1~Ap4)、自动行驶开始地点ps、自动行驶结束地点pe、基准作业方向θp等,由此生成图8所示的第1目标路径来作为目标路径P。然后,通过生成路径选择处理,使所生成的第1目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的第1目标路径。
图7所示的第1目标路径具有前述的多个第2直行作业路径部P2b、迂回作业路径部P4以及多个方向转换路径部P3,由此能够使拖拉机1从目标路径生成部30D所确定的自动行驶开始地点ps自动行驶到自动行驶结束地点pe。
图8所示的第1目标路径具有前述的多个第2直行作业路径部P2b和多个方向转换路径部P3,由此能够使拖拉机1从目标路径生成部30D所确定的自动行驶开始地点ps自动行驶到自动行驶结束地点pe。
目标路径生成部30D在通过用户在针对例如图7~8所示的具有伸出部36的凹形状田地的操作画面显示处理中进行操作,选择了非作业行驶距离的最短化来作为优先项目的状态下,接收到来自生成指令部35的指令的情况下,通过第1目标路径生成处理,生成图8所示的不包含迂回作业路径部P4的第1目标路径来作为目标路径P。然后,通过生成路径选择处理,使所生成的第1目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的第1目标路径。
也就是说,目标路径生成部30D在针对图7~8所示的具有伸出部36的凹形状田地而通过第1目标路径生成处理生成第1目标路径(目标路径P)的情况下,在确定作业区域A的阶段,对是确定需要迂回作业路径部P4的凹形状的较宽的作业区域A(参照图7)较好、还是确定不需要迂回作业路径部P4的矩形的较窄的作业区域A(参照图8)较好进行判断,在确定凹形状的较宽的作业区域A较好的情况下,在选定了进行该确定所需的大量的作业区域确定地点(图7中为8个部位的作业区域确定地点Ap1~Ap8)后,如前述那样生成第1目标路径。相反,在确定矩形的较窄的作业区域A较好的情况下,在选定了进行该确定所需的少量的作业区域确定地点(图8中为4个部位的作业区域确定地点Ap1~Ap4)后,如前所述生成第1目标路径。
目标路径生成部30D在通过用户在针对例如图9~12所示的具有伸出部37的大致矩形田地的操作画面显示处理中进行操作而选择了环绕行驶路径部的适当化作为优先项目的状态下,接收到来自生成指令部35的指令的情况下,通过第1目标路径生成处理,以可获得能够在与田地的外周缘之间确保环绕行驶路径部(环绕行驶区域)P1的矩形的作业区域A的方式,自动地确定多个作业区域确定地点(图9~12中为4个部位的作业区域确定地点Ap1~Ap4)、自动行驶开始地点ps、自动行驶结束地点pe等,由此生成图9所示的第1目标路径等来作为与环绕行驶路径部P1的适当化相应的目标路径P。然后,通过生成路径选择处理,使所生成的第1目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的第1目标路径。
在此,针对图9所示的第1目标路径,在用户例如根据与田地中的拖拉机1的出入口的关系而希望将自动行驶结束地点pe从图9所示的位置变更为图10~12所示的位置的情况下,在利用路径选择部32选择了不采用图9所示的第1目标路径后,将基准作业方向θp为沿着作业区域A的短边的方向并进行用于将自动行驶结束地点pe的位置变更为图10~12所示的位置的任意设定数据的输入校正,之后,如果利用生成指令部35进行指令操作,则通过目标路径生成部30D基于此来进行目标路径校正处理,能够生成例如图10~12所示的3个系统的第1目标路径来作为与变更后的自动行驶结束地点pe相应的第1目标路径。
图10所示的第1目标路径具有:前述的多个第1直行作业路径部P2a;迂回移动路径部P5,其具备绕过伸出部37的迂回路径部分Pa并与最终的第1直行作业路径部P2a相邻;以及多个方向转换路径部P3,它们从相邻的第1直行作业路径部P2a以及迂回移动路径部P5的终端地点到始端地点为止,由此能够使拖拉机1从目标路径生成部30D所确定的自动行驶开始地点ps自动行驶到由用户进行校正输入而得到的自动行驶结束地点pe。
图11所示的第1目标路径具有:前述的多个第1直行作业路径部P2a;多个方向转换路径部P3,它们从相邻的第1直行作业路径部P2a的终端地点到始端地点为止;以及环绕行驶路径部P1,其从最终的第1直行作业路径部P2a的终端地点到自动行驶结束地点pe为止,由此能够使拖拉机1从目标路径生成部30D所确定的自动行驶开始地点ps自动行驶到由用户进行校正输入而得到的自动行驶结束地点pe。
