CN111302802A - 一种上转换发光陶瓷及其制备方法 - Google Patents

一种上转换发光陶瓷及其制备方法 Download PDF

Info

Publication number
CN111302802A
CN111302802A CN201811511416.4A CN201811511416A CN111302802A CN 111302802 A CN111302802 A CN 111302802A CN 201811511416 A CN201811511416 A CN 201811511416A CN 111302802 A CN111302802 A CN 111302802A
Authority
CN
China
Prior art keywords
equal
luminescent ceramic
less
sintering
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811511416.4A
Other languages
English (en)
Other versions
CN111302802B (zh
Inventor
刘永福
周丽华
蒋俊
江浩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201811511416.4A priority Critical patent/CN111302802B/zh
Publication of CN111302802A publication Critical patent/CN111302802A/zh
Application granted granted Critical
Publication of CN111302802B publication Critical patent/CN111302802B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种上转换发光陶瓷及其制备方法。具体地,本发明公开了一种通式为mA·(1‑x‑y‑z)Ln2O3·MO2·xPr·yBi·zRe的上转换发光陶瓷,其中,A、Ln、M、Re、m、x、y、z的定义如说明书中所述,所述发光陶瓷具有使用寿命长、紫外光转换效率高的特点。

Description

一种上转换发光陶瓷及其制备方法
技术领域
本发明涉及发光材料领域,特别是涉及一种上转换发光陶瓷及其制备方法。
背景技术
TiO2因其光催化活性高、稳定性好、成本低、无毒等特点,成为最广泛使用的光催化剂,被广泛用于各种废水处理。TiO2的带隙为Eg=3.2eV,只有在波长小于387nm的紫外光辐照下,才具有光催化氧化还原能力。太阳光中紫外线仅占3%-5%,因此,太阳光下TiO2的光催化效率较低。
利用上转换发光材料,将红外光或可见光转变成紫外光,是提升TiO2催化能力的有效方法。但是,现有的上转换发光材料多存在重复利用性差、紫外光转换效率较低等不足。
发明内容
本发明的目的在于提供一种重复利用性好且紫外光转换效率高的上转换发光陶瓷及其制备方法。
本发明的第一方面,提供了一种上转换发光陶瓷,所述发光陶瓷的化学通式为mA·(1-x-y-z)Ln2O3·MO2·xPr·yBi·zRe,其中,
A为选自下组的一种或多种:Li、Na、K、Rb、Cs;
Ln为选自下组的一种或多种:Sc、Y、La、Gd、Lu、Al、Ga、B;
M为选自下组的一种或多种:Si、Ge、Sn、Ti、Zr、Hf;
Re为选自下组的一种或多种:Ce、Nd、Po、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb;
其中,m、x、y、z表示对应元素的摩尔分数,且0<m≤0.8,0.0001≤x≤0.3,0.0001≤y≤0.5,0≤z≤0.5,且0<1-x-y-z<1。
在另一优选例中,m、x、y、z的取值范围为:0.01<m≤0.5,0.0001≤x≤0.2,0.001≤y≤0.3,0≤z≤0.3,且0.2<1-x-y-z<1。
在另一优选例中,0.01≤m≤0.3。
在另一优选例中,0.001≤x≤0.15。
在另一优选例中,0.001≤y≤0.15。
在另一优选例中,0.3<1-x-y-z<1。
在另一优选例中,0.4<1-x-y-z<1。
在另一优选例中,0.001≤z≤0.15。
在另一优选例中,所述发光陶瓷被波长为400nm~980nm的光激发,较佳地420-800nm,更佳地450-530nm。
在另一优选例中,所述发光陶瓷在480-500nm的激发光激发下在250-375nm的紫外光转换效率为0.008%-0.028%。
在另一优选例中,所述发光陶瓷在480-500nm的激发光激发下在250-375nm的紫外光转换效率为0.015%-0.028%。
在另一优选例中,所述发光陶瓷在480-500nm的激发光激发下在250-375nm的紫外光转换效率为0.020%-0.028%。
本发明的第二方面,提供了一种如本发明第一方面所述的上转换发光陶瓷的制备方法,其包括以下步骤:
(1)提供原料并依次进行球磨、干燥、灼烧,得到粉体;
(2)将所述粉体依次进行研磨、成型、冷等静压处理,得到素坯;
(3)在真空环境中,将所述素坯进行烧结得到所述发光陶瓷。
在另一优选例中,步骤(1)中所述原料为含有相应A、Ln、M、Pr、Bi和Re元素的氧化物、氟化物、氯化物、碳酸盐、硼酸盐、硝酸盐、草酸盐或醋酸盐。
在另一优选例中,步骤(1)中在球磨的过程中,球磨罐和磨球均为聚四氟乙烯制品,磨球大小3mm~10mm,球磨介质为水、无水乙醇、丙酮、甘油中的至少一种,球磨转速为100rad/min~600rad/min,球磨时间为2小时以上(如2-48h,较佳地4-30h)。
在另一优选例中,所述干燥在60-100℃下干燥12-30h;和/或
所述灼烧在600℃~900℃下灼烧2小时~10小时;和/或
所述冷等静压处理在100-500MPa下进行,较佳地150-300MPa。
在另一优选例中,所述烧结为如下的两段式烧结:先进行低温烧结,后进行高温烧结。
在另一优选例中,所述低温烧结为在第一温度下烧结第一时间;
所述高温烧结为在第二温度下烧结第二时间;
所述第一温度为1000-1500℃(较佳地1100-1400℃),所述第一时间为1-5h(较佳地1.5-3h);
所述第二温度为1500-1900℃(较佳地1500-1800℃),所述第二时间为1-15h(较佳地2-12h)。
在另一优选例中,所述烧结过程中的升温速率为1-10℃/min,较佳地3-8℃/min。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1为本发明实施例1制备得到的发光陶瓷1的激发光谱图,其中,发射光的波长为λem=283nm和λem=318nm。
图2为本发明实施例1制备得到的发光陶瓷1的发射光谱图,其中,激发光的波长为λex=470nm,λex=480nm,λex=490nm和λex=500nm。
具体实施方式
本发明人经过长期而深入的研究,通过调整上转换发光陶瓷的组成制备得到一种重复利用性好且紫外光转换效率高的上转换发光陶瓷。所述陶瓷满足TiO2光催化、紫外杀菌、消毒等应用要求,具有可直接回收再利用、紫外波段发光效率高的优点。所述陶瓷的制备方法具有成本低、工艺简单、利于大规模推广的优点。在此基础上,发明人完成了本发明。
上转换发光陶瓷
本发明提供了一种上转换发光陶瓷。所述发光陶瓷的化学通式为mA·(1-x-y-z)Ln2O3·MO2·xPr·yBi·zRe,其中,
A为Li、Na、K、Rb、Cs中的至少一种;
Ln为Sc、Y、La、Gd、Lu、Al、Ga、B中的至少一种;
M为Si、Ge、Sn、Ti、Zr、Hf中的至少一种;
Re为Ce、Nd、Po、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb中的至少一种;
其中,m、x、y、z表示对应元素的摩尔分数,且0<m≤0.8,0.0001≤x≤0.3,0.0001≤y≤0.5,0≤z≤0.5,且0<1-x-y-z<1。
优选的,m、x、y、z的取值范围为:0.01≤m≤0.5,0.0001≤x≤0.2,0.001≤y≤0.3,0≤z≤0.3,且0.2<1-x-y-z<1。优选的理由为:在此范围内,获得的上转换发光陶瓷性能更加优异。
本发明所述上转换发光陶瓷具有以下优点:
第一,与现有的TiO2光催化使用具有可见光转紫外光功能的粉末、玻璃纤维薄膜以及活性炭复合薄膜相比,本发明可直接使用该上转换发光陶瓷进行TiO2光催化、杀菌、消毒等,上转换发光陶瓷可直接回收、反复多次使用,进而增加了上转换功能材料的使用寿命。
第二,与现有上转换荧光粉或陶瓷相比,本发明提供的上转换发光陶瓷在可见光转紫外光的转换效率更高(如为0.008%-0.028%)。
第三,所述上转换发光陶瓷可被波长为400nm~980nm的光有效激发,尤其是被400nm-525nm的可见光激发,发射光谱在250nm~375nm紫外光波段具有更高的量子效率(如为0.008%-0.028%)。
所述上转换陶瓷可直接被太阳光激发,或者是蓝光、绿光、红光及红外光LED芯片激发或者激光器光源激发,紫外发光效率高(如为0.008%-0.028%)。可直接用于太阳光自然环境中,或者用于以蓝光、绿光、红光及红外光LED或激光器为激发源的光催化、杀菌、消毒器件中,具有实际应用价值和商业前景。
制备方法
本发明还提供了一种上转换发光陶瓷的制备方法。该方法包括以下步骤:
S1,提供原料并依次进行球磨、干燥、灼烧,得到粉体;
S2,将所述粉体依次进行研磨、成型、以及冷等静压处理,得到素坯预制陶瓷;
S3,在真空环境中,将所述素坯进行烧结得到陶瓷;
在步骤S1中,按照mA·(1-x-y-z)Ln2O3·MO2·xPr·yBi·zRe的化学计量比称取反应原料。可采用市售纯度为99%以上的微米级或纳米级的原料,而无需对原料进行再加工处理,这可节约成本,以便实现工业化。
优选的,所述原料为含有相应A、Ln、M、Pr、Bi和Re元素的氧化物、氟化物、氯化物、碳酸盐、硼酸盐、硝酸盐、草酸盐或醋酸盐。
将配制好的原料混合后,并放入球磨罐在行星球磨机进行球磨,得到浆料。在球磨的过程中,球磨罐和磨球均为聚四氟乙烯制品,磨球大小3mm~10mm,球磨介质为水、无水乙醇、丙酮、甘油中的至少一种,球磨转速为100rad/min~600rad/min,球磨时间为2小时以上。
可将研磨后的浆料采用微波干燥或者鼓风干燥箱进行干燥,得到均匀性良好的干燥粉体。
将干燥粉体进行灼烧,以去除在球磨过程中引入的一些有机杂质。所述灼烧的温度为600℃~900℃,灼烧的时间为2小时~10小时。
在步骤S2中,对灼烧后的粉体进行研磨,并过100目~300目筛。再对过筛后的粉体通过粉体干压成型、注浆成型或凝胶注模进行成型,最后于50-300MPa下进行冷等静压处理,得到素坯。
在步骤S3中,所述烧结的温度为1200℃~1700℃,烧结的时间为2小时以上。优选的,所述烧结的温度为1400℃~1700℃。
所述方法所得上转换发光陶瓷可以被400nm~980nm光有效激发,发射光谱覆盖了250~375nm紫外光波段。因此,该发光陶瓷可直接用于太阳光自然环境中,或者用于以蓝光、绿光、红光及红外光LED或激光器为激发源的光催化、杀菌、消毒器件中的应用要求。
本发明所述上转换发光陶瓷的制备方法具有以下优点:
与现有的通过溶胶-凝胶液相法先制备纳米前驱体,然后再制备陶瓷工艺相比,本发明所述上转换发光陶瓷通过固相法制备前驱体,然后再制备陶瓷。这种制备粉体的方法简单、周期短、成本低,适合大规模生产。
另外,所用原料均来自市售,原料易得、成本较低、过程简单、获得的产品质量稳定可靠,利于工业化生产。
与现有技术相比,本发明具有以下主要优点:
(1)所述上转换发光陶瓷具有非常高的紫外光转换效率,其重复利用性好、使用寿命长;
(2)所述制备方法具有成本低、工艺简单、利于大规模推广的优点。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
实施例1发光陶瓷1
A为Li,Ln为Y和Gd,M为Si和Ti,m=0.01,x=0.0001,y=0.0001,z=0,即0.01Li·0.9998(Y0.9Gd0.1)2O3·(Si0.8Ti0.2)O2·0.0001Pr·0.0001Bi。
该发光陶瓷1的制备方法如下:
以市售高纯Li2CO3、Y2O3、Gd2O3、SiO2、TiO2、Pr3O4、Bi2O3为起始原料,按上式准确称量各氧化物或碳酸盐质量。将称取的反应原料以3mm聚四氟乙烯球为磨球,以无水乙醇为球磨介质,按质量比球:料:介质=10:1:2的比例,将称取的反应原料、磨球和介质放入聚四氟乙烯球磨罐中,在行星球磨机中以300rad/min的转速球磨24小时后获得浆料。浆料在鼓风干燥箱中85℃干燥24h后,在600℃灼烧2h,得到粉体1。
将所述粉体1在刚玉坩埚中研磨,过200目筛子,然后在直径50mm的钢制模具中干压成型后,于200MPa下进行冷等静压处理,得到素坯1。
将所述素坯1在真空气氛中,以5℃/min速率升温至1200℃,保温2h,再以5℃/min速率升温至1600℃,保温2h,随炉冷却后,得到发光陶瓷1。
实施例2发光陶瓷2
A为Li,Ln为Y和Lu,M为Si和Zr,Re为Dy,m=0.1,x=0.001,y=0.001,z=0.001,即0.1Li·0.997(Y0.7Lu0.3)2O3·(Si0.8Zr0.2)O2·0.001Pr·0.001Bi·0.001Dy。
该发光陶瓷2的制备方法如下:
以市售高纯Li2CO3、Y2O3、Lu2O3、SiO2、ZrO2、Pr3O4、Bi2O3、Dy2O3为起始原料,按上式准确称量各氧化物或碳酸盐质量。将称取的反应原料以3mm聚四氟乙烯球为磨球,以无水乙醇为球磨介质,按质量比球:料:介质=10:1:2的比例,将称取的反应原料、磨球和介质放入聚四氟乙烯球磨罐中,在行星球磨机中以300rad/min的转速球磨24小时后获得浆料。浆料在鼓风干燥箱中85℃干燥24h后,在900℃灼烧4h,得到粉体2。
将所述粉体2在刚玉坩埚中研磨,过200目筛子,然后在直径50mm的钢制模具中干压成型后,于200MPa下进行冷等静压处理,得到素坯2。
将所述素坯2在真空气氛中,以5℃/min速率升温至1400℃,保温2h,再以5℃/min速率升温至1700℃,保温5h,随炉冷却后,得到发光陶瓷2。
实施例3发光陶瓷3
A为Na和K,Ln为La,M为Si和Hf,Re为Tb,m=0.3,x=0.01,y=0.1,z=0.3,即0.3(Na0.5K0.5)·0.59La2O3·(Si0.5Hf0.5)O2·0.01Pr·0.1Bi·0.3Tb。
该发光陶瓷的制备方法如下:
以市售高纯Na2CO3、K2CO3、La2O3、SiO2、HfO2、Pr3O4、Bi2O3、Tb2O3为起始原料,按上式准确称量各氧化物或碳酸盐质量。将称取的反应原料以3mm聚四氟乙烯球为磨球,以无水乙醇为球磨介质,按质量比球:料:介质=10:1:2的比例,将称取的反应原料、磨球和介质放入聚四氟乙烯球磨罐中,在行星球磨机中以600rad/min的转速球磨24小时后获得浆料。浆料在鼓风干燥箱中85℃干燥24h后,在700℃灼烧10h,得到粉体3。
将所述粉体3在刚玉坩埚中研磨,过200目筛子,然后在直径50mm的钢制模具中干压成型后,于200MPa下进行冷等静压处理,得到素坯3。
将所述素坯3在真空气氛中,以5℃/min速率升温至1400℃,保温2h,再以5℃/min速率升温至1700℃,保温10h,随炉冷却后,得到发光陶瓷3。
实施例4发光陶瓷4
A为Li,Ln为Y,M为Si,Re为Tb、Er和Yb,m=0.5,x=0.01,y=0.01,z=0.5,即0.5Li·0.48Y2O3·SiO2·0.01Pr·0.01Bi·0.5(Tb0.8Er0.1Yb0.1)。
该发光陶瓷4的制备方法如下:
以市售高纯Li2O、Y2O3、SiO2、Pr3O4、Bi2O3、Tb2O3、Er2O3、Yb2O3为起始原料,按上式准确称量各氧化物质量。将称取的反应原料以5mm聚四氟乙烯球为磨球,以无水乙醇为球磨介质,按质量比球:料:介质=10:1:2的比例,将称取的反应原料、磨球和介质放入聚四氟乙烯球磨罐中,在行星球磨机中以600rad/min的转速球磨24小时后获得浆料。浆料在鼓风干燥箱中85℃干燥24h后,在700℃灼烧10h,得到粉体4。
将所述粉体4在刚玉坩埚中研磨,过200目筛子,然后在直径50mm的钢制模具中干压成型后,于200MPa下进行冷等静压处理,得到素坯4。
将所述素坯4在真空气氛中,以5℃/min速率升温至1300℃,保温2h,再以5℃/min速率升温至1600℃,保温10h,随炉冷却后,得到发光陶瓷4。
实施例5发光陶瓷5
A为Li,Ln为Y和Al,M为Si,Re为Sm,m=0.8,x=0.01,y=0.3,z=0.01,即0.8Li·0.68(Y0.8Al0.2)2O3·SiO2·0.01Pr·0.3Bi·0.01Sm。
该发光陶瓷5的制备方法如下:
以市售高纯Li2O、Y2O3、Al2O3、SiO2、Pr3O4、Bi2O3、Sm2O3为起始原料,按上式准确称量各氧化物质量。将称取的反应原料以5mm聚四氟乙烯球为磨球,以无水乙醇为球磨介质,按质量比球:料:介质=10:1:2的比例,将称取的反应原料、磨球和介质放入聚四氟乙烯球磨罐中,在行星球磨机中以600rad/min的转速球磨24小时后获得浆料。浆料在鼓风干燥箱中85℃干燥24h后,在700℃灼烧10h,得到粉体5。
将所述粉体5在刚玉坩埚中研磨,过200目筛子,然后在直径50mm的钢制模具中干压成型后,于200MPa下进行冷等静压处理,得到素坯5。
将所述素坯5在真空气氛中,以5℃/min速率升温至1300℃,保温2h,再以5℃/min速率升温至1500℃,保温10h,随炉冷却后,得到发光陶瓷5。
实施例6发光陶瓷6
A为Li,Ln为Sc和Lu,M为Si,Re为Eu,m=0.1,x=0.01,y=0.5,z=0.01,即0.1Li·0.48(Sc0.5Lu0.5)2O3·SiO2·0.01Pr·0.5Bi·0.01Eu。
该发光陶瓷6的制备方法如下:
以市售高纯Li2CO3、Sc2O3、Lu2O3、SiO2、Pr3O4、Bi2O3、Eu2O3为起始原料,按上式准确称量各氧化物或碳酸盐质量。将称取的反应原料以5mm聚四氟乙烯球为磨球,以无水乙醇为球磨介质,按质量比球:料:介质=10:1:2的比例,将称取的反应原料、磨球和介质放入聚四氟乙烯球磨罐中,在行星球磨机中以600rad/min的转速球磨24小时后获得浆料。浆料在鼓风干燥箱中85℃干燥24h后,在700℃灼烧10h,得到粉体6。
将所述粉体6在刚玉坩埚中研磨,过200目筛子,然后在直径50mm的钢制模具中干压成型后,于200MPa下进行冷等静压处理,得到素坯6。
将所述素坯6在真空气氛中,以5℃/min速率升温至1400℃,保温2h,再以5℃/min速率升温至1600℃,保温10h,随炉冷却后,得到发光陶瓷6。
实施例7发光陶瓷7
A为Li,Ln为Y,M为Si,Re为Nd,m=0.1,x=0.2,y=0.01,z=0.01,即0.1Li·0.78Y2O3·SiO2·0.2Pr·0.01Bi·0.01Nd。
该发光陶瓷7的制备方法如下:
以市售高纯Li2O、Y2O3、SiO2、Pr3O4、Bi2O3、Nd2O3为起始原料,按上式准确称量各氧化物质量。将称取的反应原料以5mm聚四氟乙烯球为磨球,以无水乙醇为球磨介质,按质量比球:料:介质=10:1:2的比例,将称取的反应原料、磨球和介质放入聚四氟乙烯球磨罐中,在行星球磨机中以600rad/min的转速球磨24小时后获得浆料。浆料在鼓风干燥箱中85℃干燥24h后,在700℃灼烧10h,得到粉体7。
将所述粉体7在刚玉坩埚中研磨,过200目筛子,然后在直径50mm的钢制模具中干压成型后,于200MPa下进行冷等静压处理,得到素坯7。
将所述素坯7在真空气氛中,以5℃/min速率升温至1300℃,保温2h,再以5℃/min速率升温至1600℃,保温10h,随炉冷却后,得到发光陶瓷7。
实施例8发光陶瓷8
A为Li,Ln为Y,M为Si,Re为Nd,m=0.3,x=0.3,y=0.15,z=0.15,即0.3Li·0.4Y2O3·SiO2·0.3Pr·0.15Bi·0.15Nd。
该发光陶瓷8的制备方法如下:
以市售高纯Li2O、Y2O3、SiO2、Pr3O4、Bi2O3、Nd2O3为起始原料,按上式准确称量各氧化物质量。将称取的反应原料以5mm聚四氟乙烯球为磨球,以无水乙醇为球磨介质,按质量比球:料:介质=10:1:2的比例,将称取的反应原料、磨球和介质放入聚四氟乙烯球磨罐中,在行星球磨机中以600rad/min的转速球磨24小时后获得浆料。浆料在鼓风干燥箱中85℃干燥24h后,在700℃灼烧10h,得到粉体8。
将所述粉体8在刚玉坩埚中研磨,过200目筛子,然后在直径50mm的钢制模具中干压成型后,于200MPa下进行冷等静压处理,得到素坯8。
将所述素坯8在真空气氛中,以5℃/min速率升温至1300℃,保温2h,再以5℃/min速率升温至1600℃,保温10h,随炉冷却后,得到发光陶瓷8。
实施例9发光陶瓷9
A为Li,Ln为Y,M为Si,Re为Nd,m=0.2,x=0.1,y=0.01,z=0.01,即0.2Li·0.88Y2O3·SiO2·0.1Pr·0.01Bi·0.01Nd。
该发光陶瓷9的制备方法如下:
以市售高纯Li2O、Y2O3、SiO2、Pr3O4、Bi2O3、Nd2O3为起始原料,按上式准确称量各氧化物质量。将称取的反应原料以5mm聚四氟乙烯球为磨球,以无水乙醇为球磨介质,按质量比球:料:介质=10:1:2的比例,将称取的反应原料、磨球和介质放入聚四氟乙烯球磨罐中,在行星球磨机中以600rad/min的转速球磨24小时后获得浆料。浆料在鼓风干燥箱中85℃干燥24h后,在700℃灼烧10h,得到粉体9。
将所述粉体9在刚玉坩埚中研磨,过200目筛子,然后在直径50mm的钢制模具中干压成型后,于200MPa下进行冷等静压处理,得到素坯9。
将所述素坯9在真空气氛中,以5℃/min速率升温至1300℃,保温2h,再以5℃/min速率升温至1600℃,保温10h,随炉冷却后,得到发光陶瓷9。
性能测试
本发明中激发、发射光谱通过日本日立公司生产的F4600光谱仪测试获得,量子效率通过日本大冢生产的QE2100量子效率测试仪获得。
图1为实施例1得到的发光陶瓷1的激发光谱,监测283nm和318nm位置,激发光谱范围为400nm-525nm,其中最佳激发范围覆盖了470nm-525nm的蓝光和绿光区域(566nm为二倍频峰)。
图2为实施例1得到的发光陶瓷1的发射光谱,在波长为470nm,480nm,490nm和500nm的可见光激发下,发射光谱均覆盖了250nm-400nm的紫外光(235nm-250nm为倍频峰),尤其是在250nm-375nm的紫外发光更强。紫外发光峰位于283nm和318nm附近,而且位于283nm的UVC发射峰位具有更高的发射强度,而UVC(200nm-280nm)波段的紫外光具有更好的杀菌效果,可在1s内杀灭细菌。
发光陶瓷2-9的激发光谱基本如图1所示,发光陶瓷2-9的发射光谱基本如图2所示。
经量子效率测试仪测试,实施例1-9得到的发光陶瓷在可见光(如波长为480-500nm)激发下,在250-375nm紫外光波段发光效率为0.008%-0.028%,其中实施例1得到的发光陶瓷1的发光效率为0.008%,实施例2-4得到的发光陶瓷2-4的发光效率为0.015%-0.020%,实施例5-9得到的发光陶瓷5-9的发光效率为0.020%-0.028%。这表明本发明提出的发光陶瓷在可见光激发下,具有较高的紫外光转换效率,因此可以直接运用于太阳光自然环境中。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

1.一种上转换发光陶瓷,其特征在于,所述发光陶瓷的化学通式为mA·(1-x-y-z)Ln2O3·MO2·xPr·yBi·zRe,其中,
A为选自下组的一种或多种:Li、Na、K、Rb、Cs;
Ln为选自下组的一种或多种:Sc、Y、La、Gd、Lu、Al、Ga、B;
M为选自下组的一种或多种:Si、Ge、Sn、Ti、Zr、Hf;
Re为选自下组的一种或多种:Ce、Nd、Po、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb;
其中,m、x、y、z表示对应元素的摩尔分数,且0<m≤0.8,0.0001≤x≤0.3,0.0001≤y≤0.5,0≤z≤0.5,且0<1-x-y-z<1。
2.根据权利要求1所述的上转换发光陶瓷,其特征在于,m、x、y、z的取值范围为:0.01<m≤0.5,0.0001≤x≤0.2,0.001≤y≤0.3,0≤z≤0.3,且0.2<1-x-y-z<1。
3.根据权利要求1所述的上转换发光陶瓷,其特征在于,0.001≤z≤0.15。
4.根据权利要求1所述的上转换发光陶瓷,其特征在于,所述发光陶瓷被波长为400nm~980nm的光激发。
5.根据权利要求1所述的上转换发光陶瓷,其特征在于,所述发光陶瓷在480-500nm的激发光激发下在250-375nm的紫外光转换效率为0.008%-0.028%。
6.根据权利要求1所述的上转换发光陶瓷,其特征在于,所述发光陶瓷在480-500nm的激发光激发下在250-375nm的紫外光转换效率为0.015%-0.028%。
7.一种如权利要求1~6任一项所述的上转换发光陶瓷的制备方法,其特征在于,其包括以下步骤:
(1)提供原料并依次进行球磨、干燥、灼烧,得到粉体;
(2)将所述粉体依次进行研磨、成型、冷等静压处理,得到素坯;
(3)在真空环境中,将所述素坯进行烧结得到所述发光陶瓷。
8.根据权利要求7所述的上转换发光陶瓷的制备方法,其特征在于,所述干燥在60-100℃下干燥12-30h;和/或
所述灼烧在600℃~900℃下灼烧2小时~10小时;和/或
所述冷等静压处理在100-500MPa下进行。
9.根据权利要求7所述的上转换发光陶瓷的制备方法,其特征在于,所述烧结为如下的两段式烧结:先进行低温烧结,后进行高温烧结。
10.根据权利要求9所述的上转换发光陶瓷的制备方法,其特征在于,所述低温烧结为在第一温度下烧结第一时间;
所述高温烧结为在第二温度下烧结第二时间;
所述第一温度为1000-1500℃,所述第一时间为1-5h;
所述第二温度为1500-1900℃,所述第二时间为1-15h。
CN201811511416.4A 2018-12-11 2018-12-11 一种上转换发光陶瓷及其制备方法 Active CN111302802B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811511416.4A CN111302802B (zh) 2018-12-11 2018-12-11 一种上转换发光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811511416.4A CN111302802B (zh) 2018-12-11 2018-12-11 一种上转换发光陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN111302802A true CN111302802A (zh) 2020-06-19
CN111302802B CN111302802B (zh) 2022-06-24

Family

ID=71159568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811511416.4A Active CN111302802B (zh) 2018-12-11 2018-12-11 一种上转换发光陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111302802B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988876A (zh) * 2022-06-24 2022-09-02 中国工程物理研究院化工材料研究所 一种Eu、Sc共掺杂的透明氧化镥陶瓷及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276248A (zh) * 2011-04-22 2011-12-14 同济大学 铋层状类钙钛矿结构的氧化物上转换发光压电材料及其制备方法
CN102533267A (zh) * 2011-12-22 2012-07-04 昆明理工大学 以Lu2O3为基质的三维有序大孔上转换发光陶瓷材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276248A (zh) * 2011-04-22 2011-12-14 同济大学 铋层状类钙钛矿结构的氧化物上转换发光压电材料及其制备方法
CN102533267A (zh) * 2011-12-22 2012-07-04 昆明理工大学 以Lu2O3为基质的三维有序大孔上转换发光陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. S. YADAV等人: "Improved photon upconversion photoluminescence and intrinsic optical bistability from a rare earth co-doped lanthanum oxide phosphor via Bi3+ doping", 《NEW J. CHEM.》 *
ZHAO YINGGANG等人: "Effect of alkali metal oxides R2O (R=Na, K) on 1.53μm luminescence of Er3+-doped Ga2O3-GeO2 glasses for optical amplification", 《JOURNAL OF RARE EARTHS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988876A (zh) * 2022-06-24 2022-09-02 中国工程物理研究院化工材料研究所 一种Eu、Sc共掺杂的透明氧化镥陶瓷及其制备方法

Also Published As

Publication number Publication date
CN111302802B (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
CN111205081B (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
CN101418217A (zh) 一种多色红外上转换发光材料及其制备方法
CN113736461B (zh) 一种Cr3+/Yb3+共掺杂的宽带近红外发光材料、其制备方法及照明与显示光源
CN111747652B (zh) 具有上转换发光性能的介孔生物活性玻璃复合材料及制备
CN111690407A (zh) 一种Bi3+掺杂的紫外超长余辉发光材料及其制备方法
CN112457847A (zh) 一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉及其制备方法
CN106190119A (zh) 一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法
CN110257067B (zh) 一种三价铋离子掺杂钇镥镓铝石榴石紫外长余辉发光材料及其制备方法
CN110028966A (zh) 一种正硅酸盐基深紫外长余辉发光材料及其制备方法
CN111302802B (zh) 一种上转换发光陶瓷及其制备方法
CN103756679B (zh) 一种可被宽谱非相干光激发的上转换材料及其制备方法
CN106701074B (zh) 一种钛酸盐基红色上转换发光材料及其制备方法
CN116333731B (zh) 一种近紫外/蓝光激发的铝硼/钼酸盐近红外荧光粉及制备方法
CN104818022A (zh) 一种新型上转换荧光粉及其制备方法
CN114672310A (zh) 一种焦磷酸盐近红外荧光粉及其制备方法和应用
CN1693417A (zh) 一种新型稀土三基色荧光粉及其制备方法
CN111302801B (zh) 一种上转换发光陶瓷及其制备方法
CN104445929A (zh) 一种白光上转换重金属氧化物块体玻璃材料及其发光强度提高的方法
CN112745840B (zh) 一种近红外硅锗酸盐长余辉发光材料及其制备方法
CN115232618A (zh) 一种相变诱导上转换绿光近零热猝灭荧光粉及其制备方法
CN101067083B (zh) 具光色可调性的上转换荧光粉及其制备方法
CN109233829B (zh) 一种镁铒镱三掺铌酸钠及其制备方法和应用
CN107794042B (zh) 一种掺杂稀土元素Sm的磷钨酸盐发光材料及其制备方法
CN113980680B (zh) 一种离子共掺杂的紫外长余辉发光材料、制备方法及其应用
CN111253938A (zh) 一种钬镱离子共掺红外上转换材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant