CN111373049A - 用于dna数据存储的进行性酶分子电子传感器 - Google Patents

用于dna数据存储的进行性酶分子电子传感器 Download PDF

Info

Publication number
CN111373049A
CN111373049A CN201880055129.9A CN201880055129A CN111373049A CN 111373049 A CN111373049 A CN 111373049A CN 201880055129 A CN201880055129 A CN 201880055129A CN 111373049 A CN111373049 A CN 111373049A
Authority
CN
China
Prior art keywords
dna
electrode
sensor
molecule
processive enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880055129.9A
Other languages
English (en)
Inventor
巴瑞·迈瑞曼
蒂姆·吉索
保罗·莫拉
吉娜·科斯塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roswell Biotechnologies Inc
Original Assignee
Roswell Biotechnologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roswell Biotechnologies Inc filed Critical Roswell Biotechnologies Inc
Publication of CN111373049A publication Critical patent/CN111373049A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/007Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving isoenzyme profiles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/07Arithmetic codes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Abstract

公开了一种用于DNA数据存储系统的进行性酶分子传感器,其可提取适当编码到合成DNA分子中的数字信息。在各个方面,以高密度的基于芯片的格式提供这样的传感器,其能提供大规模DNA数据存储系统所需的高吞吐量、低成本和快速的数据提取能力。用于读取存储在DNA分子中的数字数据的传感器直接处理单个编码DNA分子,从而无需进行复杂的样品制备,诸如复制DNA或此类分子的克隆种群。

Description

用于DNA数据存储的进行性酶分子电子传感器
相关申请的交叉引用
本申请要求于2017年8月30日提交的标题为“用于DNA数据存储的进行性酶分子电子传感器”的美国临时专利申请62/551,977的优先权和权益,该临时专利申请的公开内容出于所有目的通过完整引用结合在此。
技术领域
本公开总体涉及电子数据存储和检索,更具体地说涉及一种DNA信息和检索系统,其包括用于读取存储为DNA分子的信息的分子电子传感器。
背景技术
20世纪中数字计算的出现产生了对大量数字或二进制数据进行归档存储的需求。归档存储旨在以极低的成本长期(例如数年、数十年或更长时间)存储大量数据,并支持罕有的重新访问数据的需求。虽然归档存储系统可能具有以极低的成本保存无限数量的数据的能力(例如通过能够长时间保持休眠状态的物理存储介质存储),但是这种系统中的数据写入和恢复过程可能较慢或成本高昂。迄今为止开发的归档数字数据存储的主要形式包括磁带以及最近的紧凑型光盘(CD)。但是,随着数据产生量的增加,需要更高的密度、更低成本且更持久的归档数字数据存储系统。
据观察,在生物学中,活生物体的基因组DNA作为数字信息归档存储的一种形式。在可能延续数千年至数百万年的物种存在时间尺度上,基因组DNA实际上存储定义该物种的遗传生物学信息。在物种的生物学、繁殖和生存中所体现的复杂的酶促生化过程提供了编写、读取和维护这种信息档案的方式。这种观察激发了一种想法,即,可利用DNA的基本信息存储能力作为更常见形式的数字信息的高密度、长期归档存储的基础。
使DNA成为具有吸引力的信息存储装置的因素是由分子规模的信息存储引起的极高信息密度。例如,从理论上说,迄今为止记录的所有人类产生的数字信息(估计大约为1ZB(1021字节))可记录在不到1022个DNA碱基或1/60摩尔DNA碱基中,其质量只有10克。除了高数据密度外,DNA还是非常稳定的分子,能很轻松地存留数千年而不发生成实质性损坏,并且可能存留长达数万年甚至数百万年的更长时间,正如在冻结在永久冻土中或包封在琥珀中的DNA的情况中所自然观察到的。
发明内容
在本公开的多个实施例中,提供了一种用于DNA数据存储系统的数据读取器。尤其是,本发明公开了一种可提取合成编码到单个DNA分子中的数字信息的传感器。如本文中所公开的,用作DNA编码数据读取器的传感器是进行性酶分子传感器。在各个方面,以高密度的基于芯片的格式提供多个这样的传感器的阵列,这些传感器能提供大规模DNA数据存储系统所需的高吞吐量、低成本和快速的数据提取能力。在多个实施例中,用于读取存储在DNA分子中的数字数据的传感器直接处理各个编码DNA分子,从而无需进行复杂的样品制备,诸如复制DNA或此类分子的克隆种群。
在多个方面中,提取编码在DNA分子中的信息所需的基本时间很短,大约为数秒,这从根本上实现了很短的数据恢复周转时间。从DNA分子提取信息的速度取决于作用在DNA上的进行性酶的速率,该速率可能非常快,短至数分之一秒。在多个方面中,信息可未经修饰地编码在天然DNA中,可根据需要对该天然DNA进行复制、拷贝或扩增。此外,还公开了一种增强信噪比的简单手段。可按高度可扩展、低成本的CMOS芯片形式部署传感器,从而实现高效的批量生产、很低成本的系统和仪器,并使读取存储在DNA中的数字数据的总成本很低。从DNA数据读取EB级数字数据所需的系统和仪器可以是非常紧凑和高效节能的,以支持在现场数据中心本地进行实用、稳健的部署,并支持高度可扩展的基于云的归档数据存储服务。本文中的用于信息提取的传感器提供用于读取存储在DNA中的数据的系统,该系统在速度、吞吐量和成本等方面的性能超过各种读取以常规归档存储格式(例如磁带或光盘)归档的数据的读取器系统的性能。本公开提供了使DNA数字数据存储系统能够进行实用的EB级存储和ZB级存储的技术。
在本公开的多个实施例中,公开了一种传感器。在多个方面中,该传感器包括进行性酶分子电子传感器。在多个示例中,该传感器包括:第一电极;与第一电极隔开一定电极间隙的第二电极;缀合至第一和第二电极的进行性酶,该进行性酶包括天然或基因工程的聚合酶、逆转录酶、解旋酶、核酸外切酶或用于包装病毒DNA的分子马达;以及电连接至第一电极和第二电极中的至少一个的跨阻放大器,该跨阻放大器提供包括可测电参数的输出;其中所述可测电参数包括与进行性酶的酶活性对应的可区分信号。
在传感器的多个方面中,所述跨阻放大器在第一和第二电极之间提供可偏置电压,并且所述可测电参数包括电流输出。
在传感器的多个方面中,所述传感器还可包括电容性地耦合至电极间隙的栅电极。
在传感器的多个方面中,当在传感器中利用栅电极时,所述跨阻放大器还可向栅电极提供可偏置电压。
在传感器的多个方面中,所述进行性酶直接接线在第一和第二电极之间,以通过该进行性酶在第一和第二电极之间提供导电路径。为了实现直接接线,可对酶分子上的两个位点(例如两个氨基酸残基)进行修饰,以促进每个位点与第一和第二电极的直接化学结合。
在传感器的多个方面中,所述进行性酶通过横跨电极间隙的桥分子缀合至第一电极和第二电极,该桥分子具有第一端和第二端,所述第一端缀合至第一电极,所述第二端缀合至第二电极,其中所述进行性酶缀合至所述桥分子。
在传感器的多个方面中,所述进行性酶通过至少一个中介臂分子缀合至第一和第二电极,该臂分子缀合至第一和第二电极中的至少一个,并缀合至所述进行性酶。
在传感器的多个方面中,桥或臂分子可包括双链DNA、蛋白质α螺旋、石墨烯纳米带、碳纳米管、抗体或抗体的Fab臂。
在传感器的多个方面中,所述第一电极和所述第二电极分别包括源电极和漏电极,并且其中所述可测电参数是这些电极之间的源-漏电流。
在传感器的多个方面中,所述跨阻放大器还提供可偏压的源、漏和栅电极。
在本公开的多个实施例中,公开了一种读取编码信息的方法。所述方法包括:通过进行性酶使合成DNA分子易位,其中该进行性酶电连接在分子传感器电路中;并在电路的可测电参数中产生信号,其中该信号与编码信息对应。
在所述方法的多个方面中,该进行性酶包括天然或基因工程的聚合酶、逆转录酶、解旋酶、核酸外切酶或用于包装病毒DNA的分子马达。
在所述方法的多个方面中,所述编码信息包括二进制数据。
在所述方法的多个方面中,所述合成DNA分子包括DNA模板链,在该DNA模板链上结合有可区分信号特征。
在所述方法的多个方面中,所述可区分信号特征包括寡核苷酸序列。
在所述方法的多个方面中,所述寡核苷酸通过互补碱基配对结合至DNA模板链,并且当合成DNA分子通过进行性酶进行性易位从而遇到该寡核苷酸时,该寡核苷酸被进行性酶从DNA模板链转移。在这些示例中,电路的可测电参数中的信号与寡核苷酸从DNA模板链的转移对应。
在所述方法的多个方面中,每个寡核苷酸还包括至少一个结合在其上的化学基团。
在所述方法的多个方面中,所述寡核苷酸与所述DNA模板链共价键合,其中电路的可测电参数中的可区分信号与寡核苷酸与进行性酶之间的不会从DNA模板链转移寡核苷酸的相互作用对应。
在所述方法的多个方面中,每个寡核苷酸还包括至少一个结合在其上的化学基团。
在所述方法的多个方面中,所述可区分信号特征包括缀合至DNA模板链的化学基团。
在本公开的多个实施例中,公开了一种DNA信息系统。所述系统包括:合成DNA分子,该合成DNA分子包括DNA模板链和结合在该DNA模板链上的可区分信号特征,所述可区分信号特征对合成DNA分子中的信息进行编码;与合成DNA分子、第一和第二电极以及进行性酶接触的缓冲溶液;以及能够读取编码在合成DNA分子中的信息的传感器,该传感器包括:第一电极;与第一电极隔开一定电极间隙的第二电极;缀合至第一和第二电极的进行性酶;以及电连接至第一和第二电极中的至少一个的跨阻抗放大器,该跨阻抗放大器提供包括可测电参数的输出,其中所述可测电参数包括与编码信息对应的可区分信号。
在所述系统的多个方面中,该进行性酶包括天然或基因工程的聚合酶、逆转录酶、解旋酶、核酸外切酶或用于包装病毒DNA的分子马达。
在所述系统的多个方面中,所述编码信息包括二进制数据。
在所述系统的多个方面中,所述可区分信号特征包括寡核苷酸序列。
在所述系统的多个方面中,所述寡核苷酸通过互补碱基配对结合至DNA模板链,或者所述寡核苷酸与DNA模板链共价键合。在某些方面中,碱基配对的寡核苷酸和共价键合的寡核苷酸的组合对合成DNA分子中的信息进行编码。在某些方面中,当进行性酶遇到碱基配对的寡核苷酸时,碱基配对的寡核苷酸被进行性酶从DNA模板链转移,而当进行性酶遇到共价键合的寡核苷酸时,共价键合的寡核苷酸不会被转移。
在所述系统的多个方面中,每个寡核苷酸还包括至少一个结合在其上的化学基团。在其他示例中,结合至DNA模板链的寡核苷酸序列中的至少一个寡核苷酸包括结合在其上的化学基团。
在所述系统的多个方面中,所述可区分信号特征包括缀合至DNA模板链的化学基团。
在所述系统的多个方面中,该系统还包括浸没在缓冲溶液中的参比电极。该参比电极例如可以是银/氯化银电极。
在所述系统的多个方面中,所述系统还包括电容性地耦合至电极间隙的栅电极。
在所述系统的多个方面中,所述进行性酶直接接线在第一和第二电极之间,以通过该进行性酶在第一和第二电极之间提供导电路径。
在所述系统的多个方面中,所述进行性酶通过横跨电极间隙的桥分子缀合至第一电极和第二电极,该桥分子具有第一端和第二端,所述第一端缀合至第一电极,所述第二端缀合至第二电极,其中所述进行性酶缀合至所述桥分子。
在所述系统的多个方面中,所述进行性酶通过至少一个中介臂分子缀合至第一和第二电极,该臂分子缀合至第一和第二电极中的至少一个,并缀合至所述进行性酶。
在所述系统的多个方面中,桥或臂分子可包括双链DNA、蛋白质α螺旋、石墨烯纳米带、碳纳米管、抗体或抗体的Fab臂。
在所述系统的多个方面中,所述系统还包括CMOS传感器阵列芯片,该CMOS传感器阵列芯片包括传感器阵列以及执行所述可测电参数的测量的支持像素电路。
在所述系统的多个方面中,所述系统包括至少两个CMOS传感器阵列芯片;用于控制和管理芯片的电输入和数据输出的电子硬件系统;用于将缓冲溶液中的合成DNA分子引向芯片的流体系统;以及用于捕获可区分信号并将可区分信号转换回信息的信号处理及数据记录系统。
在所述系统的多个方面中,所述合成DNA分子包括圆形、发夹形或串联重复架构,该架构允许重复读取编码在合成DNA分子中的信息。
附图说明
在说明书的总结部分中特别指出并明确要求保护本公开的主题。但是,通过结合附图参阅详细说明和权利要求,能够最佳地获得对本公开的更全面的理解,在附图中:
图1-A示出了分子电子感测电路的一个实施例,其中分子构成电路,测量电路参数随时间的变化以获得信号,其中记录的信号与分子和周围环境中的相互作用分子之间的相互作用对应;
图1-B示出了可用于读取编码到合成DNA分子中的数据的进行性酶分子电子传感器的一个实施例。该传感器产生与在模板DNA分子上结构性地存在的不同信号特征对应的可区分信号;这种特征元素可用于将信息编码到合成模板DNA分子中,然后可通过传感器读取这些信息;
图2示出了可在分子传感器中用于在各种形式的DNA上施加作用的代表性进行性酶,包括聚合酶、解旋酶、核酸外切酶和DNA包装分子马达的具体示例。所示的有:Klenow+DNA,蛋白质数据库(PDB)结构ID 1KLN;核酸外切酶I E Coli,PDB ID 1FXX;PDB ID 1G8Y;六聚体复制解旋酶REPA的晶体结构;PDB ID 3EZK,基于晶体结构和cryo-EM重构的噬菌体T4 gp17马达组件;PDB ID 2WWY;以及与DNA底物复合的人RECQ样解旋酶的结构;
图3-A示出了在读取DNA的过程中的进行性酶分子传感器的一个实施例,其中结合至模板DNA的基团在进行性酶的作用下被转移,该转移事件导致可区分信号特征;
图3-B示出了在读取DNA的过程中的进行性酶分子传感器的一个实施例,其中模板DNA具有附接的修饰基团,并且当进行性酶易位通过这些特征时,导致产生可区分信号特征;
图4-A示出了进行性酶分子传感器的一个实施例,该进行性酶分子传感器包括缀合至横跨两个电极之间的间隙并缀合至每个电极的桥分子的进行性酶分子;
图4-B示出了进行性酶分子传感器的一个实施例,该进行性酶分子传感器包括通过提供与电极的连接的两个臂分子直接接线到传感器的电流路径中的进行性酶分子;
图4-C示出了进行性酶分子传感器的一个实施例,其中该进行性酶分子直接缀合至电极,在电路中没有任何中介臂分子或桥分子;
图5示出了进行性酶分子传感器的多个实施例,其中该进行性酶包括具有链转移活性的聚合酶;
图6示出了进行性酶分子传感器的多个实施例,其中该进行性酶包括具有链转移活性的解旋酶;
图7示出了进行性酶分子传感器的多个实施例,其中该进行性酶包括DNA包装分子马达,该DNA包装分子马达具有能够将结合的寡核苷酸在空间上足够大地转移从而使其不能通过马达入口的能力;
图8示出了进行性酶分子传感器的多个实施例,其中该进行性酶包括具有链转移活性的核酸外切酶;
图9示出了进行性酶分子传感器的多个实施例,其中该进行性酶包括解旋酶;
图10示出了进行性酶分子传感器的多个实施例,其中该进行性酶包括DNA包装分子马达;
图11示出了进行性酶分子传感器的多个实施例,其中该进行性酶包括核酸外切酶;
图12-A示出了一种特定的进行性酶分子的详细蛋白结构,该进行性酶分子是包括大肠杆菌聚合酶I的克列诺片段,具有(A)和没有(B)与聚合酶相互作用的DNA底物聚合酶;
图12-B示出了一个特定的进行性酶分子的详细蛋白结构,该进行性酶分子是包括人RECQ样DNA解旋酶并同时与DNA底物分子相互作用的解旋酶;
图13-A示出了进行性酶分子电子传感器的多个实施例,其中聚合酶进行性酶分子缀合至结合在电极之间的桥分子;
图13-B示出了图13-A的进行性酶分子电子传感器的一个实施例,其中该桥分子包括双链DNA,聚合酶-桥缀合包括生物素-链霉亲和素结合,并且电极包括铬上覆金,以支持桥分子的第一端和第二端与电极的硫醇-金结合;
图13-C示出了进行性酶分子电子传感器的多个实施例,其中该聚合酶进行性酶通过在所述酶与两个电极的每一个之间使用两个臂分子而直接缀合到电流路径中;
图13-D示出了进行性酶分子电子传感器的多个实施例,其中该聚合酶进行性酶直接缀合到电流路径中,并且直接缀合至金属电极,而不使用臂或桥分子;
图13-E示出了进行性酶分子电子传感器的多个实施例,其中该进行性酶包括解旋酶(人RECQ样解旋酶),并缀合至横跨间隔开的电极之间的间隙的桥分子;
图14-A示出了不同DNA数据编码模板分子的多个实施例的物理结构,其中信号特征为:(A)结合的DNA寡核苷酸、(B)还包括附加修饰基团的结合的DNA寡核苷酸、(C)还包括修饰基团的单链DNA、以及(D)还包括修饰基团的双链DNA;
图14-B示出了允许来自单个DNA分子的数据载荷被相同的进行性酶分子传感器多次读取的模板结构(链结构);
图15示出了DNA数据存储分子的逻辑结构的多个实施例,该逻辑结构包括处理衔接子、用于进行性酶接合的起始位点、缓冲片段、以及编码主要二进制数据载荷的数据载荷片段;
图16示出了二进制数据编码方案(“BES”)的多个示例,该二进制数据编码方案(“BES”)可用于将数字信息编码到合成DNA分子的DNA数据载荷片段中,以供以后由进行性酶分子电子传感器读取;
图17-A示出了可用于将多个DNA读取传感器置于芯片上以大规模并行、低成本地部署DNA读取系统的制造堆叠的一个实施例;
图17-B示出了用于基于芯片的进行性酶分子传感器阵列的CMOS芯片和像素架构的一个实施例。在此实施例中,传感器被格式化为具有分子电子传感器以及源极、栅极和漏极端子的可扩展CMOS芯片传感器阵列架构;
图18示出了图17-B的像素电路的电路示意图以及所得测量结果的一个实施例,包括针对电路参数(晶体管特性、电阻和电容)的一种可能选择感测10pA电流;
图19示出了针对图17-B所示的具有256像素阵列的像素阵列芯片的一个实施例的已完成的带有注释的芯片设计以及所制造的芯片的光学显微镜影像图;
图20示出了图19所示的制造的芯片的电子显微镜影像图,该芯片包括在适当位置具有聚合酶进行性酶分子复合物的纳米电极的嵌件;
图21示出了用于使用基于芯片的DNA读取器读取DNA数据的完整系统的示意图,该DNA读取器包括进行性酶分子电子传感器;
图22示出了基于云的DNA数据归档存储系统的示意图,其中多个图21所示的DNA读取系统被聚合到一起以提供数据读取器服务器;
图23示出了DNA数据读取传感器的另一个实施例,其中进行性酶与不同于图1的传感器配置的电子传感器配置复合,在此为纳米孔离子电流传感器,并且该传感器在处理具有信号特征的DNA模板分子时在纳米孔离子电流中产生可区分信号特征;
图24示出了图23的DNA数据读取传感器的一个实施例,其中解旋酶直接缀合至纳米孔,并且其中信号基团是结合至DNA模板的寡核苷酸,该DNA模板还携带在解旋酶的作用下平移通过纳米孔时改变纳米孔传感器中的电流的基团;
图25示出了DNA数据读取传感器的概念,该传感器使进行性酶分子与横跨正电极和负电极的碳纳米管分子线复合,并在通过碳纳米管的被测电流中产生可区分信号特征;
图26以横截面图示出了与进行性酶分子复合的零模波导传感器的一个实施例,在此,由于结合至模板DNA的寡核苷酸附接有染料分子,该传感器产生与DNA特征对应的可区分光信号;和
图27示出了能够读取存储在聚合物而不是DNA中的信息的进行性酶分子电子传感器的多个实施例,该传感器包括溶菌酶,该溶菌酶从附接至被溶菌酶消化的肽聚糖聚合物的信号基团产生可区分信号。
具体实施方式
在多个实施例中,公开了一种包括进行性酶的分子电子传感器,该传感器通过读取存储为DNA的数字数据从DNA分子提取信息。本公开还提供了一种以基于芯片的形式部署这种传感器的手段,以及由此产生的一种支持这种基于芯片的传感器装置的数据读取系统。使用本公开的进行性酶分子传感器读取编码到DNA分子中的信息是用于DNA数据存储的总体方法和系统的基础。这些用于DNA数据存储的方法和系统的各个方面(包括用于读取编码有数字信息的DNA分子的分子传感器的各个方面)已在于2018年1月10日提交的标题为“用于DNA数据存储的方法和系统”的PCT申请PCT/US2018/013140中公开,该申请的公开内容出于所有目的通过整体引用结合在此。
定义
在本文中所用的术语“DNA”不仅可指生物学DNA分子,而且可指通过合成化学方法(例如核苷酸亚磷酰胺化学法)或通过DNA低聚物的串行连接而制成的全合成形式,还可指在碱基、糖或主链上具有化学修饰的形式,其中许多形式是核酸生物化学领域的技术人员已知的,包括甲基化碱基、腺苷酸化碱基、其他表观遗传标记的碱基,或者还包括非标准或通用碱基(例如肌苷或3-硝基吡咯)或其他核苷酸类似物、核糖核酸、无碱基位点或受损位点,还包括肽核酸(PNA)、锁核酸(LNA)、异种核酸(XNA)(糖修饰形式的DNA家族,包括己糖醇核酸(HNA))、乙二醇核酸(GNA)等,还包括在生物化学上相似的RNA分子以及合成RNA和修饰形式的RNA。在涉及DNA存储系统中使用的数据存储分子的背景下,术语DNA的使用隐含地指代所有这些在生物化学上密切相关的形式,包括模板单链、在其上结合有寡聚物的单链、双链DNA、以及带有结合基团(例如用于修饰各种碱基的基团)的双链。另外,在本文中所用的术语“DNA”可指此类分子的单链形式以及双螺旋或双链形式(包括杂合双链形式),包括包含错配或非标准碱基配对的形式、或非标准螺旋形式(例如三链体形式)、以及部分双链的分子(例如结合至寡核苷酸引物的单链DNA或具有发夹二级结构的分子)。在多个实施例中,“DNA”指包括具有结合的寡核苷酸片段和/或扰动基团的单链DNA成分的分子,所述寡核苷酸片段和/或扰动基团可作为将由进行性酶处理的底物,并且在此过程中在包括进行性酶的分子传感器的监测电参数中产生可区分信号。
除非另有说明,否则在本文中所写出的DNA序列(例如GATTACA(SEQ ID NO:1)指5'至3'方向的DNA。例如,在本文中所写出的GATTACA(SEQ ID NO:1)代表单链DNA分子5’-G-A-T-T-A-C-A-3’(SEQ ID NO:1)。通常,本文使用的惯例遵循分子生物学领域中使用的书面DNA序列的标准惯例。
在本文中所用的术语“dNTP”不仅可指DNA的生物合成中使用的标准、天然存在的核苷三磷酸(即dATP、dCTP、dGTP和dTTP),而且可指这些物质的天然或合成类似物或修饰形式,包括携带碱基修饰、糖修饰或磷酸基修饰的形式,例如α-硫醇修饰或γ-磷酸修饰、或者四、五、六或更长的磷酸链形式、或者可能具有缀合至任何一种磷酸盐(尤其是链中的β、γ或更高阶的磷酸盐)的其他基团。通常,在本文中所用的术语“dNTP”可指在延伸引物时可通过聚合酶结合的任何三磷酸核苷类似物或修饰形式,或者会进入这种酶的活性口袋中并暂时接合为用于结合的试验候选的形式。
在本文中所用的术语“寡核苷酸”或“结合寡核苷酸”指DNA的短片段或上述类似形式,其长度在3-100个碱基、5-40个碱基或10-30个碱基范围内,并可与模板链中包含的互补序列杂合。这样的杂合可通过完美的沃森-克洛克碱基配对来匹配,或者可涉及错配或非标准碱基配对。
在本文中所用的术语“杂合”在DNA双螺旋中或在类似的DNA类似物的双链体形成中指互补链结合的过程。
在本文中所用的“缓冲液”、“缓冲溶液”和“试剂溶液”指提供进行性酶传感器在其中可操作并从提供的DNA模板产生信号的环境的溶液。在多个实施例中,所述溶液是水溶液,该水溶液可包含溶解、悬浮或乳化的成分,例如盐、pH缓冲剂、二价阳离子、表面活性剂、封阻剂、溶剂、模板引物寡核苷酸、与聚合酶复合的其他蛋白质,并且还可能包含聚合酶底物,即,dNTP、dNTP的类似物或修饰形式、以及DNA分子底物或模板。
在本文所用的“二进制数据”或“数字数据”指使用标准二进制编码或以2为底{0,1}的字母编码的数据、使用基于十六进制(16)的字母编码的数据、使用基于10进制{0-9}的字母编码的数据、使用ASCII字符编码的数据、或使用线性编码方式的任何其他离散符号或字符的字母编码的数据。
在本文所用的“数字数据编码格式”指二进制位系列、或源自用于在DNA中编码信息的DNA序列特征的主要转译版本的其他符号数字或字符、或此类DNA特征的等效逻辑字符串。在一些实施例中,待归档为DNA的信息可转译为二进制,或者最初以二进制数据的形式存在,然后可使用纠错和组装信息将该数据进一步编码为可直接转译为由可区分DNA信号特征提供的编码的格式。后一种关联是所述信息的主要编码格式。组装和纠错过程的应用是解码(逆向恢复源信息)的另一个辅助级别。
在本文中所用的术语“信号特征”指数据编码的DNA分子在被进行性酶分子传感器的进行性酶遇到和处理时在传感器电路的监测电参数中产生信号(例如电流(i))的特征。DNA分子上的信号特征的排列用于将信息编码在合成DNA分子中。在本文中更宽泛的信号特征基团还包括能够被传感器的进行性酶转移的“结合基团”和不会被进行性酶从DNA分子转移的“扰动基团”。在DNA分子上的这两种信号特征遇到传感器的进行性酶时,它们会在传感器电路的监测电参数中提供不同的信号。信号特征例如包括杂合寡核苷酸、缀合至DNA的化学基团、或者它们的组合,以实现在被传感器的进行性酶处理时产生可区分信号的特征排列。
在本文中所用的“数据编码的DNA分子”或“DNA数据编码分子”指合成为在其分子结构中编码数据(例如二进制信息)的DNA分子,包括包含DNA分子或从这些分子衍生的其他DNA分子(例如互补序列)的信息副本。
在本文中所用的“从DNA读取数据”指测量可区分事件的任何方法,所述可区分事件例如是电路的监测电参数中的电信号或其他扰动,与用于将信息编码到合成DNA分子中的分子特征对应。
在本文中所用的“电极”指成对布置的纳米级电导体(简称为“纳米电极”),并且在任何一对电极中,两个电极被其间的纳米级电极间隙隔开。在多个实施例中,术语“电极”可指源极、漏极或栅极。栅电极可电容性地耦合至间隙区域,并且可以是“埋栅”、“背栅”或“侧栅”。一对间隔开的电极中的电极可具体称为(并在各个附图中如此标记为)“源”电极和“漏”电极、“正”电极和“负”电极或“第一”电极和“第二”电极。除非另有明示(例如电子可能流到负电极的实施方式),否则每当在本文的任何附图中的电极标记为“正电极”和“负电极”时,应理解所指示的极性可相反(即,附图中这两个元素的标记可相反)。一对电极中的纳米级电极之间的距离大约为1纳米至100纳米,并且其他关键尺寸(例如宽度、高度和长度)也可能在该纳米级范围之内。这样的纳米电极可由多种具有导电性和机械稳定性的材料组成。它们例如可由金属或半导体构成,或由这些材料的组合构成。可通过纳米级光刻技术将成对的间隔开的电极布置在基底上。
在本文中所用的术语“酶”指作用于底物分子以改变其状态的任何分子或分子复合物。这样的酶通常是蛋白质或包含蛋白质成分。
在本文中所用的“进行性酶(processive enzyme)”指具有“持续合成能力(processivity)”的任何酶,持续合成能力是所述酶能催化连续反应而不释放其底物的能力。在多个实施例中,作为其全部或部分酶促活性,进行性酶可通过使DNA分子在分子的一端或内部起始位点处接合并沿着DNA分子易位而处理DNA分子。这种易位运动当然是相对的,并且若酶物理地锚定在分子传感器中,则可能是底物穿过进行性酶的情况。进行性酶包括但不限于聚合酶、解旋酶、核酸外切酶和用于包装病毒DNA的分子马达。
在本文所用的“桥分子”指结合在一对电极中的两个间隔开的电极之间从而横跨其间的电极间隙并构成电路的分子。在多个实施例中,桥分子具有与电极间隙大致相同的长度,例如1纳米至100纳米,或在某些情况下大约为10纳米。在本文中所用的桥分子可包含双链DNA、其他类似的DNA双链体结构(例如DNA-RNA、DNA-PNA或DNA-LNA、或者DNA-XNA双链体杂合体)、肽、蛋白质α-螺旋结构、抗体或抗体Fab结构域、石墨烯纳米带或碳纳米管、硅纳米线、或分子电子学领域的技术人员已知的各种分子线或导电分子之中的任何其他分子。本文中的桥分子可描述为具有“第一”和“第二”端,例如在作为桥分子的DNA分子的3'端处或附近的碱基以及5'端处或附近的碱基。例如,可在一对间隔开的电极中对每端进行化学修饰,使得桥分子的第一端结合至第一电极,并且桥分子的第二端结合至第二电极。该术语有助于形象地描述横跨电极间隙并结合至一对间隔开的电极中的每个电极的桥分子。在多个实施例中,可对桥分子的第一端和第二端进行化学修饰,以实现桥分子与进行性酶之间和/或桥分子与一对电极中的一个或两个电极之间的自我组装。
在本文中所用的“臂”分子具有许多与桥分子相同的特性,并且可包括相同的化学物类(例如DNA),当然,臂分子可具有较短的分子长度,从而有助于使进行性酶仅结合至一对间隔开的电极中的单个电极。在多个方面中,可使用至少两个臂分子将进行性酶与一对间隔开的电极中的两个电极电连接,从而使其悬浮在电极之间,而无需使酶直接结合至任何一个电极。
在本文所用的术语“缀合”指化学领域中已知的任何类型的化学联接(即键),例如共价键、离子键、范德华键等。进行性酶与桥和/或臂分子的缀合或桥或臂分子与电极之间的缀合可通过缀合化学领域技术人员已知的多种缀合方法来实现,例如生物素-抗生物素蛋白偶联、硫醇-金偶联、半胱氨酸-马来酰亚胺偶联、金结合肽或材料结合肽、点击化学偶联、Spy-SpyCatcher蛋白相互作用偶联、或抗体-抗原结合(例如FLAG肽标签/抗FLAG抗体系统)等。进行性酶与一对隔开的电极中的每个电极的缀合包括将酶“电连接”或“电接线”至包含酶和一对电极的电路中。换句话说,所述酶缀合至一对电极中的每个电极,以在电极之间提供导电路径,否则这些电极会被他们之间的电极间隙彼此绝缘。导电路径是由电子通过酶的化学键(例如通过C-C键)的离域/移动提供的。
在于2018年4月25日提交的PCT申请PCT/US2018/029382和2018年7月31日颁发的美国专利10,036,064中公开了分子电子传感器的进一步定义和其他方面,该专利申请和专利的内容出于所有目的通过完整引用结合在此。
图1-A示出了分子电子感测电路的一个实施例,其中分子构成电路,并且测量电路参数随时间的变化以提供信号,其中信号的变化反映该分子与环境中的其他分子的相互作用。如图1-A所示,分子电子传感器1包括一个电路,在该电路中单个传感器分子2(或者包括少量分子的传感器复合体)通过横跨一对间隔开的纳米级电极3和4之间的电极间隙9构成完整电路,所述电极例如包括分别布置在支撑层5上的正电极和负电极。传感器分子可通过特定的附接点6和7电缀合到每个电极上。在某些方面中,当传感器分子2与各种相互作用分子8相互作用以在电路的被测电子参数100中提供信号101时,对该电子参数进行测量。被测参数100可包括在电极之间经过并流过传感器分子2的电流(i)随时间的变化,其中被测参数中的电信号101指示相互作用分子8与传感器分子2之间的分子相互作用,如图1-A中的(i)-(t)曲线所示。
现在请参考图1-B,进行性酶分子电子传感器10提供用于读取编码到DNA分子18中的数字数据的读取器。在此示例中,分子复合物12包括分子桥13和结合到其上用于读取数字数据的进行性酶14。单个酶分子14与目标DNA分子18进行性地接合,并且当在该DNA分子上施加作用时沿着DNA易位,从而在沿着DNA模板处理时,在电路的被测电子参数中产生电信号102,如图中左侧的(i)-(t)曲线所示。在多个示例中,DNA模板分子18扩增有“信号特征”17,当进行性酶14遇到该信号特征时,每个信号特征都在(i)-(t)曲线图中导致可区分电信号102。通过这种方式,进行性酶传感器10产生一系列可区分电信号(例如在(i)-(t)插图中示出的103和104),这些可区分电信号与在模板DNA分子18上按预定模式提供的特定的不同信号特征17对应。图1-B中的插图示出了DNA分子上的信号特征(在插图中表示为“特征1”和“特征2”)与在监测电参数中可见的可区分电信号(在(i)-(t)曲线图中表示为103和104)之间的对比。因此,可区分信号特征17的排列可将信息编码在合成DNA分子中,并且可通过多种编码方案(例如在下文中参照图16论述的方案)结合到DNA中。
进行性酶是能够读取DNA分子的进行性酶分子传感器中的关键元素。有许多能够与DNA进行性地接合从而在各种生物体中执行各种生物学功能的进行性酶。在此的重要特征是酶在其功能过程中沿着DNA分子易位。这种酶通常具有可能出现在DNA链的一端的特定识别结构,并且它们接合在该位点,并引发沿着DNA分子向一个方向易位的过程,可能随着它们沿着分子移动而执行某些其他功能。这种易位在某些情况下可能完全是单向的,或者在其他情况下可能主要沿一个方向进行,但是有反向运动的可能。这种易位可从一端到另一端处理整个DNA分子,或者可在到达另一端之前停止或脱离。
图2示出了在DNA模板上施加作用的一些主要类别的进行性酶的非限制性代表。从左至右示出的是聚合酶21、核酸外切酶22、解旋酶23、用于包装DNA的分子马达24、以及另一种解旋酶25的示例。这些类型的进行性酶中的每一种都可用于本文的进行性酶分子传感器中,并且在处理DNA方面分别执行不同的主要功能。
图2中所示的聚合酶21是大肠杆菌克列诺片段聚合酶(所示的是蛋白质数据库(PDB)的结构1KLN)。通常,聚合酶沿着单链模板DNA平移时会合成一条互补链。在本公开的分子传感器中使用的是具有链转移活性的聚合酶,这意味着,当它们沿着单链DNA易位时,若遇到双链片段,则它们会转移互补链以露出正在被合成的链的模板。
图2所示的核酸外切酶22是大肠杆菌核酸外切酶I(PDB结构1FXX)。通常,核酸外切酶在沿DNA链易位时会消化该DNA链,从一端开始每次消化一个碱基。它们以多种形式作用于单链或双链DNA,并且可消化一条或两条链。核酸外切酶沿其消化链的方向(即3'至5'或5'至3')可能具有化学极性,并且可能需要不同类型的引发。当核酸外切酶在其正在处理的链中遇到各种变化时(例如单链和双链形式之间的变化,或者化学修饰的碱基、加合物或附接基团的存在),它们可能有不同的表现方式。
图2所示的解旋酶之一解旋酶23是细菌解旋酶REPA(PDB ID 1G8Y),它是一种六聚体蛋白复合物。图2所示的解旋酶25是人RECQ样DNA解旋酶。通常,解旋酶在沿着双链DNA易位时对互补链进行解链。有多种解旋酶也可单纯地沿单链DNA易位而不进行其他活动。
图2所示的包装马达蛋白24是源自T4噬菌体的运动蛋白gp17(PDB ID 3EZK)。通常,作为病毒复制过程的一部分,DNA包装马达会将DNA链转移到病毒微粒的囊中。这样的马达可沿着单链或双链DNA分子易位。
图2所示的仅是与DNA进行性地接合的酶的一些非限制性示例。还有这些类别的许多其他特定蛋白质以及分子生物学领域的技术人员所熟知的其他形式的进行性酶可用于本公开的进行性酶分子传感器。此外,图2所示的酶包括这些酶的天然形式。应理解,对于本公开的进行性酶分子传感器,可使用天然酶或经过遗传修饰以在特定位点提供缀合基团的酶,例如修饰或增强其活性、易位率或DNA分子修饰的耐受性。
图3-A示出了能够读取编码和存储在DNA中的数字信息的进行性酶分子电子传感器30的多个实施例。进行性酶分子传感器30包括横跨电极间隙39的分子传感器复合物32,还包括桥分子33和与其结合的进行性酶34。在这些实施例中,DNA模板分子38包括在进行性酶34沿着DNA分子38易位时能够从DNA转移的结合基团37。在这些示例中,包括结合基团37从DNA分子38向非结合基团37'转移的转移事件在监测电参数中产生相应的信号特征,例如流过传感器电路的电流(i)随时间(t)的变化。如图3-A所示,在(i)-(t)曲线图中,转移事件可表现为峰301、302、303等等,或者表现为与每个转移事件对应的其他可区分电信号。如本文中所详述,在此使用的在被传感器的进行性酶转移时产生可区分信号特征的这种结合基团有不同的类型。这种结合基团37的排列包含例如通过图16的编码方案编码在DNA分子中的编码数字信息。在多个实施例中,结合基团37可包括与单链DNA杂合的DNA寡核苷酸或还包含信号增强修饰的寡核苷酸,例如附接的带电基团或结构基团。在本文所论述的图14的上侧两个结构中示出了这样的构造。
图3-B示出了用于读取存储在DNA中的数字信息的进行性酶分子电子传感器31的另一系列实施例。分子传感器31包括横跨电极间隙319的分子传感器复合物312,还包括桥分子313和结合到其上的进行性酶314。在这些实施例中,DNA模板分子318还包括集成到分子中的扰动基团317,其中当DNA分子通过进行性酶314易位时,这种基团317存留在DNA模板分子上,并且在此情况下,分子中存在的局部扰动会在监测电参数中产生可区分扰动信号304、305和306,例如电流(i)随时间(t)的变化。通过这种方式,集成在DNA分子中的扰动基团的排列可用于通过图16的编码方案等将信息存储在DNA分子中。在多个实施例中,这种扰动基团317可包括对DNA碱基的修饰,包括对核碱基、糖残基或磷酸酯主链的修饰。有很多这种碱基修饰是分子生物学领域的技术人员所公知的。修饰还可包括缀合至修饰的碱基的基团,例如通过任何标准的缀合方法缀合,包括点击化学偶联、基于生物素的偶联、N-羟基琥珀酰亚胺(NHS)缀合、马来酰亚胺缀合、或用于使基团缀合至DNA的许多已知的其他方法中的任何一种。
图3-A和3-B所示的进行性酶分子传感器实施例包括分子复合物。在这些附图中,所述分子复合物一般被示为包括桥分子(卵形)和结合到其上的进行性酶(球形)。该分子复合物电连接在一对间隔开的电极之间,以横跨电极间隙并构成电子电路。可通过多种方式将进行性酶集成为所述分子复合物的一部分。图4-A、4-B和4-C示出了该复合物的多个非限制性实施例,并示出了酶是如何被集成到包括分子复合物的电子电路中的。
图4-A示出了进行性酶分子传感器40的一个实施例,其中进行性酶44通过一个或多个缀合点46缀合至横跨电极间隙49的桥分子43。桥分子43包括能够在附接点47和48处附接至每个电极的第一端和第二端。通过这种方式,桥分子电连接至一对间隔开的电极中的每个电极,例如所示的正电极和负电极,以横跨电极之间的电极间隙49并构成传感器电路。
图4-B示出了进行性酶分子传感器410的一个实施例,其中进行性酶412通过缀合至两个独立的“臂”分子413和414直接缀合到电极之间的电流路径中,从而横跨电极间隙419,而“臂”分子413和414又在其每一端通过附接点416和417缀合至两个电极中的每一个,并在缀合点415和418缀合至酶412上的结合位点,如图所示。
图4-C示出了进行性酶分子传感器420的一个实施例,其中进行性酶422经由缀合点428和425直接缀合至电极从而横跨电极间隙430,而无需任何中介臂或桥分子辅助实现酶与电极的缀合。通过这种方式,进行性酶422直接接线到传感器电路中,并作为传感器电路的元件。
通常,对于如图1-B至图4-C所示的进行性酶分子电子传感器的多个实施例,传感器内的部件有许多特定的选择。在多个实施例中,所述酶可以是天然或突变形式的聚合酶、逆转录酶、解旋酶、核酸外切酶、或用于将DNA包装到病毒中的分子马达。在其他实施例中,突变的酶形式通过在酶中引入特定的缀合位点来实现桥分子与一个或多个臂分子或一对间隔开的电极中的每个电极的特定缀合。通过重组方法或合成生物学方法构造到蛋白质中的这种缀合位点在多个实施例中可包括半胱氨酸、醛标记位点(例如肽基序CxPxR)、四半胱氨酸基序(例如肽基序CCPGCC(SEQ ID NO:2))、以及非天然或非标准氨基酸(NSAA)位点之中的任何一种,例如通过使用扩充的基因编码引入对乙酰基苯丙氨酸或非天然的可交联氨基酸来进行,例如通过使用5-溴尿苷的RNA-或DNA-蛋白质交联来进行(参见Gott,J.M.等人,《生物化学》,30(25),6290-6295(1991))。
在多个方面中,所述桥分子或臂分子可包括双链DNA、其他类似的DNA双链体结构(例如DNA-RNA、DNA-PNA或DNA-LNA、或者DNA-XNA双链体杂合体)、肽、蛋白质α-螺旋结构、抗体或抗体Fab结构域、石墨烯纳米带或碳纳米管、硅纳米线、或分子电子学领域的技术人员已知的各种分子线或导电分子之中的任何其他分子。进行性酶与这种分子的缀合或这种分子与电极的缀合可通过缀合化学领域技术人员已知的多种缀合方法来实现,例如生物素-抗生物素蛋白偶联、硫醇-金偶联、半胱氨酸-马来酰亚胺偶联、金结合肽或材料结合肽、点击化学偶联、Spy-SpyCatcher蛋白相互作用偶联、或抗体-抗原结合(例如FLAG肽标签/抗FLAG抗体系统)等。分子与电极的偶联可通过材料结合肽来实现,或者通过使用SAM(自组装单分子层)或电极表面上的其他表面衍生作用来实现,以提供适当的缀合功能基团,例如叠氮化物或胺基。本文中的电极包括导电的纳米尺寸结构,该结构可包括金属(例如金、银、铂、钯、铝、铬或钛)、此类金属构成的层(例如铬上覆金)、或半导体(例如掺杂硅或掺杂锗)。在多个实施例中,第一材料的接触点可设置在第二支撑材料上,使得该接触点成为将分子复合物的化学自组装导向电极的位点。在一些非限制性示例中,传感器可包括间隔开的成对钛或铂电极,这些电极具有沉积在每个电极上的金点接触点,以将桥分子的自组装导向接触点,使得单个桥分子横跨成对间隔开的电极之间的每个电极间隙。
图5示出了进行性酶分子传感器50的多个实施例,其中该进行性酶包括具有链转移活性的聚合酶54。如图所示,传感器50包括在一个或多个附接点55处缀合至结合在电极对之间并横跨电极间隙59的桥分子53的进行性酶54。桥分子53包括用于在缀合点51和52处结合至电极对的第一端和第二端。在此情况下,当聚合酶54使引发的链58的3'端延伸并合成下模板层的互补链58'时,发生进行性易位。这在适当的缓冲液中进行,该缓冲液还提供用于合成互补链的dNTP 56,如图所示。在图5所示的实施例中,信号特征57是与模板链58杂合的DNA寡核苷酸。当链转移聚合酶54在合成过程中易位时,它会转移并去除这些寡核苷酸(如寡核苷酸57'的转移所示)。每个链转移事件可在电路的被测电流中产生信号,如(i)-(t)曲线图中的扰动501、502和503所示。杂合寡核苷酸57可以是DNA或DNA类似物,并且还可附接有其他基团以增强信号,如在下文参照图14所进一步详述。
图6示出了进行性酶分子传感器60的另一些实施例,其中进行性酶64包括也具有链转移活性的解旋酶。如图所示,传感器60包括在一个或多个附接点65处缀合至结合在电极对之间并横跨电极间隙69的桥分子63的进行性酶64。桥分子63包括用于在缀合点61和62处结合至电极对的第一端和第二端。在此情况下,信号特征67是与模板链68杂合的DNA寡核苷酸。当链转移解旋酶64易位时,它会转移并去除这些寡核苷酸(例如由寡核苷酸67'的转移所示)。每个链转移事件可在电路的被测电流中产生信号,如(i)-(t)曲线图中的扰动601、602和603所示。杂合寡核苷酸67包括DNA或DNA类似物,并且还可附接有其他基团以增强信号,如在下文中参照图14所进一步详述。
图7示出了进行性酶分子传感器70的另一些实施例,其中进行性酶74包括DNA包装分子马达,该DNA包装分子马达也具有在空间上足够大地转移结合的寡核苷酸77'从而使其不能通过马达入口的能力。如图所示,传感器70包括在一个或多个附接点75处缀合至结合在电极对之间并横跨电极间隙79的桥分子73的进行性酶74。桥分子73包括用于在缀合点71和72处结合至电极对的第一端和第二端。在此情况下,信号特征包括与模板链78杂合的DNA寡核苷酸77。当链转移马达74转移DNA时,它会转移并去除这些寡核苷酸(例如如此转移的74')。每个链转移事件可在电路的被测电流中产生信号,如(i)-(t)曲线图中的扰动701、702和703所示。杂合寡核苷酸77可包括DNA或DNA类似物,并且还可附接有其他基团以增强信号,如在下文中参照图14所进一步详述。在进行性酶包括分子马达的这些实施例中,寡核苷酸77可包含空间阻碍基团,该空间阻碍基团使寡核苷酸77太大因而无法通过马达入口,例如可以是聚乙二醇(PEG)基团、亲和素蛋白基团、或任何易于附接至DNA寡核苷酸的其他大基团。许多这样的基团是分子生物学领域的技术人员已知的,并且容易获得。
图8示出了进行性酶分子传感器的多个实施例,其中进行性酶84包括也具有链转移活性的核酸外切酶。如图所示,传感器80包括在一个或多个附接点85处缀合至结合在电极对之间并横跨电极间隙89的桥分子83的进行性酶84。桥分子83包括用于在缀合点81和82处结合至电极对的第一端和第二端。在此情况下,信号特征包括与模板链88杂合的DNA寡核苷酸87。当链转移核酸外切酶84转移并消化主链88时,它会转移并去除这些寡核苷酸(例如如87'的转移所示)。每个链转移事件可在电路的被测电流中产生信号,如(i)-(t)曲线图中的扰动801、802和803所示。杂合寡核苷酸87可包括DNA或DNA类似物,并且还可包括附接的基团以增强信号,如在下文中参照图14所进一步详述。在多个实施例中,一些核酸外切酶可通过完全消化成对片段的双链区或通过仅部分地消化该片段而从主链88转移寡核苷酸87,此时寡核苷酸的其余部分从主链解离。
图9示出了进行性酶分子传感器90的多个实施例,其中进行性酶94包括解旋酶。如图所示,传感器90包括在一个或多个附接点95处缀合至结合在电极对之间并横跨电极间隙99的桥分子93的进行性酶94。桥分子93包括用于在缀合点91和92处结合至电极对的第一端和第二端。在此情况下,信号特征96、97是DNA链98上的扰动基团。当每个扰动基团96、97经过解旋酶时,它会在电路的测量电流中产生信号,如(i)-(t)曲线图中的901、902和903所示。如图所示,各个扰动基团96、97可按编码信息的图案布置。所示的特定序列96、97、97、96、96等不是限制性的,可使用按任何模式布置的任意数量的不同扰动基团来编码信息。DNA分子可以是单链的,该单链上的扰动基团96、97和解旋酶94可单纯地沿单链平移。在其他实施例中,所述DNA可以是双链的,并且扰动基团可位于“穿过”与之结合的解旋酶或“围绕”解旋酶转移的那条链上。在其他实施例中,这种扰动基团可位于同一个双链DNA分子内的两条链上。在下文中将参照图14进一步详述这种基团。
图10示出了进行性酶分子传感器120的多个实施例,其中进行性酶124包括DNA包装马达。如图所示,传感器120包括在一个或多个附接点125处缀合至结合在电极对之间并横跨电极间隙129的桥分子123的进行性酶124。桥分子123包括用于在缀合点121和122处结合至电极对的第一端和第二端。在此情况下,信号特征126、127是DNA链128上的扰动基团。当每个扰动基团126、127经过马达124时,它会在电路的监测电参数中产生相应的信号,例如如(i)-(t)曲线图的变化105、106和107所示。如图所示,各个扰动基团126、127可按编码信息的图案布置。所示的特定序列126、127、127、126、126等不是限制性的,可使用按任何模式布置的任意数量的不同扰动基团来编码信息。DNA分子可以是单链的,在该单链上具有扰动基团,例如使单链平移的马达。在其他实施例中,在使双链DNA易位的马达情况下,DNA可以是双链的,并且扰动基团可位于任何一个链上。在下文中将参照图14进一步详述这种基团。
图11示出了进行性酶分子传感器110的多个实施例,其中进行性酶114包括核酸外切酶。如图所示,传感器110包括在一个或多个附接点115处缀合至结合在电极对之间并横跨电极间隙119的桥分子113的进行性酶114。桥分子113包括用于在缀合点111和112处结合至电极对的第一端和第二端。在此情况下,信号特征117是DNA链118上的扰动基团。当每个扰动基团117经过核酸外切酶时,它在电路的监测电参数中产生信号,例如如(i)-(t)曲线图中的扰动108、108'和108"所示。在DNA被核酸外切酶114消化时,核酸外切酶114对功能化的DNA 118的作用产生消化产物116。该消化产物包括留存扰动基团的碱基和功能化碱基的混合物,如图所示。所示的扰动基团117的特定序列不是限制性的,可使用按任何模式布置的任意数量的不同扰动基团来编码信息。对于消化单链的核酸外切酶,DNA分子118可以是单链的,扰动基团117位于单链上;对于处理双链DNA的核酸外切酶,DNA分子可以是双链的,并且扰动基团可位于任何一个链上,并且,在双链DNA仅有一条链被消化的情况下,扰动基团117可位于消化的链上或未被消化的链上,或可位于这两个链上。在下文中将参照图14进一步详述这种基团。
图12-A示出了在本文中所用的示例性进行性酶之一(在此情况下为聚合酶,具体而言是大肠杆菌克列诺片段)的详细蛋白质解剖结构和DNA接合。所示的结构为PDB ID1KLN。详细结构及其与模板DNA的接合方式决定了如何最佳地将酶缀合到电路中以免干扰其与DNA的相互作用并将蛋白质或DNA的信号部分置于分子桥附近以通过邻近性来增强信号生成的选择。左侧的结构A是与DNA底物分子接合的聚合酶,而右侧的结构B是在其构象中不存在与DNA底物的接合的聚合酶。在有DNA接合的构象和无DNA接合的构象中均示出了酶的螺旋、片和环部分。
图12-B示出了在本文中使用的示例性进行性酶之一(在此情况下为解旋酶,具体而言是人RECQ样解旋酶)的详细蛋白质解剖结构和DNA接合。所示的结构为PDB ID 2WWY。详细结构及其与模板DNA的接合方式决定了如何最佳地将酶缀合到电路中以免干扰其与DNA的相互作用并将蛋白质或DNA的信号部分置于分子桥附近以通过邻近性来增强信号生成的选择。该结构示出了解旋酶与DNA底物分子接合。在所示的结构中示出了解旋酶的螺旋、片和环部分。
图13-A示出了进行性酶分子传感器130A的多个实施例,其中聚合酶134A在缀合点135A缀合至分子桥分子133A,该缀合点135A包括结合至桥分子133A的特定位点的酶134A上的特定位点。如图所示,桥分子133A结合至间隔开的电极的每一个上,从而横跨电极间隙139A。桥分子133A包括用于在缀合点131A和132A缀合至电极对的第一端和第二端。
图13-B示出了进行性酶分子传感器130B的一个特定示例的分子结构,其中聚合酶134B缀合至包括20纳米长(=6圈螺旋)的双链DNA的桥分子133B。传感器130B还包括一对间隔开的铬电极138B和139B,这些电极设置在基底层(例如二氧化硅)上,并且彼此间隔大约10纳米。在每个电极138B和139B上有参与桥分子与每个电极的结合的金沉积层131B。所示的DNA桥分子133B通过DNA桥的第一和第二端的硫醇基团缀合至铬上覆金电极,通过硫-金键132B与金结合,其中聚合酶134B在DNA桥135B上的位于中心的生物素化碱基处缀合至DNA桥分子133B,该DNA桥135B结合至链霉亲和素分子136B,进而通过聚合酶134B上的特定生物素化位点135B结合至聚合酶134B。通过这种方式,链霉亲和素136B通过两个生物素-链霉亲和素联接135B将聚合酶134B联接至DNA桥分子133B。所示的进行性酶分子传感器130B使DNA底物分子137B易位。如上所述,DNA底物分子137B可编码有信息,该信息包括信号特征(例如结合的DNA寡核苷酸片段或扰动基团)的排列。
图13-C示出了进行性酶分子传感器130C的多个实施例,其中聚合酶分子134C(也在图12-A中示出)通过缀合至两个独立的“臂”分子133C和134C而直接缀合到电极之间的电流路径中,从而横跨电极间隙139C,而这些臂分子133C和134C又在其一端经由附接点136C和137C缀合至两个电极中的每一个,并在缀合点135C和138C处缀合至酶132C上的结合位点,如图所示。这些实施例示出了臂分子是如何缀合至横跨酶的α-螺旋的端部,缀合至环或片部分,或缀合至使电流优先流过或流经酶的活性位点或者流过或流经在与底物分子(例如所示的DNA分子131C)相互作用时发生构象变化的酶部分的其他蛋白质解剖结构(例如在图12-A中示出)的。
图13-D示出了进行性酶分子传感器130D的多个实施例,其中聚合酶分子132D(也在图12-A中示出)按照图4-C的一般传感器结构直接缀合至一对间隔开的电极中的每个电极从而横跨电极间隙139D,而不需要任何中介臂或桥分子。聚合酶132D在附接点136D和137D处直接缀合至电极,其中所述附接点可包括硫醇-金键。这些实施例示出了如何缀合至横跨酶的α-螺旋的端部,缀合至环或片部分,或缀合至使电流优先流过或流经酶的活性位点或者流过或流经在与底物分子(例如所示的DNA分子131D)相互作用时发生构象变化的酶部分的其他蛋白质解剖结构(例如在图12-A中示出)。
图13-E示出了进行性酶分子传感器130E的多个实施例,其中解旋酶分子132E(也在图12-B中示出)按照图4-A所示的一般传感器结构在包括解旋酶和桥分子上的特定结合位点的特定缀合点135E缀合至分子桥分子133E。桥分子133E包括第一端和第二端,这些端部分别在附接点136E和137E处结合至一对电极。解旋酶132E与桥分子133E之间的结合点135E选择为使得解旋酶132E的最活跃或可变部分或者结合在DNA底物分子131E上的信号基团被邻近桥分子133E的解旋酶132E进行性地处理,以增强电流调制和增强信号。
在本文所述的进行性酶分子传感器中针对可区分信号测量的电参数一般来说可以是在传感器处于活动状态时可测量的电路的任何电特性。在多个实施例中,该参数是当在一对间隔开并桥接的电极中的两个电极之间施加固定或变化电压时连续地或按离散时间采样的在这两个电极之间流过的电流随着时间的变化。在多个实施例中,还可能存在电容性地耦合至分子结构的栅电极(例如埋栅或背栅),该栅电极在测量期间施加固定或变化的栅电压。在多个其他实施例中,所测参数可以是两个电极之间随着时间连续测量或定期采样的电阻、电导或阻抗。所测参数可以是电极之间的电压。若存在栅电极,则所测参数可能是栅电压。所测参数也可能是耦合至电路的电容器的电容或在该电容器上累积的电荷量或电压。所述测量可以是电压光谱测量,因而测量过程包括捕获I-V或C-V曲线。所述测量可以是频率响应测量。在所有此类测量中,对于所有这样的被测参数,在一些实施例中,在测量期间栅电极在分子复合物附近施加固定或可变的栅极电压。这样的栅极通常在物理上位于桥接一对间隔开的电极的分子复合物的微米级距离之内,在一些情况下位于200纳米距离之内。
在多个实施例中,对于电测量而言,在布置为与传感器接触并保持在外部电势(例如接地)的溶液中设有参考电极,例如银/氯化银参考电极或铂电极,以将溶液保持在稳定或观测到的电位,使得电测量更加精确或可控。另外,在进行电参数测量时,可将多种其他电参数固定为规定值或者使其按规定的模式变化,例如源-漏极电压、栅极电压(如果有栅极)、或源-漏极电流。
使用本发明的进行性酶分子传感器来测量DNA分子的可区分特征需要将进行性酶保持在适当的物理和化学条件下使其处于酶活性状态,以处理DNA模板,并产生高于背景噪声的较强可区分信号(即,为了实现高信噪比(SNR))。为此,酶应处于缓冲水溶液中,在多个实施例中,所述缓冲水溶液包含盐(例如氯化钠或氯化钾)、pH缓冲剂(例如Tris-HCl)、多价阳离子辅助因子(例如镁、锰、钙、钴、锌、镍)、其他离子(例如铁或铜)、表面活性剂(例如吐温)、螯合剂(例如EDTA)、还原剂(例如DTT或TCEP)、溶剂(例如甜菜碱或DMSO)、体积浓缩剂(例如PEG)、和/或其他酶缓冲液成分。还可通过将缓冲液保持在一定的pH或温度范围内或保持在一定的离子强度来增强传感器信号。尤其是,可选择离子强度以在溶液中获得有利于产生电信号的德拜长度(电荷屏蔽距离),所述德拜长度可在0.3纳米-100纳米范围内,或者在1纳米-10纳米范围内。相对于在标准分子生物学过程(例如PCR)中常规使用的缓冲液浓度,配制为具有较大德拜长度的这种缓冲液可能较稀或具有十分之一、百分之一、千分之一、十万分之一或百万分之一的较低离子强度。
还可选择或优化缓冲液组成、浓度和条件(例如pH、温度或离子强度)以改变酶动力,从而有利地提高传感器的信噪比(SNR)、总信号产生速率,或者,在读取存储在DNA分子中的数据中的背景下,提高总信息解码速率。这可包括通过这些变量的任何组合来降低或提高进行性酶的活性。最佳缓冲液选择过程包括从所有这些参数变化的矩阵中选择试验条件,凭经验测量品质因数(例如与可区分特征的区分相关或与处理模板时的总特征区分速度相关的品质因数),并使用各种搜索策略(例如在统计实验设计(DOE)方法中应用的策略)来推断最佳参数组合。
在进行性酶是聚合酶的情况下,模板DNA的处理还需要为聚合酶提供脱氧核苷三磷酸(dNTP),以使其能够对单链DNA模板分子产生进行性作用以合成互补链。标准或天然的dNTP是dATP、dCTP、dGTP和dTTP,它们在作为底物时以酶在其上产生作用所需的形式提供A、C、G和T碱基单体,以聚合成DNA链。天然或突变的聚合酶也可接受能够增强或支持如本公开所述的可区分信号的产生的这些天然dNTP的类似物或修饰形式。
DNTP的许多此类修饰形式是核酸生物化学领域的技术人员所公知的,并且所有这些形式都能在进行性酶分子传感器的多个实施例中支持信号产生。这包括对碱基、糖和/或磷酸基有修饰作用的dNTP。例如,常见形式包括位于分子的多个位点的脱氮、硫代、溴代和碘代修饰,或者在多个位点包含金属离子或不同的同位素,在多个位点包含各种染料分子,或多个位点的甲基化,或者多个位点的生物素化。尤其是,这种修饰包括具有高于天然三磷酸酯的扩展磷酸酯链的形式,例如四、五、六、七或以上(4以上,最多11或以上)的磷酸盐。此外,修饰可包括向这种磷酸酯链或任何磷酸酯链的末端磷酸酯上添加化学基团,但α-磷酸酯或链中的第一个磷酸酯除外,在将dNTP结合到互补链中时该磷酸酯会被裂解掉。
聚合酶对这种衍生反应具有高度耐受性,并在存在时保持较高水平的活性。在多个实施例中,这种修饰基团可为dNTP提供不同的电荷状态或者不同规格或不同程度的疏水性,这有助于产生可区分信号。在多个实施例中,向dNTP添加的基团可有选择性地与桥分子、聚合酶或模板DNA上的位点相互作用,以产生可区分信号。在多个实施例中,可将dNTP修饰为包含与图3-A或图3-B中所示的信号生成特征直接相互作用的基团。例如,在寡核苷酸从编码的DNA分子被转移的情况下,可将dNTP修饰为包含与被转移的寡核苷酸相互作用的基团,例如通过与寡核苷酸的互补部分杂合或通过与寡核苷酸上的同源基团相互作用来修饰。例如,结合寡核苷酸和dNPT可包含互补的寡核苷酸,或者包含其他同源结合伴侣(例如生物素-亲和素)、通过π-堆积接合的芘或许多其他此类配对(配对中的一个此类伴侣附接至结合寡核苷酸)、以及dNTP上的其他同源伴侣。在多个实施例中,只有在寡核苷酸是下一个将被聚合酶转移的链时,才会露出图3-A的结合寡核苷酸特征上的结合基团以与其伴侣结合,因而这种相互作用优先在图3-A的信号传递过程中发生。
在图14-A中示出了编码DNA分子结构的信息的多个实施例。在图14-A中,DNA结构(A)包含一系列结合至模板链140的寡核苷酸142、144等。这种寡核苷酸在模板链上可以是毗连的,或者具有将其分开的一个或多个碱基(例如141、143等)。这种寡核苷酸可以是天然DNA,或者可包含DNA类似物(例如RNA、PNA、LNA、XNA)或修饰或类似的碱基或通用碱基(例如肌苷或5-硝基吲哚)或扩展的遗传密码碱基(例如iso-dC和iso-dG)。这种寡核苷酸142、144等可与模板140以完全互补的方式配对,或者可包含错配的碱基对。可选择这种寡核苷酸,使具有显著不同的熔点温度(Tm),例如接近30℃、接近40℃、接近50℃、接近60℃或高达大约100℃。与这些寡核苷酸结合的模板DNA 140可包括天然DNA,或者包括类似物,例如上文所列的类似物。
图14-A的结构(B)是编码有信息的DNA分子,其中的信号特征包括主链140B上(例如在结构(A)中)的结合寡核苷酸,还包括结合至寡核苷酸的信号增强基团145、146。这种基团145、146等可通过多种方式缀合至寡核苷酸,包括但不限于生物素-亲和素结合、点击化学结合、或缀合至寡核苷酸上的游离叠氮基或胺基。这种信号增强基团可包括在典型溶液中带有形式电荷的分子(例如包含链霉亲和素的肽或蛋白质)、或在空间上很庞大或与进行性酶具有空间相互作用的分子(例如PEG聚合物)、或疏水或亲水的分子(例如各种肽)、或者与天然或基因修饰的进行性酶特异有相互作用或与分子复合物的任何其他组分有相互作用的分子。这样的相互作用可由结合在寡核苷酸上的同源结合伴侣的一个成员和结合在酶、分子桥分子或分子复合物上的另一个成员提供。例如,互补的寡核苷酸可附接至结合的寡核苷酸和进行性酶或桥分子。
图14-A中所示的结构(C)和(D)代表编码有信息的DNA分子的其他实施例,例如参照图3-A和3-B所述的DNA分子。在结构(C)中,信号特征145'、146'等(例如针对结构(B)所述的信号特征)结合至单链DNA模板链140C。在结构(D)中,信号特征145"、146"等结合至双链DNA模板140D。
图14-B示出了允许来自单个DNA分子的数据载荷被相同的进行性酶分子传感器多次读取的模板结构(或链结构)的实施例。有多种分子生物学方法支持进行性酶传感器重复询查相同的DNA分子。在图14-B中示出了示意性编码模板结构的三个此类实施例。第一个示意性结构(A)是环化的模板分子。对于可与环状模板结合而不会损坏模板的进行性酶(例如不需要“穿过”其模板而是从侧面夹持的聚合酶、解旋酶或包装马达),它们可围绕环状模板处理多次,因而可多次处理相同的信令特征。如上所述,这种能够被多次处理的特征例如包括图14-A所示的永久结合基团(C)和(D),或者,在可转移的寡核苷酸特征的情况下,包括如图14-A所示的基团(A)和(B),只要这些寡核苷酸在转移后迅速重新结合至模板即可。为了使寡核苷酸重新结合至模板,可从溶液中的局部富集部分补充寡核苷酸并多次读取。图14-B的第二个示意性结构(B)是形成双链区的发夹状单链。将处理双链分子的一个链的适当的进行性酶(例如链转移聚合酶、某些解旋酶、某些包装马达和某些核酸外切酶)会围绕发夹并处理另一个互补链,因此实际上可读取在两个链上被双重表示为永久结合基团的信息两次。图14-B中的第三个示意性结构(C)是DNA编码分子,其中数据载荷简单地串联重复一次或多次,从而进行性酶会轻松地处理这些同一DNA数据载荷的多个副本,因此进行多次读取。
包含将由同源的进行性酶分子传感器读取的编码信息的合成和设计的DNA分子可使用一种有助于读取过程以及编码(其合成)和解码(读取)过程的架构来制备。在图15中通过结构实施例(A)和(B)示出了这种架构。总体来说,图15示出了携带DNA片段的信息的结构。在结构(A)中,“起始位点”片段是包含引物靶/结构的引物片段,进行性酶在该片段中会结合并引发链的其余部分的处理。“左缓冲”片段可包含用于读取器的信号校准序列或在“数据载荷”片段之前的缓冲序列,该序列包含存储编码序列的信息以及相关的纠错序列(例如奇偶校验位)。“右缓冲”片段可包含附加校准序列以及避免使酶在读取数据时过分靠近模板端部的缓冲序列。左缓冲和/或右缓冲区域可包含支持聚合酶结合足迹所需的DNA片段、或用于帮助解读来自“数据载荷”区的信号的各种校准或起始序列。这些缓冲片段还可包含分子条形码序列,该序列用于唯一地区分分子或识别源自同一个原始分子的复制分子。DNA寡核苷酸合成技术人员已知的一种此类条形码方法包括添加较短的随机N-mer序列(通常为1至20个碱基长),该序列通常是通过使用简并的碱基混合物而不是特定碱基来执行合成步骤而产生的。最后,还存在其中编码有特定数据的“数据载荷”片段,该片段可能包含正在存储的主要数字数据、以及与将此类信息片段正确组装为较长字符串相关的数据、和与错误检测和纠正相关的数据,例如奇偶校验位、校验和或其他此类附加信息。
在图15的结构(B)中,“左衔接子”和“右衔接子”片段可以是与相关DNA片段的存储或操作有关的序列元素,例如用于PCR扩增的外引物位点的衔接子、或基于杂合的选择,或代表用于该嵌段的周围载体DNA,包括向作为载体的宿主生物基因组中的嵌入。这些右衔接子和左衔接子可包括用于复制存储的数据通用扩增过程的引物,或者可包括杂合捕获位点或其他选择性结合靶标,例如用于从池中有针对性地选择分子。例如,在存储在活宿主基因组中(例如在细菌质粒或活生物体的其他基因组成分中)的DNA数据分子的情况下,这种衔接子可包括周围或载体DNA。“数据载荷”通常可包含正在被归档的实际原始数据、以及用于存储方法的元数据,例如与将该信息组装为较大字符串或错误检测和纠正有关的元数据。
数据载荷DNA结构源自应用于源数字数据载荷(例如二进制数据)的特定于传感器的信息编码方案,如图16所示。在此情况下,存储为DNA的原始数字数据通常会被首先表示为电子二进制数据。然后,将这些原始数据划分为多个片段,并通过重新组装数据进行扩增,并且通过适合于DNA数据存储的纠错编码进行转换,以产生实际的二进制数据载荷片段(例如图16中的内容),然后需要转译为DNA载荷序列,以便随后进行DNA合成以产生物理存储分子。在多个实施例中,这个主转译过程是通过二进制编码方案(BES)(例如图16所例示的二进制编码方案)执行的。这些编码方案首先产生一系列暗示为了编码DNA分子而组装的相应DNA片段的可区分信号特征,以执行从数字数据格式(例如二进制)转译为DNA分子序列格式的主转译过程。
适当的BES的选择部分地取决于可区分信号特征的类型及其排列,如参照图1-B所述和如图1-B的插图所示。图16示出了几种这样的主要编码方案,这些编码方案从示例性的二进制数据载荷--特定的16位字“1010100110011100”开始,并将该二进制数据转换为编码的DNA分子的一个或多个可区分信号特征。
请继续参考图16,所示的示例性二进制编码方案(BES)包括:BES1:将1位编码为2个可区分信号特征F1和F2,与可区分这些特征的DNA读取传感器结合使用;BES2:将两个二进制位00、01、10和11的组合编码为四个特征F1、F2、F3和F4,与可区分这些特征的DNA读取传感器结合使用;以及BES3:将二进制字符串0、1和00编码为3个可区分特征F1、F2和F3。图16示出了这些BES在二进制字符串向特征字符串转换方面的二进制数据载荷的编码,该编码随后必须在DNA中实现。如果减少合成的DNA信息编码分子的长度是优选的(例如,由于写入技术对寡核苷酸长度的实际限制,可能存在这种需求),那么优选产生较短序列的编码。
应理解,图16所示的BES是非限制性的,并且在这些示例中,还隐含有与图16中所示的编码方案相比的许多变化形式或相似的编码方案(例如通过置换所使用的特征)。还应理解,所有这种编码方案必须具有能够区分编码特征的信号的同类传感器,从而BES的选择直接与传感器在区分特征方面的特性有关。应理解,使用与图16的方案类似的方案,也能够将二进制以外的数字数据格式或字母(例如十六进制、十进制、ASCII等)很好地编码为DNA信号特征。这样的方法是计算机科学领域的技术人员所公知的。就最佳信息密度而言,比所示的方案复杂的方案(例如Lempel-Ziv编码)能够高效地将数据从一种字母转换为另一种字母并将其压缩。通常,为了将二进制或其他数字数据载荷字符串或字符串集合转换为DNA序列字符串或这种字符串的集合,可以使用在计算机科学中所公知的许多无损和有损编码或压缩方法来设计用于从输入数字数据载荷向例如图14的实施例的形式的DNA数据载荷的主转换方案。
作为如何使用编码来定义用于合成的DNA序列的一个示意性示例,考虑一种具有结合至相应的反向互补模板片段F1=5’-GGGG-3’(SEQ ID NO:4)、F2=5’-CCCC-3’(SEQ IDNO:3)和F3=5’-TTTT-3’(SEQ ID NO:6)的寡核苷酸5’-CCCC-3’(SEQ ID NO:3)、5’-GGGG-3’(SEQ ID NO:4)和5’-AAAA-3’(SEQ ID NO:5)作为可区分信号特征的传感器。假设使用图16的BES3,并且输入的二进制数据载荷为01001。向特征序列的转换为F1F2F3F1。可将其直接转换为具有图15所示的架构的DNA编码分子的DNA数据载荷片段,即5’-GGGGCCCCTTTTGGGG-3’(SEQ ID NO:7)。或者,在其他实施例中,在可区分信号特征之间可插入“标点”序列片段,这不会改变可区分特征(例如结合的寡核苷酸),但是可提供很多益处,例如适应DNA合成化学的特殊性质或约束,提供间隔子以增加信号特征之间的时间间隔,减少空间位阻,或者改善DNA分子的结构。例如,如果A是这样的标点序列,那么DNA编码序列将变成5’-AGGGGACCCCATTTTAGGGGA-3’(SEQ ID NO:8)。通常,这样的标点序列或填充序列的插入可以是从数字数据载荷转换为待合成的编码DNA序列的过程的一部分。
为了能从DNA存储中可靠地恢复数字数据,可通过进行性酶传感器对相关的DNA数据载荷进行多次处理,或者,对于此类载荷的集合,平均而言可将它们处理一定的预期次数。这种重复的益处是,通过聚合这样的多个观测值,能够更精确地估算可区分编码特征。另一个益处是能克服基本泊松采样统计变化性,以确保对相关的数据载荷进行至少一次高置信度的采样和观测,或者至少进行所需的最小次数的采样和观测。在多个实施例中,这种重复询查的所需次数或期望数量可在1至1000范围内。在其他实施例中,该次数或预期次数可在3至30范围内。
这样的多次观测可通过以下手段中的一种或其组合来进行:通过进行性酶传感器对同一物理DNA分子进行重复观测,或者通过处理携带相同数据载荷的多个物理上不同的DNA分子的一个或多个进行性酶传感器进行重复观测。在后一种情况下,具有相同数据载荷的多个物理上不同的DNA分子可以是通过相同的批量合成反应产生的DNA分子,或者可以是通过以相同数据载荷为目标的不同此类合成反应产生的分子,或者可以是通过应用扩增或复制方法(例如PCR、T7扩增、滚环扩增)或分子生物学领域的技术人员已知的其他形式的复制产生的复制分子。可通过许多方法来完成这些多次观测结果的聚合,例如平均法或投票法、最大似然估计法、贝叶斯估计法、隐马尔可夫法、图论或优化法、或深度学习神经网络法。
在多个实施例中,以很高的速率读取存储在DNA中的数字数据(例如每秒接近1GB)来恢复数字数据,这在使用大规模磁带存储系统时是可能的。由于进行性酶(例如聚合酶)的最大处理速度在每秒100-1000个碱基范围内,根据具体类型,一个传感器的位恢复速率受限于与此相当的速度,因此非常可取的方法是以经济高效的形式部署数百万个传感器,以实现所需的数据读取能力。在多个实施例中,传感器可在CMOS芯片上部署为大规模传感器阵列,这是最经济高效的半导体芯片制造工艺。
图17-A示出了制造堆叠的一个实施例,其中传感器测量电路被部署为可扩展的像素阵列,作为CMOS芯片,使用纳米级光刻工艺制造纳米电极,并使用溶液环境中的分子自组装化学反应在传感器阵列中的每个纳米电极上形成分子复合物。这种制造堆叠的结果是如图17-A的底部所示的成品DNA读取器传感器阵列芯片。在该制造堆叠的某些实施例中,使用高分辨率CMOS节点(例如28纳米、22纳米、20纳米、16纳米、14纳米、10纳米、7纳米或5纳米节点)来完成纳米级光刻,以利用CMOS芯片制造的经济性。相反,像素电子器件可在更适合于混合信号器件的较粗节点处产生,例如180纳米、130纳米、90纳米、65纳米、40纳米、32纳米或28纳米。或者,可通过纳米制造领域技术人员已知的多种其他方式中的任何一种来制造纳米电极,例如电子束光刻或纳米压印光刻、离子束光刻、或高级光刻方法,例如极紫外或深紫外光刻、多重图案或相移掩模的任意组合。
图17-B在图的左侧更详细地示出了用于DNA读取器的高级CMOS芯片像素阵列架构的一个实施例。该CMOS芯片像素阵列架构包括可扩展传感器像素阵列、配套的电源和控制电路、以及主要模块,例如偏压模块、模数转换器和定时模块。该附图中的插图表明各个传感器像素作为代表单个进行性酶分子传感器的小桥接结构,并且各个电子传感器位于像素阵列中。图17-B还(在图的右侧)示出了阵列中的进行性酶分子电子传感器电路像素的一个实施例的细节。如图所示,完整的传感器电路包括跨阻放大器、可偏压的源、漏和(可选的)栅电极、复位开关、以及电连接在源极和漏极之间的进行性酶(带有或不带桥和/或臂分子)。所示的反馈电容器是可选的,用于提高放大器的稳定性。在该实施例中,像素电路的输出(可测电子参数)是电流,对该电流进行监测,以检测与进行性酶的活性有关的扰动。也就是说,从跨阻放大器输出的电流是此传感器像素的可测电参数,对该电流进行监测以检测扰动。应说明的是,两个电极之一可以接地,在此情况下,在电极之间提供可偏置电压。
图18在图的左侧详细示出了像素放大器的电路示意图的一个实施例,并在图的右侧示出了用于测量10pA电流时电压信号随时间变化的模拟结果,并且按图所示定期进行复位。此实施例示出了电路部件和参数(晶体管、电阻、电容等)的一种非限制性选择。
图19示出了带有注释的芯片设计布局文件的一个实施例和相应的成品芯片,以进行对比。在图19中,左侧的(A)是具有256个像素的图17-B的CMOS像素阵列的一个实施例的成品设计,图中带有标注,以示出芯片的偏压190、阵列191和解码器192区域的位置。该设计布局还包括测试结构193区域。在图19中,右侧的(B)是基于最终设计的相应成品芯片的光学显微镜图像示意图,该芯片是在台积电公司的半导体制造厂(加利福尼亚州圣何塞)使用台积电180纳米CMOS工艺生产的,在该芯片上没有钝化层。
图20示出了图19的成品CMOS芯片200(256像素阵列,2毫米×2毫米)的扫描电子显微镜(SEM)图像,该图像清晰地示出了80微米像素201的亚光学表面特征,并且重点示出了外露过孔(源极、栅极和漏极),在这些过孔处可通过后处理沉积纳米电极,并将该纳米电极电连接到放大电路中,如图17-B的右侧所示。图20中最右侧的100纳米SEM图像202示出了通过电子束光刻制造的一对间隔开的纳米电极,在适当的位置带有分子复合物。图20右下角的草图203是进行性酶分子电子传感器的示意图,该传感器包括聚合酶分子复合物207、以及间隔开的电极204和205,每个电极均由金点触点标记,其中电极间隙206大约为10纳米。
在本公开的多个实施例中,在本文中所用的DNA读取器芯片包括至少一百万个传感器、至少一千万个传感器、至少一亿个传感器或至少十亿个传感器。已知典型的传感器数据采样速率可为10kHz,并且每次测量记录1个字节,因此1亿个传感器芯片以每秒1TB的速率产生原始信号数据。在考虑单个芯片上需要多少个传感器时,一个关键的考虑因素是与所需的数字数据读取速率相比该芯片对存储在DNA中的数字数据进行解码的速率。例如,需要以最高每秒1GB的速率读出数字数据。应注意的是,编码为DNA的数字数据的每一位都需要进行多次信号测量才能恢复,考虑到用于存储该信息的信号特征,所测信号的原始信号数据产生速率会远远高于编码数字数据的恢复速率。例如,如果恢复1位存储的数字数据需要10个信号测量值(图2中的信号特征就是这种情况),并且每个测量值都是8位字节,那么恢复1位存储的数字数据需要80位信号数据。因此,预计数字数据读取速率比传感器原始信号数据采集速率慢100倍。因此,要达到1GB/秒的所需数字数据读取速率,则需要将近0.1TB/秒的可用原始信号数据。考虑到并非芯片中的所有传感器都能产生可用数据,因此基于从存储为DNA的数据恢复所需的最终数字数据的速率,需要能产生多达1TB/秒原始数据的芯片。在多个实施例中,这样的恢复速率与一亿个传感器芯片对应。
在本公开的多个实施例中,在读取器系统内部署多个芯片以实现所需的系统级数字数据读取速率。图17-A的DNA数据读取器芯片可部署为用于读取存储在DNA中的数字数据的完整系统的一部分。在图22中示出了这种系统的特征。在多个方面中,参考图22,完整的数字数据读取系统包括具有用于多个芯片的阵列的集装区的主板,以提供超出单个芯片的限制的数据读取吞吐量。这种芯片被独立地容纳在流通池中,并配有控制传感器系统液体试剂的添加和去除的流体处理系统。另外,该流体系统以溶液形式接收源自数据存储库源的DNA编码数据。所述主板还包括适当的第一级数据处理单元,该第一级数据处理单元能够以极高的速率接收和减少原始信号数据,例如每秒1TB以上、每秒10TB以上、或每秒100TB以上,并在图中示为主信号处理器。该主处理器可包括FPGA、GPU或DSP器件或定制信号处理芯片之中的一种、多种或它们的组合,并且可选地可随附有多级此类信号处理器,以形成处理管道。该主管道的数据输出通常被传输至快速数据存储缓冲器(例如固态驱动器),从该缓冲器输出的数据会在基于CPU的子系统中进行进一步处理或解码,然后将数据从该子系统中缓冲到速度较低的大容量存储缓冲器(例如硬盘驱动器、固态驱动器或此类驱动器的阵列)。数据被从该缓冲器传输到辅助数据传输计算机子系统,该子系统负责将解码数据随后传输到目的地。所有这些系统操作都在辅助控制计算机的高级控制下进行,该计算机监视、协调并控制这些功能单元和过程之间的相互作用。
在一些实施例中,读取器系统内的芯片可以是一次性的,并在一定的工作周期(例如24小时至48小时)之后更换。在其他实施例中,可在这样的使用周期之后就地修复芯片,由此去除分子复合物和可能的缀合基团,然后通过一系列化学溶液接触处理来替换为新的此类组分。该去除过程可包括使用施加到电极上的电压来驱动去除作用,例如提高施加到电极上的电压,或向电极施加交流电压,或者进行电压扫描。该过程还可包括使用使这些基团变性、溶解或解离或以其他方式消除这些基团的化学物质,例如高摩尔浓度的尿素、胍盐或其他离液盐、蛋白酶(例如蛋白酶K)、酸(例如盐酸)、碱(例如氢氧化钾或氢氧化钠)、或在分子生物学和生物化学领域中公知的用于此类用途的试剂。该过程还可包括施加温度或光来驱动去除作用,例如提高温度或增加光照、以及在分子复合物或缀合基团中增加可光裂解基团。
图22示出了基于云的DNA数据归档存储系统的一个实施例,其中完整的读取器系统(例如图21所示的系统)以聚合形式部署,以提供用于整个归档存储和检索系统的云DNA读取器服务器。图22示出了一种采用标准存储格式的云计算系统(左上角)。如图所示,这种标准云计算系统具有DNA归档数据存储能力。一些基于云的DNA合成系统可从云计算机接收二进制数据,并产生物理的数据编码DNA分子。该服务器将输出分子存储在DNA数据存储档案库(右下角)中,在该DNA数据存储档案库中,编码数据的物理DNA分子通常以干燥或冻干的形式存储,或者存储在溶液中,在环境温度下或以冷却或冷冻状态存储。在需要从该档案库检索数据时,可将档案库中的DNA样本提供给DNA数据读取器服务器,该服务器将解码后的二进制数据输送回主云计算机系统。该DNA数据读取器服务器可由图21中所示的多种基于DNA读取器芯片的系统以及将DNA衍生数据最终解码并恢复为主云存储系统的原始数据格式的其他计算机驱动。
在图23中示出了依赖于不同于图1-B的传感器的纳米电子测量配置的进行性酶分子传感器的替代实施例。如图所示,进行性酶分子传感器230包括布置在正电极与负电极之间的膜231。在这些传感器中,电子测量是通过纳米孔离子电流传感器进行的,该传感器包括位于膜231两侧的电极、位于膜231中的用于调节离子电流的通过性(显示为通过孔的“电流(i)”)的孔232、以及处于孔232的两侧的水溶液。传感器230还包括进行性酶234,该进行性酶234结合至嵌入在膜231中的另一个分子235,或直接结合至膜231。当进行性酶234处理结合有可区分信号特征的DNA底物233时,由于离子梯度,在膜231的处理侧产生的离子通过孔232。这种纳米孔电流传感器是生物离子通道或生物物理学领域的技术人员所公知的。在多个实施例中,孔232包括天然或突变的生物蛋白质纳米孔,并且膜231包括脂质膜或其合成类似物。不同的孔可包括固态孔,并且膜是由固体材料(例如氮化硅或聚四氟乙烯)构成的薄膜。在多个实施例中,正电极和负电极可与所示的相反,例如取决于离子梯度中的离子的形式电荷。当在酶的进行性作用下产生的离子通过孔时,离子电流的变化在该图的插图中的(i)-(t)曲线中表现为扰动236、237、238等。如图23所示,进行性酶234通过各种方式与孔232进一步复合,例如作为涉及嵌入在膜231中并与孔232相关联的少量分子235的分子复合物的一部分。当酶234处理结合有所示的信号基团或特征的DNA模板233时,这种活动会调节通过孔的离子电流,从而产生可区分的信号扰动236、237、238等,这些信号扰动与DNA模板上的不同模板信号特征对应。
在图24中示出了基于进行性酶的DNA数字数据读取器的纳米孔电流传感器版本的其他实施例。在多个实施例中,进行性酶分子传感器240包括在特定的缀合点245直接缀合至膜241中的孔242的进行性酶244。进行性酶244可包括解旋酶。当向酶244提供编码有信号特征246的DNA模板243时,可区分信号(248、248',248"等)会产生如该图的插图中所示的(i)-(t)曲线,这与图6所示的情况相当。在某些方面中,结合至主链243的寡核苷酸246可包含能够在寡核苷酸246与酶244接合的同时阻塞孔242的附着基团247,从而导致电流抑制特征。如图所示,基团247'在与进行性酶244相邻或被其处理时能够阻塞孔242。处理完成后,带有附着基团的寡核苷酸(例如所示的246')被从主链143转移。酶向孔242的缀合245可包括许多可能的缀合化学反应中的任何一种,例如基于Spy-SpyCatcher蛋白的缀合系统。在其他示例中,所述缀合可包括分子系链。对于图23和图24中所示的纳米孔传感器实施例,在上文中参照图1-B提出的各个方面也适用,从而提供一种基于纳米孔离子电流传感器的用于读取存储在DNA分子中的数字数据的传感器、以及相关的有益方面、编码方案、芯片形式、系统和基于云的DNA数字数据存储系统。
在进行性酶分子传感器的多个实施例中,该传感器包括碳纳米管作为桥分子,如图25所示。如图所示,进行性酶分子传感器250包括碳纳米管251,该碳纳米管在其每端连接至间隔开的电极,从而横跨电极间隙256。在某些方面中,碳纳米管251包括单壁或多壁纳米管,所述纳米管通过许多可能的缀合化学反应中的任何一种在特定的缀合位点255缀合至进行性酶252。这种缀合255例如可包括通过芘在纳米管上的π堆积而附接至纳米管的芘接头,或者可包括与位于碳纳米管中的缺陷位点的附接。根据前述实施例,进行性酶252对包括结合有寡核苷酸254的主链253的DNA模板进行处理,该寡核苷酸254作为可区分信号特征,导致如该图中的插图所示的(i)-(t)曲线中的扰动257、258、259等。当进行性酶252处理DNA模板时,所示的寡核苷酸(例如254')被转移。在这些实施例中,已知的是,流过作为分子线的碳纳米管251的电流对纳米管(例如如图1-B所示)周围的环境中的分子非常敏感。还已知的是,该电流对正确地缀合至纳米管的酶分子(包括聚合酶)的活性很敏感。对于传感器250的实施例,上文中提出的本发明的所有方面在这种情况下都适用,从而提供一种基于碳纳米管的用于读取存储在DNA分子中的数字数据的传感器,包括相关的有益方面、编码方案、芯片形式、系统和基于云的DNA数字数据存储系统。
在多个实施例中,进行性酶分子传感器通过内部零模波导传感器提供光信号,如图26所示。这种传感器260包括在全内反射模式下在施加到薄基底上的激发场的瞬逝区中在缀合位点265缀合至金属阱268的底部的单个进行性酶262。进行性酶262具有已编码的DNA模板,该DNA模板的主链263在模板上的结合寡核苷酸264上具有染料标记266。当这种染料标记266易位到酶262上时,染料标记266被保持在瞬逝场中,并被激发光束261激励从而发射具有相应染料能谱或颜色的光子267。结果是,在适当的条件下,这种传感器产生可区分光信号269、269'、269"等,如发射(T)百分比(%)与时间(t)的关系曲线图所示,可使用将数字信息编码为DNA分子。在此,所述可区分信号可以是具有不同能量分布或颜色的光子发射、或具有不同的可区分光谱、不同的持续时间、或光谱强度或形状随着时间的变化不同的发射、或者是导致可区分特征的这种元素的任何组合。对于图26中所示的零模波导传感器实施例,在上文中参照图1-B提出的本发明的所有方面在这种情况下也适用,从而提供一种基于零模波导的用于读取存储在DNA分子中的数字数据的传感器,并且相关的有益方面、编码方案、芯片形式(在此情况下是光学传感器芯片,例如图像传感器芯片)、系统和基于云的DNA数字数据存储系统都可应用于这种传感器。
在其他实施例中,用于读取编码信息的分子传感器可包括能够处理非DNA聚合物模板的酶分子,只要这种聚合物允许存在结合、可转移的基团或永久结合的信号传导特征,如上文中在具有结合至主链的寡核苷酸或扰动基团的DNA分子的上下文中所述。在图27中示出了非DNA数据读取传感器的多个实施例,其中溶菌酶272在特定的缀合点275附接至分子桥274。该桥分子包括用于在接触点276和277结合至一对间隔开的电极中的每个电极的第一端和第二端。在这些传感器270中,溶菌酶272将具有氨基酸侧链的肽聚糖聚合物271依次消化为包含各种糖的消化产物278。可通过结合基团273将数字数据编码到肽聚糖217中,该结合基团273可按类似于图11的传感器的方式读取。因此,采用在本文中所述的读取器以及同源进行性酶,也可使用聚合物而不是DNA来存储数字数据,该进行性酶沿着这种聚合物易位,作为其全部或部分酶活性的表现。
其他实施例
在多个实施例中,公开了一种可用于DNA数据存储系统的DNA数据读取传感器。该分子传感器包括:(a)一对间隔开的纳米电极;(b)络合在纳米电极之间以形成分子电子电路的单个进行性酶;(c)所述电路的由酶活性调节的可测电子参数;(d)测量缓冲液和试剂溶液以及用于对(c)的参数进行这种测量的电操作参数;以及DNA模板分子的将由酶处理并具有至少两个可能的状态的特征,当该特征由(b)的酶处理时,当在由(d)的缓冲液和设置提供的条件下执行时,所述状态在(c)的可测参数中产生可区分电信号。
所述DNA数据读取传感器还可包括栅电极。
可使用桥分子或任何数量的臂或接头分子将所述DNA数据读取传感器的进行性酶缀合在适当的位置,以有助于将酶结合到传感器电路中(例如附图所示),尤其是在这种桥或臂分子包含双链DNA、蛋白质α螺旋、石墨烯纳米带、碳纳米管、抗体或抗体的Fab臂的情况下。
所述DNA数据读取传感器的进行性酶可包括天然或基因工程形式的下列酶:聚合酶、逆转录酶、解旋酶、核酸外切酶、以及用于包装病毒DNA的分子马达。
所述DNA数据读取传感器的可测电子参数是电极之间的源-漏极电流。
所述信号特征可包括结合至DNA模板的寡核苷酸,当酶沿着DNA易位时,该寡核苷酸被进行性酶转移。
所述信号特征还可包括牢固地结合至DNA模板从而在酶沿着DNA易位时不会被从DNA模板链转移的化学基团。
所述信号特征还可包括结合至DNA模板的寡核苷酸,其中所述寡核苷酸分别附接有附加化学基团,并且其中所述寡核苷酸在进行性酶沿着DNA易位时被进行性酶转移。
产生可区分电信号的DNA片段可包括寡核苷酸结合位点和缀合至DNA的化学基团的任何组合。
在多个实施例中,公开了一种CMOS传感器阵列芯片。该CMOS传感器阵列芯片可包括所述的DNA数据读取传感器的阵列以及执行可测电参数的测量的支持像素电路。
在多个实施例中,公开了一种读取编码在DNA分子中的数据的方法。所述方法包括:获得使用所述的DNA数据读取传感器的可区分信号来编码数字数据的DNA分子;在所述缓冲液和试剂溶液中将该分子施加到传感器上;测量可测电子参数;记录或提取或捕获可区分信号;并将测得的可区分信号转换为编码数据格式。
在多个实施例中,公开了一种以更高的精确度读取编码在DNA中的数据的方法。所述方法包括:获得使用上述的DNA数据读取传感器的可区分信号来编码数字数据的DNA分子;在所述缓冲液和试剂溶液中将所述分子施加到传感器上;测量所述的可测电子参数;通过下列手段的任何组合对相同的DNA数据载荷重复这些步骤多次:使用不同的传感器捕获并处理包含相同数据载荷的不同DNA分子;采用具有支持多次处理的圆形、发夹形或串联的重复架构的分子,使用相同的传感器处理相同的DNA分子多次;以及使用相同的传感器捕获并处理包含相同数据载荷的不同DNA分子;记录或提取或捕获相同数据载荷的所有此类读取结果中的可区分信号;并且以算法聚合数据载荷的多个读数以产生数据载荷的最准确的推断编码数据格式,从而将从多个读数获得的被测可区分信号转换为编码数据格式。
一种将数据编码到DNA分子中的方法使用来自DNA数据读取传感器的DNA的可区分信号特征。
一种将数据编码到DNA分子中的方法使用一系列杂合的寡核苷酸,其中这种寡核苷酸可具有或没有添加的化学基团。
一种将数据编码到DNA分子中的方法使用如图16和相关文字所述的编码方案,其中所述特征在所述的DNA数据读取传感器中产生可区分信号特征,并且其中这种编码包括使用结合的寡核苷酸和/或使用结合的化学基团。
一种使用DNA数据读取传感器的可区分信号特征将数据编码到DNA分子中的方法包括:将可区分特征处理为信息状态或字母符号;使用将编码为二进制或其他数字字母形式的字符串的数据转译为这种特征符号表示形式的字符串的无损或有损数据编码方案;并且通过直接将编码的DNA序列转化为对应的序列或者可能具有置于这些特征之间的标准的其他序列元素(例如间隔子、与DNA合成方法有关的元素、或者可区分信号特征序列之间的其他形式的标点序列)的序列来按照所得的特征字符串定义编码的DNA序列。
一种用于并行读取编码在DNA中的数据的方法,包括:施加多个DNA分子,这些分子利用如上所述的DNA数据读取传感器的可区分信号DNA特征来编码数字数据;在缓冲液和试剂溶液中将所述分子施加到上述的传感器阵列芯片上;使用上述像素电路测量阵列中的每个传感器的可测电子参数;针对每个DNA分子记录或提取或捕获每个像素的可区分信号;并针对每个DNA分子将每个像素的实测可区分信号转换为编码数据格式。
一种以极高的吞吐量读取存储在DNA中的数据的方法包括:在控制和传输来自芯片的数据的主板上设置一个或多个芯片;利用芯片的可区分信号特征和相关的测量缓冲液将DNA分子编码信息引向测序芯片;并且针对(b)的分子捕获所产生的可区分信号特征,并将其转换回数字数据编码格式。
一种DNA数据读取系统包括一个或多个如上所述的读取传感器阵列芯片;用于控制和管理这种芯片的电输入和数据输出的电子硬件系统;用于将数据编码DNA分子和测量缓冲液引向芯片的流体系统;以及用于捕获测量的可区分信号,并将这些可区分信号特征的测量值转换回数字数据编码格式的信号处理及数据记录系统。
所述芯片可以是单次使用的,并且可随着时间的延续装载替换芯片以提供读取容量。
可对所述芯片进行就地修复或重置,以重复使用或连续使用,以随着时间的延续提供读取容量。
在多个实施例中,公开了一种基于云的DNA数据存储系统。所述系统包括:数据读取器服务器云,该数据读取器服务器云又包括所述的DNA数据读取系统。
在多个实施例中,公开了一种分子电子DNA数据读取传感器。该传感器包括:纳米孔离子电流传感器;与纳米孔复合作为分子复合物一部分的单个进行性酶;测量缓冲液和试剂溶液以及用于对流过孔的离子电流进行这种测量的电操作参数;以及DNA模板分子的具有至少两个可能状态的特征,当该特征由(b)的酶处理时,当在由(c)的缓冲液和设置提供的条件下进行时,所述状态在(a)的纳米孔离子电流传感器中产生可区分电信号。
所述信号特征可包括附接有基团的寡核苷酸,该寡核苷酸通过直接与孔接合而改变离子电流。
所述传感器可用于按照所述方法读取编码在DNA中的数据。
在多个实施例中,公开了一种分子电子DNA数据读取传感器。该传感器包括:一对纳米电极;横跨电极并与之电接触的碳纳米管;缀合至碳纳米管的单个进行性酶;以及测量缓冲液和试剂溶液以及用于对流过电极之间的纳米管的电流进行测量的电操作参数。
在多个实施例中,一种DNA数据读取传感器包括:(a)零模波导管;(b)缀合至该零模波导管的底部的单个进行性酶;(c)测量缓冲液和试剂溶液以及用于对零模波导管的光发射进行测量的光激发操作参数;以及(d)DNA模板分子的具有至少两个可能状态的特征,当该特征由(b)的酶处理时,当在由(c)的缓冲液和设置提供的条件下进行时,所述状态产生可区分光信号。
根据所述方法,上述传感器可用于读取编码在DNA中的数据。
在多个实施例中,公开了一种用于读取编码在聚合物中的数字数据的分子电子传感器。该传感器包括:一对纳米电极;非DNA聚合物;络合在作为分子电子电路的一部分的纳米电极之间的单个进行性酶,其中该酶有选择性地作用于所述聚合物;所述电路的由酶活性调节的可测电子参数;测量缓冲液和试剂溶液以及用于对所述可测电子参数进行这种测量的电操作参数;以及聚合物分子的具有至少两种可能状态的特征,当该特征被进行性酶处理时,当在由缓冲液和设置提供的条件下进行时,所述状态在可测电子参数中产生可区分电信号。
根据所述方法,该传感器可用于读取编码在聚合物中的数据,其中前述实施例中的DNA被聚合物代替。
本发明提供了一种DNA数据读取进行性酶分子传感器及其制造和使用方法。对“多个实施例”、“单个实施例”、“一个实施例”、“示例性实施例”等的引用表示所述的实施例可包括特定的特征、结构或特性,但是不一定每个实施例都包括该特定特征、结构或特征。而且,这样的短语不一定指代同一个实施例。此外,在结合实施例说明特定特征、结构或特性时,应认识到,在本领域技术人员的知识范围内,此类特征、结构或特性可结合其他实施例实施,不论这些实施例在本文中是否已明确说明。在阅读说明书之后,如何在替代实施例中实现本公开对于相关领域的技术人员来说将是显而易见的。
本发明的益处、其他优点和问题的解决方案在上文中是参照具体实施例说明的。但是,这些益处、优点、问题的解决方案、以及可能带来任何益处、优点或解决方案或使其变得更加明显的任何元素不应理解为是本公开的关键、必要或本质特征或元素。因此,本公开的范围仅受所附权利要求的限制,在所附权利要求中,除非另行明确声明,否则对单数形式的元件的引用并不旨在表示“一个且仅有一个”,而是表示“一个或多个”。此外,在权利要求或说明书中使用类似于“A、B和C中的至少一个”或“A、B或C中的至少一个”的短语时,应将该短语解读为指在一个实施例中可单独存在A、在一个实施例中可单独存在B、在一个实施例中可单独存在C、或者在单个实施例中可存在元素A、B和C的任何组合;例如A和B、A和C、B和C或A和B和C。
本领域普通技术人员已知的上述各个实施例的元素的所有结构、化学和功能等同物通过引用明确地结合在本文中,并且意图被本权利要求所涵盖。而且,装置或方法不一定必须解决本公开寻求解决的每个问题,因为这些问题被权利要求所涵盖。此外,本公开中的任何元件、部件或方法步骤都不意图贡献给公众,无论在权利要求中是否明确列举了该元件、部件或方法步骤。任何要求保护的元素都不意图引用35U.S.C.112(f),除非使用短语“用于......的装置”明确叙述该元素。在本文中所使用的术语“包括”、“包含”或其任何其他变化形式意图涵盖非排他性的包含,从而包括一系列元素的分子、组成、过程、方法或装置不仅包含这些元素,还可包含未明确列出或此类分子、组成、过程、方法或装置所固有的其他元素。

Claims (40)

1.一种传感器,包括:
第一电极;
第二电极,其与所述第一电极隔开一电极间隙;
进行性酶,其缀合至所述第一电极和所述第二电极,所述进行性酶包括天然或基因工程的聚合酶、逆转录酶、解旋酶、核酸外切酶或用于包装病毒DNA的分子马达;和
跨阻放大器,其电连接至所述第一电极和所述第二电极中的至少一者,所述跨阻放大器提供包括可测电参数的输出;
其中所述可测电参数包括与所述进行性酶的酶活性对应的可区分信号。
2.根据权利要求1所述的传感器,其中所述跨阻放大器在所述第一电极与所述第二电极之间提供可偏置电压,并且其中所述可测电参数包括电流输出。
3.根据权利要求1所述的传感器,还包括电容性地耦合至所述电极间隙的栅电极。
4.根据权利要求3所述的传感器,其中所述跨阻放大器还向所述栅电极提供可偏置电压。
5.根据权利要求1所述的传感器,其中所述进行性酶直接接线在所述第一电极与所述第二电极之间,以通过所述进行性酶在所述第一电极与所述第二电极之间提供导电路径。
6.根据权利要求1所述的传感器,其中所述进行性酶经由横跨所述电极间隙的桥分子而被缀合至所述第一电极和所述第二电极,所述桥分子具有第一端和第二端,所述第一端缀合至所述第一电极,并且所述第二端缀合至所述第二电极,其中所述进行性酶缀合至所述桥分子。
7.根据权利要求6所述的传感器,其中所述桥分子包括双链DNA、蛋白质α螺旋、石墨烯纳米带、碳纳米管、抗体或抗体的Fab臂。
8.根据权利要求1所述的传感器,其中所述进行性酶经由至少一个中介臂分子而被缀合至所述第一电极和所述第二电极,所述臂分子缀合至所述第一电极和所述第二电极中的至少一者,并缀合至所述进行性酶。
9.根据权利要求8所述的传感器,其中所述臂分子包括双链DNA、蛋白质α螺旋、石墨烯纳米带、碳纳米管、抗体或抗体的Fab臂。
10.根据权利要求1所述的传感器,其中所述第一电极和所述第二电极分别包括源电极和漏电极,并且其中所述可测电参数是这些电极之间的源-漏电流。
11.根据权利要求10所述的传感器,其中所述跨阻放大器还提供可偏压的源、漏和栅电极。
12.一种读取编码信息的方法,所述方法包括:
通过进行性酶使合成DNA分子易位,所述进行性酶电连接在分子传感器电路中;和
在所述电路的可测电参数中产生信号,
其中所述信号与所述编码信息对应。
13.根据权利要求12所述的方法,其中所述进行性酶包括天然或基因工程的聚合酶、逆转录酶、解旋酶、核酸外切酶或用于包装病毒DNA的分子马达。
14.根据权利要求12所述的方法,其中所述编码信息包括二进制数据。
15.根据权利要求12所述的方法,其中所述合成DNA分子包括在其上结合有可区分信号特征的DNA模板链。
16.根据权利要求15所述的方法,其中所述可区分信号特征包括寡核苷酸的序列。
17.根据权利要求16所述的方法,其中所述寡核苷酸通过互补碱基配对结合至所述DNA模板链,当所述合成DNA分子通过所述进行性酶进行性地易位时所述寡核苷酸被所述进行性酶从所述DNA模板链转移,并且其中所述电路的所述可测电参数中的信号对应于寡核苷酸从所述DNA模板链的转移。
18.根据权利要求17所述的方法,其中每个所述寡核苷酸还包括至少一个结合在其上的化学基团。
19.根据权利要求16所述的方法,其中所述寡核苷酸被共价键合至所述DNA模板链,并且其中所述电路的所述可测电参数中的可区分信号对应于寡核苷酸与进行性酶之间的不从所述DNA模板链转移所述寡核苷酸的相互作用。
20.根据权利要求19所述的方法,其中每个所述寡核苷酸还包括至少一个结合在其上的化学基团。
21.根据权利要求15所述的方法,其中所述可区分信号特征包括缀合至所述DNA模板链的化学基团。
22.一种DNA信息系统,包括:
合成DNA分子,其包括DNA模板链和结合在其上的可区分信号特征,所述可区分信号特征对所述合成DNA分子中的信息进行编码;
缓冲溶液,其与所述合成DNA分子、所述第一电极和所述第二电极和所述进行性酶接触;和
传感器,其能够读取编码在所述合成DNA分子中的信息,所述传感器包括:第一电极;与所述第一电极隔开一电极间隙的第二电极;缀合至所述第一电极和所述第二电极的进行性酶;和电连接至所述第一电极和所述第二电极中的至少一者的跨阻抗放大器,所述跨阻抗放大器提供包括可测电参数的输出,
其中所述可测电参数包括与编码信息对应的可区分信号。
23.根据权利要求22所述的系统,其中所述进行性酶包括天然或基因工程的聚合酶、逆转录酶、解旋酶、核酸外切酶或用于包装病毒DNA的分子马达。
24.根据权利要求22所述的系统,其中所述编码信息包括二进制数据。
25.根据权利要求22所述的系统,其中所述可区分信号特征包括寡核苷酸的序列。
26.根据权利要求25所述的系统,其中所述寡核苷酸通过互补碱基配对结合至所述DNA模板链。
27.根据权利要求26所述的系统,其中每个所述寡核苷酸还包括至少一个结合在其上的化学基团。
28.根据权利要求25所述的系统,其中所述寡核苷酸被共价键合至所述DNA模板链。
29.根据权利要求28所述的系统,其中每个所述寡核苷酸还包括至少一个结合在其上的化学基团。
30.根据权利要求22所述的系统,其中所述可区分信号特征包括缀合至所述DNA模板链的化学基团。
31.根据权利要求22所述的系统,还包括浸没在所述缓冲溶液中的参比电极。
32.根据权利要求22所述的系统,还包括电容性地耦合至所述电极间隙的栅电极。
33.根据权利要求22所述的系统,其中所述进行性酶直接接线在所述第一电极与所述第二电极之间,以通过所述进行性酶在所述第一电极与所述第二电极之间提供导电路径。
34.根据权利要求22所述的系统,其中所述进行性酶经由横跨所述电极间隙的桥分子缀合至所述第一电极和所述第二电极,所述桥分子具有第一端和第二端,所述第一端缀合至所述第一电极,并且所述第二端缀合至所述第二电极,其中所述进行性酶缀合至所述桥分子。
35.根据权利要求34所述的系统,其中所述桥分子包括双链DNA、蛋白质α螺旋、石墨烯纳米带、碳纳米管、抗体或抗体的Fab臂。
36.根据权利要求22所述的系统,其中所述进行性酶经由至少一个中介臂分子缀合至所述第一电极和所述第二电极,所述臂分子缀合至所述第一电极和所述第二电极中的至少一者,并缀合至所述进行性酶。
37.根据权利要求36所述的传感器,其中所述臂分子包括双链DNA、蛋白质α螺旋、石墨烯纳米带、碳纳米管、抗体或抗体的Fab臂。
38.根据权利要求22所述的系统,还包括CMOS传感器阵列芯片,其包括所述传感器的阵列和执行所述可测电参数的测量的支持像素电路。
39.根据权利要求38所述的系统,包括至少两个所述CMOS传感器阵列芯片;用于控制和管理所述芯片的电输入和数据输出的电子硬件系统;用于将所述缓冲溶液中的所述合成DNA分子引向所述芯片的流体系统;以及用于捕获所述可区分信号并将所述可区分信号转换回所述信息的信号处理及数据记录系统。
40.根据权利要求22所述的系统,其中所述合成DNA分子包括圆形、发夹形或串联重复架构,其允许重复读取编码在所述合成DNA分子中的所述信息。
CN201880055129.9A 2017-08-30 2018-08-30 用于dna数据存储的进行性酶分子电子传感器 Pending CN111373049A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762551977P 2017-08-30 2017-08-30
US62/551977 2017-08-30
PCT/US2018/048873 WO2019046589A1 (en) 2017-08-30 2018-08-30 PROCESSIVE ENZYME MOLECULAR ELECTRONIC SENSORS FOR STORING DNA DATA

Publications (1)

Publication Number Publication Date
CN111373049A true CN111373049A (zh) 2020-07-03

Family

ID=65527897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880055129.9A Pending CN111373049A (zh) 2017-08-30 2018-08-30 用于dna数据存储的进行性酶分子电子传感器

Country Status (5)

Country Link
US (2) US11371955B2 (zh)
EP (1) EP3676389A4 (zh)
KR (1) KR20200039795A (zh)
CN (1) CN111373049A (zh)
WO (1) WO2019046589A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017132567A1 (en) 2016-01-28 2017-08-03 Roswell Biotechnologies, Inc. Massively parallel dna sequencing apparatus
JP7280590B2 (ja) 2016-01-28 2023-05-24 ロズウェル バイオテクノロジーズ,インコーポレイテッド 大スケールの分子電子工学センサアレイを使用する被分析物を測定するための方法および装置
US10737263B2 (en) 2016-02-09 2020-08-11 Roswell Biotechnologies, Inc. Electronic label-free DNA and genome sequencing
EP3509018B1 (en) * 2016-08-30 2023-10-18 Tsinghua University Method for biologically storing and restoring data
CA3052062A1 (en) * 2017-01-10 2018-07-19 Roswell Biotechnologies, Inc. Methods and systems for dna data storage
KR20230158636A (ko) 2017-01-19 2023-11-20 로스웰 바이오테크놀로지스 인코포레이티드 2차원 레이어 재료를 포함하는 솔리드 스테이트 시퀀싱 디바이스들
US10508296B2 (en) 2017-04-25 2019-12-17 Roswell Biotechnologies, Inc. Enzymatic circuits for molecular sensors
CN110546276A (zh) 2017-04-25 2019-12-06 罗斯威尔生命技术公司 用于分子传感器的酶电路
CN110651182B (zh) 2017-05-09 2022-12-30 罗斯威尔生命技术公司 用于分子传感器的结合探针电路
WO2019046589A1 (en) 2017-08-30 2019-03-07 Roswell Biotechnologies, Inc. PROCESSIVE ENZYME MOLECULAR ELECTRONIC SENSORS FOR STORING DNA DATA
CN111373051A (zh) 2017-10-10 2020-07-03 罗斯威尔生命技术公司 用于无扩增dna数据存储的方法、装置和系统
CN113994013A (zh) * 2019-04-12 2022-01-28 罗斯威尔生命技术公司 用于分子电子学传感器的多环芳族桥
EP3986908A4 (en) * 2019-06-20 2023-07-19 Arizona Board of Regents on behalf of Arizona State University DIRECT ELECTRICAL READOUT OF NUCLEIC ACID SEQUENCES
KR20220147602A (ko) 2020-02-28 2022-11-03 아리조나 보드 오브 리젠츠 온 비하프 오브 아리조나 스테이트 유니버시티 생체고분자를 시퀀싱하는 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013025998A1 (en) * 2011-08-18 2013-02-21 Life Technologies Corporation Methods, systems, and computer readable media for making base calls in nucleic acid sequencing
US20160131613A1 (en) * 2013-06-07 2016-05-12 Cornell University Floating gate based sensor apparatus and related floating gate based senor applications
US20170038333A1 (en) * 2015-08-06 2017-02-09 Pacific Biosciences Of California, Inc. Systems and methods for selectively addressing sparsely arranged electronic measurement devices
US20170159115A1 (en) * 2015-08-10 2017-06-08 Stratos Genomics, Inc. Single molecule nucleic acid sequencing with molecular sensor complexes
WO2017123416A1 (en) * 2016-01-14 2017-07-20 Roswell Biotechnologies, Inc. Molecular sensors and related methods
WO2017132586A1 (en) * 2016-01-28 2017-08-03 Roswell Biotechnologies, Inc. Methods and apparatus for measuring analytes using large scale molecular electronics sensor arrays
WO2018132457A1 (en) * 2017-01-10 2018-07-19 Roswell Biotechnologies, Inc. Methods and systems for dna data storage

Family Cites Families (279)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233981Y2 (zh) 1986-05-13 1990-09-12
US4923586A (en) * 1987-03-31 1990-05-08 Daikin Industries, Ltd. Enzyme electrode unit
US5082627A (en) 1987-05-01 1992-01-21 Biotronic Systems Corporation Three dimensional binding site array for interfering with an electrical field
US5486449A (en) 1989-02-07 1996-01-23 Rohm Co., Ltd. Photomask, photoresist and photolithography for a monolithic IC
GB2244135B (en) 1990-05-04 1994-07-13 Gen Electric Co Plc Sensor devices
US6051380A (en) 1993-11-01 2000-04-18 Nanogen, Inc. Methods and procedures for molecular biological analysis and diagnostics
IL103674A0 (en) 1991-11-19 1993-04-04 Houston Advanced Res Center Method and apparatus for molecule detection
US5414588A (en) 1993-09-20 1995-05-09 The Regents Of The University Of California High performance capacitors using nano-structure multilayer materials fabrication
US5366140A (en) 1993-09-30 1994-11-22 Minnesota Mining And Manufacturing Company Patterned array of uniform metal microbeads
US5965452A (en) 1996-07-09 1999-10-12 Nanogen, Inc. Multiplexed active biologic array
US5871918A (en) 1996-06-20 1999-02-16 The University Of North Carolina At Chapel Hill Electrochemical detection of nucleic acid hybridization
JP3149718B2 (ja) 1995-02-03 2001-03-26 松下電器産業株式会社 単電子トランジスタ
US5583359A (en) 1995-03-03 1996-12-10 Northern Telecom Limited Capacitor structure for an integrated circuit
US6673533B1 (en) 1995-03-10 2004-01-06 Meso Scale Technologies, Llc. Multi-array multi-specific electrochemiluminescence testing
US5639507A (en) 1995-05-03 1997-06-17 Avx Corporation Method of making a planar multi-layer capacitor
ATE271219T1 (de) 1995-12-01 2004-07-15 Innogenetics Nv System und verfahren zur bestimmung der impedanz und herstellungsverfahren
US6033582A (en) 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US5881184A (en) 1996-05-22 1999-03-09 Eastman Kodak Company Active pixel sensor with single pixel reset
US6506564B1 (en) 1996-07-29 2003-01-14 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6202471B1 (en) 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
US6110354A (en) 1996-11-01 2000-08-29 University Of Washington Microband electrode arrays
US5767687A (en) 1996-11-29 1998-06-16 Geist; Jon Surface-capacitor type condensable-vapor sensor
US6706473B1 (en) 1996-12-06 2004-03-16 Nanogen, Inc. Systems and devices for photoelectrophoretic transport and hybridization of oligonucleotides
US7169272B2 (en) 1997-04-30 2007-01-30 Board Of Trustees Of The University Of Arkansas Microfabricated recessed disk microelectrodes: characterization in static and convective solutions
US5982018A (en) 1997-05-23 1999-11-09 Micron Technology, Inc. Thin film capacitor coupons for memory modules and multi-chip modules
FR2764386B1 (fr) 1997-06-06 1999-07-16 Commissariat Energie Atomique Support d'electrodes comportant au moins une electrode recouverte par un depot et systeme de lecture de ce support
JP2000033712A (ja) 1997-09-30 2000-02-02 Seiko Epson Corp マイクロセンサーデバイス作成方法及びそれを用いた液体機能評価方法
US6123819A (en) 1997-11-12 2000-09-26 Protiveris, Inc. Nanoelectrode arrays
US6537747B1 (en) 1998-02-03 2003-03-25 Lucent Technologies Inc. Data transmission using DNA oligomers
US6060023A (en) 1998-03-31 2000-05-09 Motorola, Inc. Molecular sensing apparatus
IL124322A (en) 1998-05-04 2002-05-23 Technion Res & Dev Foundation Detection of an entity in a sample
JP2002517300A (ja) 1998-06-10 2002-06-18 ジョージア テック リサーチ コーポレイション 微小針デバイスおよび製造方法ならびにそれらの使用
AU6412799A (en) 1998-10-05 2000-04-26 Mosaic Technologies Reverse displacement assay for detection of nucleic acid sequences
US6094335A (en) 1998-10-09 2000-07-25 Advanced Micro Devices, Inc. Vertical parallel plate capacitor
WO2000050232A1 (fr) 1999-02-25 2000-08-31 Seiko Epson Corporation Element structure presentant d'excellentes proprietes hydrofuges et son procede de fabrication
US6517669B2 (en) 1999-02-26 2003-02-11 Micron Technology, Inc. Apparatus and method of detecting endpoint of a dielectric etch
CA2367405A1 (en) 1999-04-07 2000-10-12 Dennis Michael Connolly High resolution dna detection methods and devices
DE19916921A1 (de) 1999-04-14 2000-10-19 Fraunhofer Ges Forschung Elektrisches Sensorarray
US7122152B2 (en) 1999-05-10 2006-10-17 University Of Florida Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids
US6916614B1 (en) 1999-10-20 2005-07-12 Tum Gene, Inc. Gene detecting chip, detector, and detecting method
DE19960076C2 (de) 1999-12-13 2002-12-05 November Ag Molekulare Medizin Verfahren und Vorrichtung zum Nachweis und zur Quantifizierung von Biomolekülen
US20020090649A1 (en) 1999-12-15 2002-07-11 Tony Chan High density column and row addressable electrode arrays
DE10015818A1 (de) 2000-03-30 2001-10-18 Infineon Technologies Ag Biosensor und Verfahren zum Ermitteln makromolekularer Biopolymere mit einem Biosensor
WO2001079529A1 (en) 2000-04-17 2001-10-25 Purdue Research Foundation Biosensor and related method
AU2001261145B2 (en) 2000-05-03 2005-08-11 The United States Government, As Represented By The Department Of The Navy Biological identification system with integrated sensor chip
FR2811316B1 (fr) 2000-07-06 2003-01-10 Saint Gobain Substrat texture transparent et procedes pour l'obtenir
US6670131B2 (en) 2000-11-30 2003-12-30 Kabushiki Kaisha Toshiba Nucleic acid detection method and apparatus, and vessel for detecting nucleic acid
NL1016779C2 (nl) 2000-12-02 2002-06-04 Cornelis Johannes Maria V Rijn Matrijs, werkwijze voor het vervaardigen van precisieproducten met behulp van een matrijs, alsmede precisieproducten, in het bijzonder microzeven en membraanfilters, vervaardigd met een dergelijke matrijs.
DE10063739B4 (de) 2000-12-21 2009-04-02 Ferro Gmbh Substrate mit selbstreinigender Oberfläche, Verfahren zu deren Herstellung und deren Verwendung
US6958216B2 (en) 2001-01-10 2005-10-25 The Trustees Of Boston College DNA-bridged carbon nanotube arrays
US6749731B2 (en) 2001-01-31 2004-06-15 Kyocera Corporation Gene detection chip and detection device
US7189435B2 (en) 2001-03-14 2007-03-13 University Of Massachusetts Nanofabrication
DE10113550A1 (de) 2001-03-20 2002-10-02 Infineon Technologies Ag Verfahren zum Erfassen von makromolekularen Biopolymeren mittels einer Elektrodenanordnung
JP2005509846A (ja) 2001-06-11 2005-04-14 ジェノークス,インコーポレーテッド 薄層を用いた生体分子の電子的検出
US6824974B2 (en) 2001-06-11 2004-11-30 Genorx, Inc. Electronic detection of biological molecules using thin layers
US20040023253A1 (en) 2001-06-11 2004-02-05 Sandeep Kunwar Device structure for closely spaced electrodes
US20040048241A1 (en) 2001-06-11 2004-03-11 Freeman Beverly Annette Methods for attaching molecules
US7297494B2 (en) 2001-06-25 2007-11-20 Georgia Tech Research Corporation Activatable probes and methods for in vivo gene detection
CA2453489A1 (en) 2001-07-12 2003-01-23 Merck & Co., Inc. Electrical field stimulation of eukaryotic cells
US6483125B1 (en) 2001-07-13 2002-11-19 North Carolina State University Single electron transistors in which the thickness of an insulating layer defines spacing between electrodes
US20030040000A1 (en) 2001-08-08 2003-02-27 Connolly Dennis M. Methods for attaching nucleic acid molecules to electrically conductive surfaces
EP1576167A2 (en) 2001-08-14 2005-09-21 The Penn State Research Foundation Fabrication of molecular scale devices using fluidic assembly
US6861224B2 (en) 2001-11-02 2005-03-01 Fujitsu Limited Protein detecting device
EP1451373A4 (en) 2001-11-06 2005-01-19 Integrated Nano Tech Llc SYSTEM FOR THE DETECTION OF BIOLOGICAL MATERIALS IN A SAMPLE
US6905586B2 (en) 2002-01-28 2005-06-14 Ut-Battelle, Llc DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection
US6743368B2 (en) 2002-01-31 2004-06-01 Hewlett-Packard Development Company, L.P. Nano-size imprinting stamp using spacer technique
US7655269B2 (en) 2002-04-26 2010-02-02 The Penn State Research Foundation Integrated nanomechanical sensor array chips
AU2003299508A1 (en) 2002-05-14 2004-06-07 Nanosphere, Inc. Electrical detection of dna hybridization and specific binding events
US20030224387A1 (en) 2002-05-22 2003-12-04 Sandeep Kunwar Association of molecules with electrodes of an array of electrodes
TWI223903B (en) 2002-06-05 2004-11-11 Reveo Inc Layered electrochemical cell and manufacturing method therefor
EP1376111A1 (en) 2002-06-24 2004-01-02 Universite Catholique De Louvain Method and device for high sensitivity detection of the presence of DNA and other probes
DE10397018A5 (de) 2002-07-02 2015-05-28 Panasonic Healthcare Holdings Co., Ltd. Biosensor, Biosensorchip und Biosensoreinrichtung
US6755423B2 (en) 2002-07-17 2004-06-29 Li Jiun Chiu Tool coupling device for changeable tool members
US7470533B2 (en) 2002-12-20 2008-12-30 Acea Biosciences Impedance based devices and methods for use in assays
DE10242560A1 (de) 2002-09-13 2004-03-25 Creavis Gesellschaft Für Technologie Und Innovation Mbh Herstellung von selbstreinigenden Oberflächen auf textilen Beschichtungen
US20040063100A1 (en) 2002-09-30 2004-04-01 Wang Chung Lin Nanoneedle chips and the production thereof
DE10247679A1 (de) 2002-10-12 2004-04-22 Fujitsu Ltd., Kawasaki Halbleitergrundstruktur für Molekularelektronik und Molekularelektronik-basierte Biosensorik
US7183055B2 (en) 2002-11-01 2007-02-27 Wisconsin Alumni Research Foundation Direct radio-frequency detection of nucleotide hybridization at microelectrodes
US7645574B2 (en) 2003-01-23 2010-01-12 Integrated Nano-Technologies, Llc Methods of metallizing nucleic acid molecules and methods of attaching nucleic acid molecules to conductive surfaces
AU2003304085A1 (en) 2003-02-07 2004-11-26 Wisconsin Alumni Research Foundation Nanocylinder-modified surfaces
US20050164371A1 (en) 2003-03-28 2005-07-28 Fujitsu Limited Cavity electrode structure, and sensor and protein detection device using the same
US20100035254A1 (en) * 2003-04-08 2010-02-11 Pacific Biosciences Of California, Inc. Composition and method for nucleic acid sequencing
US7172917B2 (en) 2003-04-17 2007-02-06 Robert Bosch Gmbh Method of making a nanogap for variable capacitive elements, and device having a nanogap
WO2005005679A2 (en) 2003-04-28 2005-01-20 Nanosys, Inc. Super-hydrophobic surfaces, methods of their construction and uses therefor
WO2004096986A2 (en) 2003-04-29 2004-11-11 Integrated Nano-Technologies, Llc Method for quantitative detection of nucleic acid molecules
JP2004347532A (ja) 2003-05-23 2004-12-09 Japan Science & Technology Agency バイオセンサー
US20050156157A1 (en) 2003-07-21 2005-07-21 Parsons Gregory N. Hierarchical assembly of interconnects for molecular electronics
JP4059181B2 (ja) 2003-09-29 2008-03-12 株式会社村田製作所 多端子型積層セラミック電子部品の製造方法
JP2005109269A (ja) 2003-09-30 2005-04-21 Hitachi Ltd 半導体放射線検出器及び半導体放射線撮像装置
US7132298B2 (en) 2003-10-07 2006-11-07 Hewlett-Packard Development Company, L.P. Fabrication of nano-object array
KR20070001881A (ko) 2003-11-20 2007-01-04 바이오원, 엘엘씨 생물학적 물질 검출 방법 및 장치
WO2005108612A2 (en) 2003-11-28 2005-11-17 Genorx, Inc. Nanoscale biosensor device, system and technique
AU2003294867B2 (en) 2003-12-16 2010-03-11 F. Hoffmann-La Roche Ag Cartridge device for blood analysis
DE10359173B4 (de) 2003-12-17 2006-11-09 Robert Bosch Gmbh Messvorrichtung mit mehreren auf einem Substrat angeordneten potentiometrischen Elektrodenpaaren
US7451381B2 (en) 2004-02-03 2008-11-11 Phonex Broadband Corporation Reliable method and system for efficiently transporting dynamic data across a network
US20050247573A1 (en) 2004-03-23 2005-11-10 Hideaki Nakamura Biosensors
US8354066B2 (en) 2004-03-24 2013-01-15 Technion Research & Development Foundation Ltd. Artificial receptors
US20050221473A1 (en) 2004-03-30 2005-10-06 Intel Corporation Sensor array integrated circuits
US8138496B2 (en) 2004-04-01 2012-03-20 Nanyang Technological University Addressable transistor chip for conducting assays
US20060019273A1 (en) 2004-05-12 2006-01-26 Connolly Dennis M Detection card for analyzing a sample for a target nucleic acid molecule, and uses thereof
US7385295B2 (en) 2004-06-24 2008-06-10 California Institute Of Technology Fabrication of nano-gap electrode arrays by the construction and selective chemical etching of nano-crosswire stacks
US7265019B2 (en) 2004-06-30 2007-09-04 International Business Machines Corporation Elastomeric CMOS based micro electromechanical varactor
US7258731B2 (en) 2004-07-27 2007-08-21 Ut Battelle, Llc Composite, nanostructured, super-hydrophobic material
US7150904B2 (en) 2004-07-27 2006-12-19 Ut-Battelle, Llc Composite, ordered material having sharp surface features
US7655275B2 (en) 2004-08-02 2010-02-02 Hewlett-Packard Delopment Company, L.P. Methods of controlling flow
US20060029808A1 (en) 2004-08-06 2006-02-09 Lei Zhai Superhydrophobic coatings
EP1630882B1 (en) 2004-08-31 2012-05-02 STMicroelectronics S.r.l. Nanometric structure and corresponding manufacturing method
DE602004016496D1 (de) 2004-08-31 2008-10-23 St Microelectronics Srl Verfahren zur Herstellung einer Wirtsstruktur für nanometergroße Elemente
DE102004042729B4 (de) 2004-09-03 2018-02-01 Robert Bosch Gmbh Bio-Chip mit einem Elektrodenarray auf einem Substrat
US20070048748A1 (en) 2004-09-24 2007-03-01 Li-Cor, Inc. Mutant polymerases for sequencing and genotyping
US7507320B2 (en) 2004-10-09 2009-03-24 Academia Sinica Single-atom tip and preparation method thereof
EP1810015A1 (en) 2004-10-14 2007-07-25 Kabushiki Kaisha Toshiba Fet-based nucleic acid detecting sensor
US7785785B2 (en) 2004-11-12 2010-08-31 The Board Of Trustees Of The Leland Stanford Junior University Charge perturbation detection system for DNA and other molecules
US7541004B2 (en) 2004-11-12 2009-06-02 Predict, Inc. MEMS-based sensor for lubricant analysis
DE102004060738B4 (de) 2004-12-15 2008-07-03 Forschungszentrum Jülich GmbH Verfahren zum strukturierten Aufbringen von Molekülen auf eine Leiterbahn
US20080149479A1 (en) 2005-02-18 2008-06-26 Midorion Ab Sensor for Detection of Single Molecules
US9695472B2 (en) 2005-03-04 2017-07-04 Intel Corporation Sensor arrays and nucleic acid sequencing applications
WO2006102292A2 (en) 2005-03-21 2006-09-28 The Trustees Of The University Of Pennsylvania Nanogaps: methods and devices containing same
EP1890598A1 (en) 2005-03-31 2008-02-27 Gregersen Enterprises 2005 Aps Apparatus and method for a global model of hollow internal organs including the determination of cross-sectional areas and volume in internal hollow organs and wall properties
WO2006132694A2 (en) 2005-04-01 2006-12-14 Clemson University Ultrahydrophobic substrates
US7579184B2 (en) 2005-06-02 2009-08-25 Board Of Trustees Of Michigan State University Methods to increase dynamic range and improve quantitative analysis in rapid biosensors
US7417418B1 (en) 2005-06-14 2008-08-26 Ayliffe Harold E Thin film sensor
WO2007053242A2 (en) 2005-09-19 2007-05-10 Wayne State University Transparent hydrophobic article having self-cleaning and liquid repellant features and method of fabricating same
FR2893266B1 (fr) 2005-11-14 2007-12-21 Commissariat Energie Atomique Produit superhydrophile ou superhydrophobe, procede pour sa realisation et utilisation de ce produit
KR100757389B1 (ko) 2005-12-06 2007-09-11 한국전자통신연구원 나노갭 전극을 갖는 센서 및 그 제조 방법
WO2007120312A2 (en) 2005-12-15 2007-10-25 The Trustees Of Columbia University In The City Of New York Sensing devices from molecular electronic devices
US8706219B2 (en) 2005-12-22 2014-04-22 Board Of Regents, The University Of Texas System Method and apparatus for monitoring an organ of a patient
US7649198B2 (en) 2005-12-28 2010-01-19 Industrial Technology Research Institute Nano-array and fabrication method thereof
US20070207487A1 (en) 2006-01-25 2007-09-06 Emig Christopher J Photoelectrochemical synthesis of high density combinatorial polymer arrays
US20090018249A1 (en) 2006-01-30 2009-01-15 Subbareddy Kanagasabapathy Hydrophobic self-cleaning coating compositions
US20070184247A1 (en) 2006-02-03 2007-08-09 Simpson John T Transparent, super-hydrophobic, disordered composite material
US7357018B2 (en) 2006-02-10 2008-04-15 Agilent Technologies, Inc. Method for performing a measurement inside a specimen using an insertable nanoscale FET probe
EP2002248A1 (en) 2006-03-17 2008-12-17 Element Six Limited Microelectrode array
US20090011222A1 (en) 2006-03-27 2009-01-08 Georgia Tech Research Corporation Superhydrophobic surface and method for forming same
US20070227300A1 (en) 2006-03-31 2007-10-04 Quantumsphere, Inc. Compositions of nanometal particles containing a metal or alloy and platinum particles for use in fuel cells
US20070231542A1 (en) 2006-04-03 2007-10-04 General Electric Company Articles having low wettability and high light transmission
GB2437328A (en) 2006-04-10 2007-10-24 Cambridge Display Tech Ltd Electric devices and methods of manufacture
GB0607205D0 (en) 2006-04-10 2006-05-17 Diagnoswiss Sa Miniaturised biosensor with optimized anperimetric detection
US20090162927A1 (en) 2006-05-31 2009-06-25 Yeda Research And Development Company Ltd. Nanotubes and nanowires based electronic devices and method of fabrication thereof
JP2008026109A (ja) 2006-07-20 2008-02-07 Fujifilm Corp 微細構造体及びその製造方法、センサデバイス及びラマン分光用デバイス
US8394590B2 (en) 2006-08-02 2013-03-12 California Institute Of Technology Capture agents and related methods and systems for detecting and/or sorting targets
WO2008020813A1 (en) 2006-08-16 2008-02-21 Agency For Science, Technology And Research Method of electrically detecting a biological analyte molecule
ITTO20060774A1 (it) 2006-10-27 2008-04-28 St Microelectronics Srl Sensore microelettromeccanico avente molteplici valori di fondo scala e di sensibilita'
JP4986138B2 (ja) 2006-11-15 2012-07-25 独立行政法人産業技術総合研究所 反射防止構造を有する光学素子用成形型の製造方法
CA2672315A1 (en) 2006-12-14 2008-06-26 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes using large scale fet arrays
GB0625070D0 (en) 2006-12-15 2007-01-24 Imp Innovations Ltd Characterization of molecules
JP2008258594A (ja) 2007-03-09 2008-10-23 Hokkaido Univ カーボンナノチューブ電界効果トランジスタの製造方法およびバイオセンサ装置
KR100854486B1 (ko) 2007-04-05 2008-08-26 한국기계연구원 초발수 표면 제조 방법
US9139614B2 (en) 2007-04-25 2015-09-22 The United States Of America, As Represented By The Secretary Of The Navy Modular linkers for conjugation of organic substances to substantially inorganic substances and methods of manufacture and use thereof
AT505495A1 (de) 2007-07-04 2009-01-15 Arc Austrian Res Centers Gmbh Verfahren zur identifizierung und quantifizierung von organischen und biochemischen substanzen
US8278188B2 (en) 2007-07-19 2012-10-02 University of Pittsburgh—of the Commonwealth System of Higher Education Manipulation, detection, and assay of small scale biological particles
EP2195648B1 (en) 2007-09-12 2019-05-08 President and Fellows of Harvard College High-resolution molecular graphene sensor comprising an aperture in the graphene layer
WO2009041917A1 (en) 2007-09-28 2009-04-02 Agency For Science, Technology And Research Method of electrically detecting a nucleic acid molecule
WO2009070796A1 (en) 2007-11-29 2009-06-04 President And Fellows Of Harvard College Assembly and deposition of materials using a superhydrophobic surface structure
WO2009082706A1 (en) 2007-12-21 2009-07-02 The Trustees Of Columbia University In The City Of New York Active cmos sensor array for electrochemical biomolecular detection
US8372585B2 (en) 2007-12-31 2013-02-12 Intel Corporation Electronic sensing for nucleic acid sequencing
WO2009131724A2 (en) 2008-01-24 2009-10-29 Massachusetts Institute Of Technology Insulated nanogap devices and methods of use thereof
US8183648B2 (en) 2008-01-25 2012-05-22 Ut-Battelle, Llc Nanoscopic electrode molecular probes
US20090297913A1 (en) 2008-03-25 2009-12-03 The University Of Georgia Research Foundation, Inc. Nanostructure-Enhanced stereo-electrodes for fuel cells and biosensors
US8753893B2 (en) 2008-06-19 2014-06-17 Ben H. Liu Multi-dimensional fluid sensors and related detectors and methods
US7970332B2 (en) 2008-06-30 2011-06-28 Xerox Corporation Oil less fusing using nano/micro textured fusing surfaces
US10670559B2 (en) 2008-07-11 2020-06-02 Cornell University Nanofluidic channels with integrated charge sensors and methods based thereon
US20110248315A1 (en) 2008-08-14 2011-10-13 Brookhaven Science Associates Structured pillar electrodes
WO2010022107A2 (en) 2008-08-18 2010-02-25 The Regents Of The University Of California Nanostructured superhydrophobic, superoleophobic and/or superomniphobic coatings, methods for fabrication, and applications thereof
US20100044212A1 (en) 2008-08-21 2010-02-25 Snu R&Db Foundation Vertically standing ionic polymer-metal composite
CN102216762B (zh) 2008-09-02 2016-02-10 多伦多大学董事局 纳米结构的微电极以及集成所述微电极的生物传感器件
US20100132771A1 (en) 2008-10-06 2010-06-03 The Regents Of The University Of California 3D Carbon Nanotubes Membrane as a Solar Energy Absorbing Layer
EP2350644B1 (en) 2008-11-18 2015-01-07 THE UNITED STATES OF AMERICA as represented by the Secretary, Department of Health and Human Services A semiconductor for measuring biological interactions
US8563240B2 (en) 2008-12-31 2013-10-22 Intel Corporation Nucleic acid sequencing and electronic detection
US8283936B2 (en) 2009-02-09 2012-10-09 Board Of Regents, The University Of Texas System Nano-scale biosensors
US20100206367A1 (en) 2009-02-18 2010-08-19 Korea Institute Of Industrial Technology Method for fabricating silicon nano wire, solar cell including silicon nano wire and method for fabricating solar cell
US8106428B2 (en) 2009-03-03 2012-01-31 Board Of Regents, The University Of Texas System Nano-scale bridge biosensors
EP2406621A4 (en) 2009-03-11 2014-08-20 Agency Science Tech & Res ELECTRICAL SENSOR FOR ULTRA-SENSITIVE NUCLEIC ACID DETECTION
KR20120013322A (ko) 2009-04-14 2012-02-14 나노잉크, 인크. 전도성 라인, 나노입자, 잉크 및 패터닝
US20110291673A1 (en) 2009-04-27 2011-12-01 Sharp Kabushiki Kaisha Chemical sensor
US20100285272A1 (en) 2009-05-06 2010-11-11 Shari Elizabeth Koval Multi-length scale textured glass substrates for anti-fingerprinting
US8313633B2 (en) 2009-07-28 2012-11-20 Polestar Technologies, Inc. Molecular imprinted nanosensors and process for producing same
US8911972B2 (en) 2009-12-16 2014-12-16 Pacific Biosciences Of California, Inc. Sequencing methods using enzyme conformation
KR20110104245A (ko) 2010-03-16 2011-09-22 주식회사 나노플랫폼 Fet 기반 바이오센서, 이의 제조방법, 및 이를 이용하는 표적 물질 검출방법
EP2366994A1 (en) 2010-03-18 2011-09-21 Wolfgang Knoll Biosensor on thin-film transistors
US8940663B2 (en) 2010-04-07 2015-01-27 Board Of Regents, The University Of Texas System Nano-scale biosensors
US20110311853A1 (en) 2010-06-17 2011-12-22 Lsi Corporation Electrochemical cell system and apparatus to provide energy to a portable electronic device
WO2011159942A1 (en) 2010-06-18 2011-12-22 Illumina, Inc. Conformational probes and methods for sequencing nucleic acids
KR101136534B1 (ko) 2010-09-07 2012-04-17 한국기계연구원 프로브 카드 및 이의 제조 방법
US9231133B2 (en) 2010-09-10 2016-01-05 International Business Machines Corporation Nanowires formed by employing solder nanodots
US9070492B2 (en) 2010-09-14 2015-06-30 The General Hospital Corporation Nanoporous metal multiple electrode array and method of making same
CN103328981B (zh) 2010-10-04 2017-04-12 吉纳普赛斯股份有限公司 用于自动化可重复使用的平行生物反应的系统和方法
US10024819B2 (en) 2010-10-21 2018-07-17 The Regents Of The University Of California Microfluidics with wirelessly powered electronic circuits
GB2485559A (en) 2010-11-18 2012-05-23 Univ Plymouth Graphene based electronic device
EP2643480A4 (en) 2010-11-22 2014-05-14 Solulink Inc METHODS AND / OR USE OF OLIGONUCLEOTIDE CONJUGATES FOR TESTS AND DETECTIONS
WO2012083249A2 (en) 2010-12-17 2012-06-21 The Trustees Of Columbia University In The City Of New York Dna sequencing by synthesis using modified nucleotides and nanopore detection
WO2012087352A2 (en) 2010-12-20 2012-06-28 The Regents Of The University Of California Superhydrophobic and superoleophobic nanosurfaces
EP2659268A4 (en) 2010-12-31 2017-01-18 Cilag GmbH International Systems and methods for high accuracy analyte measurement
EP2661775A1 (en) 2011-01-04 2013-11-13 Ecole Polytechnique Fédérale de Lausanne (EPFL) Semiconductor device
TW201231948A (en) 2011-01-26 2012-08-01 zhi-yu Zhao Method for forming frozen biological test strip for electron microscope and device thereof
US8652768B1 (en) 2011-01-31 2014-02-18 Sandia Corporation Nanopatterns by phase separation of patterned mixed polymer monolayers
EP2492674A1 (en) 2011-02-28 2012-08-29 Lexogen GmbH Biosensor array formed by junctions of functionalized electrodes
EP2492673A1 (en) 2011-02-28 2012-08-29 Lexogen GmbH Biosensor array formed by junctions of functionalized electrodes
KR101572228B1 (ko) 2011-03-08 2015-11-26 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 나노 갭 길이를 가지는 전극 구조의 제작 방법 및 그것에 의해 얻어지는 나노 갭 길이를 가지는 전극 구조, 및 나노 디바이스
WO2012152056A1 (en) 2011-04-19 2012-11-15 The Hong Kong University Of Science And Technology Method and device for monitoring real-time polymerase chain reaction (pcr) utilizing electro-active hydrolysis probe (e-tag probe)
DE102012008375A1 (de) 2011-04-27 2012-10-31 Genovoxx Gmbh Methoden und Komponenten zur Detektion von Nukleinsäureketten
KR101548771B1 (ko) 2011-06-23 2015-09-01 삼성전기주식회사 칩 타입 적층 커패시터
US10175195B2 (en) 2011-07-27 2019-01-08 The Board Of Trustees Of The University Of Illinois Nanopore sensors for biomolecular characterization
KR20140050046A (ko) 2011-08-04 2014-04-28 닛산 가가쿠 고교 가부시키 가이샤 축합계 폴리머를 가지는 euv 리소그래피용 레지스트 하층막 형성조성물
US8685858B2 (en) 2011-08-30 2014-04-01 International Business Machines Corporation Formation of metal nanospheres and microspheres
US20140235493A1 (en) 2011-09-19 2014-08-21 University Of Utah Research Foundation Multimode platform for detection of compounds
WO2013056241A2 (en) 2011-10-14 2013-04-18 Pacific Biosciences Of California, Inc. Real-time redox sequencing
US20130108956A1 (en) 2011-11-01 2013-05-02 Az Electronic Materials Usa Corp. Nanocomposite positive photosensitive composition and use thereof
US9322798B2 (en) 2011-12-15 2016-04-26 Intel Corporation Diamond electrode nanogap transducers
WO2013096851A1 (en) 2011-12-22 2013-06-27 President And Fellows Of Harvard College Compositions and methods for analyte detection
US20130183492A1 (en) 2012-01-17 2013-07-18 Snu R&Db Foundation Metal nanoparticles on substrate and method of forming the same
US20130214875A1 (en) 2012-02-16 2013-08-22 Elwha Llc Graphene sheet and nanomechanical resonator
US20130239349A1 (en) 2012-03-14 2013-09-19 Palo Alto Research Center Incorporated Self-powered manual toothbrush with sensors
RU2732589C2 (ru) 2012-04-09 2020-09-21 Инвайролоджикс Инк. Композиции и способы для количественного определения последовательности нуклеиновой кислоты в образце
US9393590B2 (en) 2012-04-16 2016-07-19 Temple University—Of the Commonwealth System of Higher Education Self-assembly of small structures
WO2013165588A1 (en) 2012-05-01 2013-11-07 Life Technologies Corporation Methods for analysis of dna fragments
CN102706940B (zh) 2012-06-15 2014-05-14 湖南大学 可用于检测水体中痕量汞的电化学传感器及其制备方法和应用
US9551682B2 (en) 2012-06-29 2017-01-24 Intel Corporation High throughput biochemical detection using single molecule fingerprinting arrays
EP2875128B8 (en) 2012-07-19 2020-06-24 Oxford Nanopore Technologies Limited Modified helicases
US8741688B2 (en) 2012-07-24 2014-06-03 Micron Technology, Inc. Methods of forming a metal chalcogenide material
EP2877845A4 (en) 2012-07-25 2016-03-30 California Inst Of Techn NANOPILLAR FIELD EFFECT AND CONNECTIVITY TRANSISTORS WITH FUNCTIONAL GATE AND BASE ELECTRODES
EP2879793A1 (en) 2012-08-06 2015-06-10 Quantumdx Group Limited Method and kit for nucleic acid sequencing
TWI492384B (zh) 2012-08-17 2015-07-11 Univ Nat Chiao Tung 蛋白質電晶體裝置
TWI514566B (zh) 2012-09-19 2015-12-21 Univ Nat Chiao Tung 半導體生物奈米線裝置及其製作方法
CN104838249B (zh) 2012-10-16 2018-06-22 雅培制药有限公司 包括局部脱盐系统的生物传感器设备和方法
CN104937722B (zh) 2012-10-26 2017-03-08 研究三角协会 利用处理量子点溶液制造的中间带半导体、异质结和光电设备,及其相关方法
US20150293025A1 (en) 2012-12-18 2015-10-15 Toray Industries Inc. Metal dot substrate and method of manufacturing metal dot substrate
US20140218637A1 (en) 2013-02-06 2014-08-07 Nanchang O-Film Tech. Co., Ltd. Conductive film, manufacturing method thereof, and touch screen including the conducting film
CN103187119B (zh) 2013-02-06 2014-08-06 南昌欧菲光科技有限公司 导电膜及其制备方法以及包含该导电膜的触摸屏
US9040363B2 (en) 2013-03-20 2015-05-26 International Business Machines Corporation FinFET with reduced capacitance
FR3003751A1 (fr) 2013-03-27 2014-10-03 Jacques Geloen Dispositif de visualisation de saturation pour protection de l'incontinence urofecale.
US9915614B2 (en) 2013-04-26 2018-03-13 Academia Sinica Microfluidic systems and devices for molecular capture, manipulation, and analysis
CN105378113B (zh) 2013-05-06 2020-02-21 加利福尼亚太平洋生物科学股份有限公司 实时电子测序
US8901621B1 (en) 2013-06-18 2014-12-02 International Business Machines Corporation Nanochannel process and structure for bio-detection
US9182369B2 (en) 2013-06-19 2015-11-10 Globalfoundries Inc. Manufacturable sub-3 nanometer palladium gap devices for fixed electrode tunneling recognition
TW201502276A (zh) 2013-07-09 2015-01-16 Univ Nat Chiao Tung 單分子無標定核酸定序方法
US20150049332A1 (en) 2013-07-30 2015-02-19 The Curators Of The University Of Missouri Gold nanoisland arrays
KR20160079780A (ko) 2013-09-18 2016-07-06 퀀텀 바이오시스템즈 가부시키가이샤 생체분자를 서열화하는 디바이스들, 시스템들 및 방법들
US9236841B2 (en) * 2013-09-19 2016-01-12 Analog Devices, Inc. Current-feedback operational amplifier
WO2015102746A2 (en) 2013-11-04 2015-07-09 Massachusetts Institute Of Technology Electronics including graphene-based hybrid structures
WO2015074001A1 (en) 2013-11-17 2015-05-21 Quantum-Si Incorporated Optical system and assay chip for probing, detecting and analyzing molecules
EP3375892B1 (en) 2013-12-12 2020-07-01 Altratech Limited Capacitive sensor
US9472396B2 (en) 2014-04-15 2016-10-18 University Of Central Florida Research Foundation, Inc. Plasma treated semiconductor dichalcogenide materials and devices therefrom
WO2015167019A1 (en) 2014-04-28 2015-11-05 Quantum Biosystems Inc. Nanogap electrode devices and systems and methods for forming the same
EP2947779A1 (en) 2014-05-23 2015-11-25 Thomson Licensing Method and apparatus for storing information units in nucleic acid molecules and nucleic acid storage system
EP3152320B1 (en) 2014-06-03 2020-10-28 Illumina, Inc. Compositions, systems, and methods for detecting events using tethers anchored to or adjacent to nanopores
CN107109405A (zh) 2014-06-06 2017-08-29 索尔斯蒂斯生物有限公司 具有生物可逆性和非生物可逆性基团的多核苷酸构建体
DK3460075T3 (da) 2014-07-15 2021-02-01 Illumina Inc Biokemisk aktiveret elektronisk anordning
GB2528682A (en) 2014-07-28 2016-02-03 Isis Innovation Plasmonic filter
US10170547B2 (en) 2014-08-29 2019-01-01 Japan Science And Technology Agency Nanodevice
US9859513B2 (en) 2014-11-25 2018-01-02 University Of Kentucky Research Foundation Integrated multi-terminal devices consisting of carbon nanotube, few-layer graphene nanogaps and few-layer graphene nanoribbons having crystallographically controlled interfaces
US9618474B2 (en) 2014-12-18 2017-04-11 Edico Genome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
CA2971268A1 (en) 2014-12-18 2016-06-23 The Regents Of The University Of California Detection of nucleic acid polymerase conformational changes using a nanotube
US20160187282A1 (en) 2014-12-26 2016-06-30 Intel Corporation Device for single molecule detection and fabrication methods thereof
US9306164B1 (en) 2015-01-30 2016-04-05 International Business Machines Corporation Electrode pair fabrication using directed self assembly of diblock copolymers
WO2016157117A1 (en) 2015-03-31 2016-10-06 Rg Smart Pte. Ltd. Nanoelectronic sensor pixel
FR3035220A1 (fr) 2015-04-20 2016-10-21 Commissariat Energie Atomique " dispositif electronique de mesure d'au moins une caracteristique electrique d'un objet "
CA2986074A1 (en) 2015-06-03 2016-12-08 Illumina, Inc. Compositions, systems, and methods for sequencing polynucleotides using tethers anchored to polymerases adjacent to nanopores
CA3021580A1 (en) 2015-06-25 2016-12-29 Barry L. Merriman Biomolecular sensors and methods
WO2017041056A1 (en) 2015-09-02 2017-03-09 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
WO2017042038A1 (en) 2015-09-10 2017-03-16 F. Hoffmann-La Roche Ag Polypeptide tagged nucleotides and use thereof in nucleic acid sequencing by nanopore detection
CA3000942A1 (en) 2015-10-08 2017-04-13 Quantum Biosystems Inc. Devices, systems and methods for nucleic acid sequencing
WO2017132567A1 (en) 2016-01-28 2017-08-03 Roswell Biotechnologies, Inc. Massively parallel dna sequencing apparatus
US10737263B2 (en) 2016-02-09 2020-08-11 Roswell Biotechnologies, Inc. Electronic label-free DNA and genome sequencing
US10597767B2 (en) 2016-02-22 2020-03-24 Roswell Biotechnologies, Inc. Nanoparticle fabrication
RU2022101599A (ru) 2016-02-29 2022-02-25 Айридия, Инк. Способы, композиции и устройства для хранения информации
US10883140B2 (en) 2016-04-21 2021-01-05 President And Fellows Of Harvard College Method and system of nanopore-based information encoding
US20170332918A1 (en) 2016-05-19 2017-11-23 Dragon Medical Development Limited Guidewire apparatus and method for multiple parameter analysis of coronary stenosis
WO2018011632A1 (en) 2016-07-15 2018-01-18 Dragon Medical Development Limited Multi-spline, multi-electrode catheter and method of use for mapping of internal organs
US9829456B1 (en) 2016-07-26 2017-11-28 Roswell Biotechnologies, Inc. Method of making a multi-electrode structure usable in molecular sensing devices
US20210139959A1 (en) 2016-08-01 2021-05-13 Roswell Biotechnologies, Inc. Modified nucleotide triphosphates for molecular electronic sensors
US20190376925A1 (en) 2016-11-22 2019-12-12 Roswell Biotechnologies, Inc. Nucleic acid sequencing device containing graphene
KR20230158636A (ko) 2017-01-19 2023-11-20 로스웰 바이오테크놀로지스 인코포레이티드 2차원 레이어 재료를 포함하는 솔리드 스테이트 시퀀싱 디바이스들
US10508296B2 (en) 2017-04-25 2019-12-17 Roswell Biotechnologies, Inc. Enzymatic circuits for molecular sensors
CN110546276A (zh) 2017-04-25 2019-12-06 罗斯威尔生命技术公司 用于分子传感器的酶电路
CN110651182B (zh) 2017-05-09 2022-12-30 罗斯威尔生命技术公司 用于分子传感器的结合探针电路
WO2019046589A1 (en) 2017-08-30 2019-03-07 Roswell Biotechnologies, Inc. PROCESSIVE ENZYME MOLECULAR ELECTRONIC SENSORS FOR STORING DNA DATA
CN111373051A (zh) 2017-10-10 2020-07-03 罗斯威尔生命技术公司 用于无扩增dna数据存储的方法、装置和系统
US20200393440A1 (en) 2019-04-05 2020-12-17 Roswell Biotechnologies, Inc. Method, apparatus and system for single-molecule polymerase biosensor with transition metal nanobridge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013025998A1 (en) * 2011-08-18 2013-02-21 Life Technologies Corporation Methods, systems, and computer readable media for making base calls in nucleic acid sequencing
US20160131613A1 (en) * 2013-06-07 2016-05-12 Cornell University Floating gate based sensor apparatus and related floating gate based senor applications
US20170038333A1 (en) * 2015-08-06 2017-02-09 Pacific Biosciences Of California, Inc. Systems and methods for selectively addressing sparsely arranged electronic measurement devices
US20170159115A1 (en) * 2015-08-10 2017-06-08 Stratos Genomics, Inc. Single molecule nucleic acid sequencing with molecular sensor complexes
WO2017123416A1 (en) * 2016-01-14 2017-07-20 Roswell Biotechnologies, Inc. Molecular sensors and related methods
WO2017132586A1 (en) * 2016-01-28 2017-08-03 Roswell Biotechnologies, Inc. Methods and apparatus for measuring analytes using large scale molecular electronics sensor arrays
WO2018132457A1 (en) * 2017-01-10 2018-07-19 Roswell Biotechnologies, Inc. Methods and systems for dna data storage

Also Published As

Publication number Publication date
US20220390407A1 (en) 2022-12-08
KR20200039795A (ko) 2020-04-16
EP3676389A1 (en) 2020-07-08
US11371955B2 (en) 2022-06-28
WO2019046589A1 (en) 2019-03-07
EP3676389A4 (en) 2021-06-02
US20200217813A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
US20220390407A1 (en) Processive enzyme molecular electronic sensors for dna data storage
US20210225461A1 (en) Methods and systems for dna data storage
US20220148682A1 (en) Methods, apparatus and systems for amplification-free dna data storage
Chen et al. Nanopore-based DNA hard drives for rewritable and secure data storage
Yim et al. Robust direct digital-to-biological data storage in living cells
Doricchi et al. Emerging approaches to DNA data storage: Challenges and prospects
US7381529B2 (en) Methods and compositions for detecting nucleic acids using scanning probe microscopy and nanocodes
Kang et al. DNA biomolecular-electronic encoder and decoder devices constructed by multiplex biosensors
Xu et al. Uncertainties in synthetic DNA-based data storage
EP3074534A1 (en) Compositions and methods for polynucleotide sequencing
WO2021237182A1 (en) Shape-altered graphene nanobridge array, transfer-aligned for biomolecular sensing and information storage
Raza et al. An outlook on the current challenges and opportunities in DNA data storage
Fedichkin et al. Error correction and digitalization concepts in biochemical computing
WO2021226291A1 (en) Single-biomolecule-bridged sequencing biosensors and storage devices and methods for same
US20240026471A1 (en) Molecular electronic sensors for multiplex genetic analysis using dna reporter tags
US20220282311A1 (en) Molecular electronic sensors for detecting sars-cov-2 virus
EP4362028A1 (en) Mutant aerolysin and uses thereof
EP4177606A1 (en) Nanopore system for sensing using identification molecules and method thereof
Zhang et al. Parallel Molecular Data Storage by Printing Epigenetic Bits on DNA
WO2022072737A1 (en) System, method and apparatus for personal virometer
CN114743602A (zh) 一种dna信息存储读取方法及系统
CN112703256A (zh) 用于测定聚合物序列的方法
Su Surface-based DNA computations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200703