图12所示的第1目标路径具有:前述的多个第1直行作业路径部P2a;多个方向转换路径部P3,它们从相邻的第1直行作业路径部P2a的终端地点到始端地点为止;单个返回方向转换路径部P6,其从最终的第1直行作业路径部P2a的终端地点到与最终的第1直行作业路径部P2a相邻的倒数第2个第1直行作业路径部P2a的始端地点为止;以及移动路径部P7,其从倒数第2个第1直行作业路径部P2a的终端地点到自动行驶结束地点pe为止,由此通过在倒数第2个第1直行作业路径部P2a中进行第1次的移动行驶和第2次的作业行驶的路径设定,能够使拖拉机1从目标路径生成部30D所确定的自动行驶开始地点ps自动行驶到由用户进行校正输入而得到的自动行驶结束地点pe。
在该情况下,用户通过目标路径生成部30D的生成路径选择处理,能够利用路径选择部32选择是否采用3个系统的第1目标路径来作为目标路径P。
在选择了图10所示的第1目标路径作为目标路径P的情况下,目标路径P中的非作业行驶距离比较短,从而能够实现由于非作业行驶距离的缩短而带来的燃料消耗量的削减、作业时间的缩短等。与之相反,在最终的第1直行作业路径部P2a中,与迂回路径部分Pa相邻的路径部位由于在拖拉机1在迂回路径部分Pa上自动行驶时被踩踏而成为未作业部分Pb,据此,最终的作业面积变窄。
在选择图11所示的第1目标路径作为目标路径P的情况下,可以在整个作业区域A进行作业,并且能够避免产生如下不良情况:因拖拉机1在目标路径P的重复的同一路径部分行驶多次的重复行驶而使得该路径部分被踩实而难以进行作业。与之相反,由于具有环绕行驶路径部P1,目标路径P中的非作业行驶距离变长,据此,燃料消耗量变多并且作业时间变长。
在选择图12所示的第1目标路径作为目标路径P的情况下,可以在整个作业区域A进行作业,并且目标路径P中的非作业行驶距离变短,从而能够实现由于非作业行驶距离的缩短而带来的燃料消耗量的削减、作业时间的缩短等。与之相反,有可能导致如下不良情况:因拖拉机1在倒数第2个第1直行作业路径部P2a行驶2次的重复行驶而使得该倒数第2个第1直行作业路径部P2a被踩实而难以进行作业。
目标路径生成部30D在通过用户在针对例如图9~12所示的具有伸出部37的大致矩形田地的操作画面显示处理中进行手动操作,如图10所示任意输入了用于将作业区域A确定为与田地的形状不同的矩形的多个作业区域确定地点(图10中为4个部位的作业区域确定地点Ap1~Ap4),并以与田地的出入口对应的方式任意输入了自动行驶开始地点ps和自动行驶结束地点pe,并将基准作业方向θp任意输入为沿着作业区域A的短边的方向的状态下,接收到来自生成指令部35的指令的情况下,通过第2目标路径生成处理,生成图10所示的第2目标路径来作为目标路径P。然后,通过生成路径选择处理,使所生成的第2目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的第2目标路径。
在此,在针对图10所示的第2目标路径,用户例如对最终的第1直行作业路径部P2a中的未作业部分Pb的产生感到不满的情况下,在利用路径选择部32选择了不采用图10所示的第2目标路径后,选择作业面积的最大化作为校正用的优先项目,之后,如果利用生成指令部35进行指令操作,则通过目标路径生成部30D基于此进行目标路径校正处理,能够生成例如图11~12所示的2个系统的第2目标路径来作为基于作业面积的最大化而校正后的第2目标路径,
另外,在如上述那样对图10所示的第2目标路径感到不满的情况下,例如,在利用路径选择部32选择了不采用图10所示的第2目标路径后,选择作业面积的最大化和避免重复路径部P0的生成来作为校正用的优先项目,之后,如果利用生成指令部35进行指令操作,则通过目标路径生成部30D基于此进行目标路径校正处理,能够生成例如图11所示的第2目标路径来作为基于作业面积的最大化和避免重复路径部P0的生成而校正后的第2目标路径。
此外,在如上述那样对图10所示的第2目标路径感到不满的情况下,例如,在利用路径选择部32选择了不采用图10所示的第2目标路径后,选择作业面积的最大化和非作业行驶距离的最短化来作为校正用的优先项目,之后,如果利用生成指令部35进行指令操作,则通过目标路径生成部30D基于此进行目标路径校正处理,能够生成例如图12所示的第2目标路径来作为基于作业面积的最大化和非作业行驶距离的最短化而校正后的第2目标路径。
目标路径生成部30D在通过用户在针对例如图13~15所示的具有伸出部38的凹形状田地的操作画面显示处理中进行操作,如图13所示任意输入了用于将作业区域A确定为与田地的形状类似的凹形状的多个作业区域确定地点(图13中为8个部位的作业区域确定地点Ap1~Ap8),并以与田地的出入口对应的方式任意输入了自动行驶开始地点ps和自动行驶结束地点pe,并将基准作业方向θp任意输入为沿着作业区域A的长边的方向的状态下,接收到来自生成指令部35的指令的情况下,通过第2目标路径生成处理,生成图13所示的第2目标路径来作为目标路径P。然后,通过生成路径选择处理,使所生成的第2目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的第2目标路径。
图13所示的第2目标路径具有:前述的多个第2直行作业路径部P2b;2条迂回作业路径部P4,它们具有绕过伸出部38的共通的迂回路径部分Pa;以及多个方向转换路径部P3,它们从相邻的第1直行作业路径部P2a以及迂回作业路径部P4的终端地点到始端地点为止,由此能够使拖拉机1从由用户任意输入的自动行驶开始地点ps自动行驶到自动行驶结束地点pe。
在该情况下,共通的迂回路径部分Pa成为在拖拉机1的自动行驶中拖拉机1重复行驶的重复路径部P0,据此,有可能导致如下不良情况:迂回路径部分Pa因拖拉机1的重复行驶被踩实而难以进行作业。
目标路径生成部30D在通过用户在针对例如图13~15所示的具有伸出部38的凹形状田地的操作画面显示处理中进行操作而选择了环绕行驶路径部的适当化作为优先项目的状态下,接收到来自生成指令部35的指令的情况下,通过第1目标路径生成处理,以可获得能够在与田地的外周缘之间确保环绕行驶路径部(环绕行驶区域)P1的凹形状的作业区域A的方式,自动地确定多个作业区域确定地点(图13~14中为8个部位的作业区域确定地点Ap1~Ap8,图15中为9个部位的作业区域确定地点Ap1~Ap9)、自动行驶开始地点ps、自动行驶结束地点pe等,由此生成图13所示的第1目标路径等来作为与环绕行驶路径部P1的适当化相应的目标路径P。然后,通过生成路径选择处理,使所生成的第1目标路径与前述的路径选择部32等一起显示在液晶面板4上,使用户选择是否采用所生成的第1目标路径。
在此,在针对图13所示的第1目标路径,用户例如对重复路径部P0的存在感到不满的情况下,利用路径选择部32选择了不采用图13所示的第1目标路径等后,选择避免重复路径部P0的生成来作为校正用的优先项目,之后,如果利用生成指令部35进行指令操作,则通过目标路径生成部30D基于此进行目标路径校正处理,能够生成例如图14~15所示的2个系统的第1目标路径来作为基于避免重复路径部P0的生成而校正后的第1目标路径。
目标路径生成部30D生成图15所示的第1目标路径时,选定9个部位的作业区域确定地点Ap1~Ap9,将凹形状的作业区域A自动地划分成区域较宽的L字形状的第1区域A1、以及区域较窄的矩形的第2区域A2这2个区域,自动地确定第1区域A1以及第2区域A2中的行驶开始地点和行驶结束地点。
图14所示的第1目标路径具有:前述的多个第2直行作业路径部P2b;2条迂回作业路径部P4,它们具备绕过伸出部38的迂回路径部分Pa;以及多个方向转换路径部P3,它们从相邻的第1直行作业路径部P2a以及迂回作业路径部P4的终端地点到始端地点为止,由此能够使拖拉机1从目标路径生成部30D所确定的自动行驶开始地点ps自动行驶到自动行驶结束地点pe。也就是说,图14所示的第1目标路径具有2条迂回作业路径部P4,从而不存在图13所示的第1目标路径中生成的拖拉机1重复行驶的重复路径部P0,据此,能够避免该重复路径部P0被踩实而难以进行作业这样的不良情况的发生。
图15所示的第1目标路径具有:前述的多个第2直行作业路径部P2b,它们生成于第1区域A1的宽广区域部;多个第3直行作业路径部P2c,它们通过与第2直行作业路径部P2b同样的配置设定而生成于第1区域A1的狭窄区域部;第4直行作业路径部P2d,其通过与第2直行作业路径部P2b同样的配置设定而生成于第2区域A2;多个方向转换路径部P3,它们从相邻的第1直行作业路径部P2a~第4直行作业路径部P2d的终端地点到始端地点为止;以及单个迂回移动路径部P8,其具备绕过伸出部38的迂回路径部分Pa,并从第1区域A1中的行驶终端地点到第2区域A2中的行驶开始地点为止,由此能够使拖拉机1从目标路径生成部30D所确定的自动行驶开始地点ps自动行驶到自动行驶结束地点pe。也就是说,图15所示的第1目标路径具有单个迂回移动路径部P8,从而不存在图13所示的在第1目标路径中生成的拖拉机1重复行驶的重复路径部P0,据此,能够避免该重复路径部P0被踩实而难以进行作业这样的不良情况的发生。
目标路径生成部30D在通过用户在针对例如图16~17所示的梯形田地的操作画面显示处理中进行操作,如图16所示任意输入了用于将作业区域A确定为与田地的形状不同的矩形的多个作业区域确定地点(图16中为4个部位的作业区域确定地点Ap1~Ap4),并以与田地的出入口对应的方式任意输入了自动行驶开始地点ps和自动行驶结束地点pe,并且将基准作业方向θp任意输入为沿着作业区域A的长边的方向的状态下,接收到来自生成指令部35的指令的情况下,通过第2目标路径生成处理,生成图16所示的第2目标路径来作为目标路径P。
图16所示的第2目标路径具有:前述的多个第2直行作业路径部P2b;以及多个方向转换路径部P3,它们从相邻的第2直行作业路径部P2b的终端地点到始端地点为止,由此能够使拖拉机1从由用户任意输入的自动行驶开始地点ps自动行驶到自动行驶结束地点pe。
目标路径生成部30D在通过用户在针对例如图16~17所示的梯形田地的操作画面显示处理中进行操作,如图17所示那样选择了环绕行驶路径部P1的适当化来作为优先项目的状态下,接收到来自生成指令部35的指令的情况下,通过第1目标路径生成处理,以可获得能够在与田地的外周缘之间确保环绕行驶路径部(环绕行驶区域)P1的梯形的作业区域A的方式,自动地确定多个作业区域确定地点(图17中为4个部位的作业区域确定地点Ap1~Ap4)、自动行驶结束地点pe、作业宽度等,由此生成图17所示的第1目标路径作为目标路径P。
图17所示的第1目标路径具有:前述的多个第2直行作业路径部P2b;以及多个方向转换路径部P3,它们从相邻的第2直行作业路径部P2b的终端地点到始端地点为止,由此能够使拖拉机1从目标路径生成部30D所确定的自动行驶开始地点ps自动行驶到自动行驶结束地点pe。
对于图17所示的第1目标路径中的多个第2直行作业路径部P2b而言,基于作业区域A是梯形,各第2直行作业路径部P2b的方位设定为相对于基准作业方向θp具有不同的调整角θa,以便当拖拉机1在第2直行作业路径部P2b自动行驶时,作业宽度的重复量根据梯形的作业区域A而逐渐变化。
据此,能够使由未作业区域构成的环绕行驶路径部P1的横向宽度与作业宽度的整数倍相同或者大致相同,该未作业区域是在田地中央侧的作业区域A中通过拖拉机1的自动行驶而进行了耕耘作业之后剩余在作业区域A的周围的区域。其结果,能够容易通过拖拉机1的手动驾驶或者自动行驶而使拖拉机1进行环绕作业行驶。
目标路径生成部30D在通过用户例如在操作画面显示处理中进行操作,任意输入了利用了适用于最小转弯半径大于作业宽度的一半的情况的之字(switchback)的图19所示的之字转弯来作为转弯方法,而不是任意输入了适用于最小转弯半径在作业宽度的一半以下的情况的通常的图18所示的U字转弯来作为转弯方法的状态下,通过第2目标路径生成处理,生成具有图19所示的之字转弯用的第2方向转换路径部P3b的第2目标路径来作为目标路径P,之后,在选择了作业面积的最大化来作为校正用的优先项目的状态下接收到来自生成指令部35的指令的情况下,通过目标路径校正处理,首先,根据车身数据所包含的拖拉机1的最小转弯半径和作业宽度来判别是否适合采用之字转弯。而且,在适合采用之字转弯的情况下,使用任意输入的之字转弯,在图19所示的之字转弯用的第2方向转换路径部P3b中生成前述的方向转换路径部P3。另外,在不适合采用之字转弯的情况下,将转弯方法从任意输入的之字转弯变更为U字转弯,在图18所示的U字转弯用的第1方向转换路径部P3a中生成前述的方向转换路径部P3。而且,通过该转弯方法的变更,能够消除为了采用具有作业宽度更大的之字路径部Pc的之字转弯而必须在田地中予以确保的田埂侧的非作业区域A3,据此,能够实现作业面积的最大化。
虽然省略图示,但是,目标路径生成部30D在生成多个目标路径P的情况下,进行求出基于这些目标路径P而形成的作业面积、非作业行驶距离等的差的运算处理,进行如下差值显示处理,即,将通过该运算处理而获得的作业面积、非作业行驶距离等的差与所生成的多个目标路径P一起显示在液晶面板4上而告知用户。
据此,用户在目标路径生成部30D生成了多个目标路径P的情况下,能够容易目视确认它们的差,能够容易选择更适合于自身的价值观等的目标路径P。
目标路径生成部30D将所生成的目标路径P作为与车身数据以及田地数据等建立了关联的路径数据并存储于终端存储部30A。
据此,目标路径生成部30D能够进行如下处理:基于定位数据获取部30B所获取的拖拉机1的当前位置进行的前述的田地数据确认处理、以及基于该田地数据与车身数据进行的前述的目标路径确认处理。
虽然省略图示,但是,目标路径生成部30D在由于通过用户在操作画面显示处理中进行操作而输入的任意设定数据不适当,从而无法基于任意设定数据而生成目标路径P的情况下,进行如下处理:使无法生成目标路径P的情况及其原因显示在液晶面板4上而告知给用户的错误显示处理、以及使其解决对策显示在液晶面板4上而给用户提供建议的解决对策显示处理。
例如,在根据通过用户在操作画面显示处理中进行操作而输入的多个作业区域确定地点来确定的作业区域A过于狭窄从而无法生成目标路径P的情况下,首先,在错误显示处理中,使“目标路径生成错误”和“因作业区域过于狭窄而不能生成目标路径。”等错误消息显示在液晶面板4上而告知给用户。然后,在解决对策显示处理中,使作业对象的田地的形状、对于该田地的形状而言适当的作业区域A、以及用于确认设定变更为该适当的作业区域A的消息等显示在液晶面板4上而告知给用户。
例如,在根据通过用户在操作画面显示处理中进行操作而输入的多个作业区域确定地点来确定的作业区域的形状过于复杂从而无法生成目标路径P的情况下,首先,在错误显示处理中,使“目标路径生成错误”和“因作业区域过于复杂而不能生成目标路径。”等错误消息显示在液晶面板4上而告知给用户。然后,在解决对策显示处理中,使作业对象的田地的形状、针对该田地的形状而适当地简化了的作业区域A、用于确认设定变更为该简化了的作业区域A的消息等显示在液晶面板4上而告知给用户。
例如,在通过用户在操作画面显示处理中进行操作而输入的基准作业方向θp不适当从而无法生成目标路径P的情况下,首先,在错误显示处理中,使“目标路径生成错误”和“因基准作业方向不适当而不能生成目标路径。”等错误消息显示在液晶面板4上而告知给用户。然后,在解决对策显示处理中,使作业对象的田地的形状、对于该田地的形状而言适当的基准作业方向θp、用于确认设定变更为该适当的基准作业方向θp的消息等显示在液晶面板4上而告知给用户。
基于以上内容,根据该目标路径生成系统,在生成自动行驶用的目标路径P的情况下,用户能够选择:在任意数据输入部33中任意地输入生成目标路径P所需的全部任意设定数据的通常操作、以及在优先项目选择部34中进行与自身的价值观等相应的优先项目的选择操作的简易操作。
据此,在用户习惯于任意设定数据的输入操作的情况下,通过进行通常操作,能够基于自身的价值观等获得目标路径P(第2目标路径)。另外,在用户不擅长任意设定数据的输入操作的情况下,通过进行简易操作,能够不花费工夫地获得适合于自身的价值观等的目标路径P(第1目标路径)。而且,在用户对所生成的目标路径P感到不满的情况下,进行利用任意数据输入部33所进行的任意设定数据的校正输入或者追加输入、或者、利用优先项目选择部34所进行的优先项目的追加选择等来作为用于消除该不满的校正操作,由此能够获得消除了不满的目标路径P。
〔其它实施方式〕
对本发明的其它实施方式进行说明。
此外,以下说明的各实施方式的结构并不限定于分别单独地应用,也能够与其它实施方式的结构相组合来应用。
(1)作业车辆用的目标路径生成系统可以包含于作业车辆1。
(2)作业车辆1的结构能够进行各种变更。
例如,作业车辆1可以构成为:具备发动机10与行驶用的电动马达的混合动力形式,另外,也可以构成为:代替发动机10而具备行驶用的电动马达的电动形式。
例如,作业车辆也可以构成为:左右后轮8作为转向轮而发挥功能的后轮转向形式。
例如,作业车辆1可以构成为:代替左右后轮8而具备左右履带的半履带形式。
例如,作业车辆1可以构成为:代替左右前轮7与左右后轮8而具备左右履带的全履带形式。
(3)目标路径生成部30D可以构成为:在生成基于任意设定数据的第2目标路径来作为目标路径P时,自动地生成基于优先项目的第1目标路径,在显示部4上,显示第2目标路径和第1目标路径,并且,显示第2目标路径与第1目标路径的基于优先项目的差。
(4)目标路径生成部30D可以构成为:在生成基于所选择的优先项目的第1目标路径来作为目标路径P时,自动地生成基于其它优先项目的第1目标路径,在显示部4上,显示这些第1目标路径,并且显示这些第1目标路径的基于优先项目的差。
(5)优先项目选择部34可以构成为:作为前述的优先项目,具有燃料消耗量的削减、作业时间的缩短、或者目标路径P中的各路径部数量的削减等。
(6)路径选择部32、任意数据输入部33、优先项目选择部34可以构成为:由例如具备按键开关的键盘等构成。
产业上的利用可能性
本发明能够应用于生成目标路径的作业车辆用的目标路径生成系统,目标路径用于供如下车辆自动行驶:构成为能够自动行驶的拖拉机、乘坐式插秧机、联合收割机、乘坐式割草机、轮式装载机、除雪车等乘坐式作业车辆;以及无人割草机等无人作业车辆。
附图标记说明
4 显示部
30A 存储部
30D 目标路径生成部
32 路径选择部
33 任意数据输入部
34 优先项目选择部
P 目标路径

Claims (7)

1.一种作业车辆用的目标路径生成系统,其特征在于,具备:
存储部,该存储部对生成自动行驶用的目标路径所需的基本数据进行存储,
优先项目选择部,该优先项目选择部对与所述目标路径的生成相关的优先项目进行选择;以及
目标路径生成部,该目标路径生成部基于所述基本数据和所选择的优先项目来生成所述目标路径。
2.根据权利要求1所述的作业车辆用的目标路径生成系统,其特征在于,
具有路径选择部,在所述目标路径生成部生成了多个所述目标路径的情况下,该路径选择部从这些多个所述目标路径中择一地进行选择。
3.根据权利要求2所述的作业车辆用的目标路径生成系统,其特征在于,
所述目标路径生成部针对一个所述优先项目而生成多个所述目标路径。
4.根据权利要求1或2所述的作业车辆用的目标路径生成系统,其特征在于,
具有任意数据输入部,该任意数据输入部输入目标路径生成用的任意设定数据,
所述目标路径生成部生成包含第1目标路径和第2目标路径在内的多个所述目标路径,所述第1目标路径基于所述基本数据和所述优先项目而生成;所述第2目标路径基于所述基本数据和所述任意设定数据而生成。
5.根据权利要求2~4中任一项所述的作业车辆用的目标路径生成系统,其特征在于,
具有对所述目标路径进行显示的显示部,
在所述目标路径生成部生成了多个所述目标路径的情况下,所述显示部将多个所述目标路径的差与这些多个所述目标路径一起进行显示。
6.根据权利要求1~5中任一项所述的作业车辆用的目标路径生成系统,其特征在于,
具有任意数据输入部,该任意数据输入部输入目标路径生成用的任意设定数据中的至少一部分,
所述目标路径生成部基于所述任意设定数据来校正所述目标路径。
7.根据权利要求1~6中任一项所述的作业车辆用的目标路径生成系统,其特征在于,
所述优先项目中包含:作业面积的最大化、非作业行驶距离的最短化、沿着所述作业地的外周的环绕行驶路径部的适当化、以及避免重复路径部分的生成之中的至少1个。
CN201880079167.8A 2017-12-06 2018-10-12 作业车辆用的目标路径生成系统 Pending CN111448530A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017-234512 2017-12-06
JP2017234512A JP7027142B2 (ja) 2017-12-06 2017-12-06 作業車両用の目標経路生成システム
PCT/JP2018/038142 WO2019111535A1 (ja) 2017-12-06 2018-10-12 作業車両用の目標経路生成システム

Publications (1)

Publication Number Publication Date
CN111448530A true CN111448530A (zh) 2020-07-24

Family

ID=66751408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880079167.8A Pending CN111448530A (zh) 2017-12-06 2018-10-12 作业车辆用的目标路径生成系统

Country Status (6)

Country Link
US (3) US11314261B2 (zh)
EP (1) EP3722905B1 (zh)
JP (1) JP7027142B2 (zh)
KR (1) KR20200088268A (zh)
CN (1) CN111448530A (zh)
WO (1) WO2019111535A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034866B2 (ja) * 2018-08-20 2022-03-14 株式会社クボタ 収穫機
US20210404812A1 (en) * 2018-11-19 2021-12-30 Kubota Corporation Traveling assisting device for work vehicle and the work vehicle
JP7229119B2 (ja) * 2019-07-29 2023-02-27 ヤンマーパワーテクノロジー株式会社 自動走行システム
JP7155097B2 (ja) * 2019-11-29 2022-10-18 株式会社クボタ 自動走行制御システム、及び、コンバイン
JP7191001B2 (ja) * 2019-11-29 2022-12-16 株式会社クボタ 自動走行システム
JP7473360B2 (ja) 2020-02-27 2024-04-23 三菱マヒンドラ農機株式会社 自動制御装置
JP7349147B2 (ja) * 2020-03-31 2023-09-22 国立研究開発法人農業・食品産業技術総合研究機構 圃場作業車両の走行経路設定装置、走行経路設定方法および走行経路設定用プログラム
US20230202451A1 (en) * 2020-05-28 2023-06-29 Kawasaki Motors, Ltd. Utility vehicle
US20210405644A1 (en) * 2020-06-30 2021-12-30 Cnh Industrial America Llc System and method for implementing end-of-row turns for agricultural machines
JP2023164760A (ja) * 2020-09-23 2023-11-13 村田機械株式会社 自律走行経路計画方法
JP7461849B2 (ja) 2020-10-06 2024-04-04 ヤンマーホールディングス株式会社 自律走行システム、自律走行方法、及び自律走行プログラム
US20220135122A1 (en) * 2020-10-30 2022-05-05 Dana Belgium N.V. Vehicle steering system
JP7466201B2 (ja) 2021-02-19 2024-04-12 国立研究開発法人農業・食品産業技術総合研究機構 圃場作業車両の走行経路設定装置、走行経路設定方法および走行経路設定用プログラム
JP2023119867A (ja) * 2022-02-17 2023-08-29 ヤンマーホールディングス株式会社 自動走行方法、作業車両及び自動走行システム
JP2023127875A (ja) * 2022-03-02 2023-09-14 ヤンマーホールディングス株式会社 自動走行方法、自動走行システム、及び自動走行プログラム
JP2023150418A (ja) * 2022-03-31 2023-10-16 ヤンマーホールディングス株式会社 経路生成方法、経路生成システム、及び経路生成プログラム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19629618A1 (de) * 1996-07-23 1998-01-29 Claas Ohg Routenplanungssystem für landwirtschaftliche Arbeitsfahrzeuge
US6907336B2 (en) * 2003-03-31 2005-06-14 Deere & Company Method and system for efficiently traversing an area with a work vehicle
US8407157B2 (en) * 2003-12-22 2013-03-26 Deere & Company Locating harvested material within a work area
DE102004027242A1 (de) * 2004-06-03 2005-12-22 Claas Selbstfahrende Erntemaschinen Gmbh Routenplanungssystem für landwirtschaftliche Arbeitsmaschinen
JP4609886B2 (ja) * 2005-02-22 2011-01-12 アルパイン株式会社 ナビゲーション装置
US8060299B2 (en) * 2007-02-28 2011-11-15 Caterpillar Inc. Machine with automated steering system
JP5324286B2 (ja) 2009-03-30 2013-10-23 株式会社国際電気通信基礎技術研究所 ネットワークロボットシステム、ロボット制御装置、ロボット制御方法およびロボット制御プログラム
JP2012185086A (ja) 2011-03-07 2012-09-27 Jvc Kenwood Corp ナビゲーション装置、ナビゲーション方法、およびプログラム
US10973163B2 (en) * 2014-05-11 2021-04-13 Cnh Industrial America Llc Mission control system and method for an agricultural system
JP6267626B2 (ja) 2014-11-13 2018-01-24 ヤンマー株式会社 走行経路設定装置
CN107111936B (zh) * 2015-01-16 2020-04-17 三菱电机株式会社 行驶计划生成装置及行驶计划生成方法
FR3042943B1 (fr) * 2015-11-03 2017-11-10 Kuhn Sa Attelage agricole avec un systeme de gestion et de guidage de manœuvres et procede mis en œuvre par cet attelage
BR102016024151B1 (pt) * 2016-01-06 2021-10-13 Cnh Industrial America Llc Meio legível por computador não transitório tangível, sistema e método para controlar pelo menos um veículo agrícola autônomo
JP2017127290A (ja) 2016-01-22 2017-07-27 ヤンマー株式会社 農業用作業車両
JP6531055B2 (ja) 2016-03-24 2019-06-12 ヤンマー株式会社 経路生成装置
JP6437479B2 (ja) 2016-03-22 2018-12-12 ヤンマー株式会社 経路生成装置
US10368475B2 (en) * 2016-04-19 2019-08-06 CropZilla Software, Inc. Machine guidance for optimal working direction of travel
JP6688197B2 (ja) * 2016-09-09 2020-04-28 ヤンマー株式会社 自律走行システム
US11320279B2 (en) * 2016-12-02 2022-05-03 Kubota Corporation Travel route management system and travel route determination device

Also Published As

Publication number Publication date
JP2019101932A (ja) 2019-06-24
EP3722905B1 (en) 2024-04-10
JP7027142B2 (ja) 2022-03-01
US20220221874A1 (en) 2022-07-14
US11662734B2 (en) 2023-05-30
EP3722905A1 (en) 2020-10-14
US20200363811A1 (en) 2020-11-19
US11314261B2 (en) 2022-04-26
EP3722905A4 (en) 2021-05-26
US20230259136A1 (en) 2023-08-17
WO2019111535A1 (ja) 2019-06-13
KR20200088268A (ko) 2020-07-22

Similar Documents

Publication Publication Date Title
CN111448530A (zh) 作业车辆用的目标路径生成系统
KR102283928B1 (ko) 자율 주행 경로 생성 시스템
JP6908510B2 (ja) 走行経路設定装置
CN109716253B (zh) 路径生成系统
JP2018120491A (ja) 経路生成システム、及びそれによって生成された経路に沿って作業車両を走行させる自律走行システム
CN113194707A (zh) 自主行驶系统
WO2020235470A1 (ja) 自動走行システム
JP6986430B2 (ja) 走行経路設定装置
JP2023016880A (ja) 作業車両用の自動走行システム、及び作業車両用の自動走行方法
JP2023101605A (ja) 自動走行制御システム及び自律走行制御方法
JP7022161B2 (ja) 自律走行システム
JP7311656B2 (ja) 作業車両用の目標経路生成システム
JP2021081822A (ja) 自律走行システム
JP6860640B2 (ja) 経路生成システム
JP2024027234A (ja) 自動走行方法、自動走行システム、および、プログラム
JP2024007652A (ja) 自動走行方法、自動走行システム、およびプログラム
CN113196196A (zh) 行驶状态显示装置、以及自动行驶系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination