CN106190119A - 一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法 - Google Patents

一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法 Download PDF

Info

Publication number
CN106190119A
CN106190119A CN201610573460.2A CN201610573460A CN106190119A CN 106190119 A CN106190119 A CN 106190119A CN 201610573460 A CN201610573460 A CN 201610573460A CN 106190119 A CN106190119 A CN 106190119A
Authority
CN
China
Prior art keywords
white light
light leds
flux
preparation
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610573460.2A
Other languages
English (en)
Inventor
张彦
李雨萌
王洪超
徐家跃
李�杰
夏土良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201610573460.2A priority Critical patent/CN106190119A/zh
Publication of CN106190119A publication Critical patent/CN106190119A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7736Vanadates; Chromates; Molybdates; Tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法,其化学式为Sr2CaMoO6:xEu3+,0.01≤x≤0.15,按照化学计量比称取原料,将上述原料与助熔剂充分混合均匀,混匀后装入由刚玉制成的双坩埚内,坩埚间填充吸波剂,将坩埚放入微波炉,快速升温至750‑950℃,在氧化环境中进行烧结,保温时间为0.5‑4h;最后经冷却、研磨、洗涤、烘干得到白光LED用红色荧光粉。本发明在微波烧结时加入助熔剂促进了钼酸盐多晶的形成和生长,荧光粉的烧结程度也显著降低、烧结时间显著缩短,粉体松散,无需机械粉碎,而且有效控制了铝酸盐荧光粉颗粒的形貌,获得粒径颗粒较小且分布均匀,外形呈近球形的颗粒。

Description

一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法
技术领域
本发明属于物理学领域,涉及一种用于显示器、荧光灯、LED,蓄光型材料等的荧光粉,具体来说是一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法。
背景技术
半导体白色发光二极管(白光LED)是一种新型固态照明光源,具有光效高、寿命长、体积小、工作电压低、无污染、节能环保等优点,近年来蓝色、紫色及近紫外LED的迅速发展,使LED在通用照明领域取代白炽灯和荧光灯成为新一代绿色光源成为可能。
Sr2CaMoO6:Eu3+属于双钙钛矿钼酸盐氧化物,该化合物属于立方晶系,空间群为Fm3m,点阵常数为α=8.281Å,Z=4。在该钼酸盐中,钼离子被4个O2-离子包围着,位于四面体的对称中心,具有相对好的稳定性,是一种优秀的基质材料。在近紫外区,该钼酸盐荧光粉具有宽而强的电荷转移吸收带和属于Eu3+的有效f-f跃迁,因而是一种很有前途的荧光粉材料。
荧光粉的制备一般采用高温固相法,该方法存在合成温度高,反应时间长;产品颗粒尺寸较大、粒度分布宽、形貌不均一以及发光效率低等缺点。而硼酸等助熔剂的加入,虽然有助于降低合成温度,但也使荧光粉严重烧结,须通过球磨分散等方法降低荧光粉粒径,从而导致荧光粉颗粒表面损伤,使得荧光粉性能大幅度下降。因此,寻求相对温和的反应条件,较好地控制颗粒的晶粒尺度、粒径分布与形貌,获得具有较好荧光性能的荧光粉是当前荧光粉合成急需解决的问题。
微波合成法是近十几年来迅速发展的新兴制备技术,它将微波炉发射出来的微波,通过吸收介质传递给反应物,从而快速升温到所需温度,并使反应在较短时间内完成。整个微波装置只有试样处于高温而其余部分仍处于常温状态,所以可以经济、简便地实现高温加热。与传统加热方法不同,微波加热是材料内部整体同时发热,升温速度较快,从而显著缩短加热时间。另外,微波能转换为热能的效率可达80~90%。由于微波加热速度快,避免了材料合成过程中晶粒的异常长大,能够在短时间,较低温度下合成纯度高、粒度较细且分布均匀的材料。而且,由于试样从内部加热,微波加热都能实现对样品的快速加热,并可减小处理过程中由于热应力引起的颗粒表面损伤。同时,筛选合适的助熔剂能在大幅降低合成温度,获得疏松免机械加工的粉体,而且通过助熔剂的电荷补偿作用有助于增强荧光粉的发光强度。微波加热辅以一定的助熔剂合成得到的产品具有物相纯,稀土掺杂浓度高,发光强度大等特点,在荧光材料合成领域受到的高度重视,在稀土发光材料的合成中有着广阔的应用。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法,所述的这种白光LED用Eu3+掺杂钼酸盐红粉的制备方法要解决现有技术中的荧光粉性能不佳的技术问题。
本发明提供了上述的一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法,其化学式为Sr2CaMoO6:xEu3+,0.01≤x≤0.15,包括如下步骤:
1)按化学计量比称取Eu2O3、CaCO3、SrCO3、MoO3,其中Eu2O3的纯度为99.99%,CaCO3、SrCO3、MoO3为A.R级;
2)将上述原料与助熔剂充分混合均匀,助熔剂的含量为前驱体总质量的1%-10%;
3)将原料与助熔剂的混合物装入刚玉坩埚,放置于双坩埚系统中,并填充吸波材料用作微波吸收剂;
4)将混合物放入微波烧结炉中进行微波加热,以30-80℃/min速度由室温升至750-950℃,在氧化环境中进行烧结,保温时间为0.5-4h;
5)将烧结产物降到室温,研磨后用质量百分比浓度为0.1-5%的硝酸洗涤,最后用去离子水洗至中性,120-150℃温度下烘干,即得到成品白光LED用Eu3+掺杂钼酸盐红粉。
进一步的,所述助熔剂选自NH4F、NaF、LiF、CaF2、BaF2、H3BO3、Li2CO3或者Na2CO3的以一种或两种以上的混合。
进一步的,吸波剂为SiC、石墨、或者铁氧体中的一种或两种以上的混合。
进一步的,所述的微波合成的微波频率为300MHz-300GHz。
进一步的,所述的氧化环境是指空气气氛。
本发明按化学计量比称取Eu2O3、CaCO3、SrCO3、MoO3,充分混匀后装入由刚玉制成的双坩埚内,坩埚间填充吸波剂,将坩埚放入微波炉,通过调整微波功率控制升温速度,加热至合成温度,最后经冷却、简单研磨,得到白光LED用红色荧光粉。本发明在微波烧结时加入助熔剂促进了钼酸盐多晶的形成和生长,荧光粉的烧结程度也显著降低、烧结时间显著缩短,粉体松散,无需机械粉碎,而且有效控制了铝酸盐荧光粉颗粒的形貌,获得粒径颗粒较小且分布均匀,外形呈近球形的颗粒。而且助熔剂能有效降低荧光粉的烧结程度和烧结时间,提高荧光粉的发光效率和强度。
本发明的方法能够降低合成温度,提高荧光粉的发光强度和热稳定性,改善荧光粉的色温、色坐标和显色指数,并使荧光粉的粒径较小,粒度分布均匀,粉体分散性好。
本发明和已有技术相比,其技术进步是显著的。本发明通过原料与微波直接耦合,使材料整体内外同时均匀受热,反应物内部温度场分布均匀,温度梯度小;同时由于反应物处于微波电磁场中,内部粒子受到电磁场的作用,粒子活性较大,从而促进离子扩散,降低反应温度,缩短反应时间。本发明的使用助熔剂能有效降低烧结温度,同时由于助熔剂离子的电荷补偿作用,提高了荧光粉的发光强度。吸波剂的使用能有效的提高材料吸收微波的能力。本发明制备得到的Sr2CaMoO6:Eu3+具有粒径小、结晶性好、粒度分布范围窄、形貌规整、颗粒分散性好等优点,获得的荧光粉无需机械粉碎,便于大规模生产。
附图说明
图1是使用本发明制备的Sr2CaMoO6:0.03Eu3+荧光粉SEM图。
图2是使用本发明制备的Sr2CaMoO6:0.03Eu3+荧光粉的x射线衍射图。
图3是使用本发明制备的Sr2CaMoO6:0.03Eu3+荧光粉的发射光谱图。
图4是微波-Li2CO3助熔剂合成的Sr2CaMoO6:0.03Eu3+荧光粉与按照同样的配比混料,采用高温固相法合成Sr2CaMoO6:0.03Eu3+的发射光谱。
具体实施方式
以下结合附图与实施例对本发明作进一步详细描述。需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例中的微波炉为国产隆泰微波热工有限公司生产的HAMLab-V3型微波合成炉。
实施例1Sr2CaMoO6:0.03Eu3+的合成方法如下:
以化学式Sr2CaMoO6:0.03Eu3+中的化学计量比称取适量SrCO3、Eu2O3、CaCO3及MoO3作为原料,按总反应物量质量的3%称取Li2CO3,并以之为助熔剂,然后将原料和助熔剂放在玛瑙研钵中混合均与并研磨;将研磨后的原料装入刚玉坩埚中,将该坩埚放入Al2O3匣钵,同时在匣钵外壁放置SiC辅热材料;将Al2O3匣钵置于保温桶中,并在匣钵与保温桶之间填充保温棉,然后将保温桶放入微波炉中;通过调整功率,以50℃/min的升温速度,常压加热到600℃,保温3h,再以相同升温速度加热到900℃,保温3h;反应完毕后关掉微波源,反应物随炉自然冷却至室温;完成上述步骤后,将样品取出进行充分研磨,然后在重复一遍上述步骤,将合成的荧光粉经过玛瑙研钵进行简单研磨,所得产物为粒径较细、无烧结现象的红色荧光粉。接着用质量百分比浓度0.1-5%的硝酸洗涤,用去离子水洗至中性,120-150℃温度下烘干,即得到成品。
应用XRD、SEM及荧光光谱分析表征制备得到的粉体,图1是SEM图、图2是XRD图和图3为发射谱,图4为微波-助熔剂与高温固相法合成的Sr2CaMoO6:0.03Eu3+的发射光谱图。用SEM观察其微观结构,发现该体系材料外形呈近球形,且粒径分布均匀,平均粒径大小在1.5µm左右。对该体系材料进行XRD分析,Eu3+掺杂没有引起Sr2CaMoO6晶体结构的改变。激发波长为460nm时,材料在610nm处发射出强烈的红光。与按照同样的配比混料,采用高温固相法合成Sr2CaMoO6:0.03Eu3+比较,在以Li2CO3为助熔剂采用微波合成获得的Sr2CaMoO6:0.03Eu3 +具有更强的荧光发射强度。
实施例2Sr2CaMoO6:0.05Eu3+的合成方法如下:
以化学式Sr2CaMoO6:0.05Eu3+中的化学计量比称取适量SrCO3、Eu2O3、CaCO3及MoO3作为原料,按总反应物量质量的1%称取LiF,并以之为助熔剂,然后将原料和助熔剂放在玛瑙研钵中混合均与并研磨;将研磨后的原料装入刚玉坩埚中,将该坩埚放入Al2O3匣钵,同时在匣钵外壁放置SiC辅热材料;将Al2O3匣钵置于保温桶中,并在匣钵与保温桶之间填充保温棉,然后将保温桶放入微波炉中;通过调整功率,以50℃/min的升温速度,常压加热到600℃,保温3h,再以相同的升温速度加热到950℃,保温3h,反应完毕后关掉微波源,反应物随炉自然冷却至室温;完成上述步骤后,将样品取出进行充分研磨,然后在重复一遍上述步骤,将合成的荧光粉经过玛瑙研钵进行简单研磨,所得产物为粒径较细、无烧结现象的红色荧光粉。接着用质量百分比浓度0.1-5%的硝酸洗涤,用去离子水洗至中性,120-150℃温度下烘干,即得到成品。
实施例3Sr2CaMoO6:0.15Eu3+的合成方法如下:
以化学式Sr2CaMoO6:0.15Eu3+中的化学计量比称取适量SrCO3、Eu2O3、CaCO3及MoO3作为原料,按总反应物量质量的10%称取NaF,并以之为助熔剂,然后将原料和助熔剂放在玛瑙研钵中混合均与并研磨;将研磨后的原料装入刚玉坩埚中,将该坩埚放入Al2O3匣钵,同时在匣钵外壁放置SiC辅热材料;将Al2O3匣钵置于保温桶中,并在匣钵与保温桶之间填充保温棉,然后将保温桶放入微波炉中;通过调整功率,以50℃/min的升温速度,常压加热到600℃,保温3h,再以相同的升温速度加热到750℃,保温3h,反应完毕后关掉微波源,反应物随炉自然冷却至室温;完成上述步骤后,将样品取出进行充分研磨,然后在重复一遍上述步骤,将合成的荧光粉经过玛瑙研钵进行简单研磨,所得产物为粒径较细、无烧结现象的红色荧光粉。接着用质量百分比浓度0.1-5%的硝酸洗涤,用去离子水洗至中性,120-150℃温度下烘干,即得到成品。
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法,其化学式为Sr2CaMoO6:xEu3+,0.01≤x≤0.15,其特征在于包括如下步骤:
1)按化学计量比称取Eu2O3、CaCO3、SrCO3、MoO3,其中Eu2O3的纯度为99.99%,CaCO3、SrCO3、MoO3为A.R级;
2)将上述原料与助熔剂充分混合均匀,助熔剂的含量为前驱体总质量的1%-10%;
3)将原料与助熔剂的混合物装入刚玉坩埚,放置于双坩埚系统中,并填充吸波材料用作微波吸收剂;
4)将混合物放入微波烧结炉中进行微波加热,以30-80℃/min速度由室温升至750-950℃,在氧化环境中进行烧结,保温时间为0.5-4h;
5)将烧结产物降到室温,研磨后用质量百分比浓度0.1-5%的硝酸洗涤,最后用去离子水洗至中性,120-150℃温度下烘干,即得到成品白光LED用Eu3+掺杂钼酸盐红粉。
2.根据权利要求1所述的一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法,其特征在于,所述助熔剂选自NH4F、NaF、LiF、CaF2、BaF2、H3BO3、Li2CO3或者Na2CO3的以一种或两种以上的混合。
3.根据权利要求1所述的一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法,其特征在于:吸波剂为SiC、石墨、或者铁氧体中的一种或两种以上的混合。
4.根据权利要求1所述的一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法,其特征在于:所述的微波合成的微波频率为300MHz-300GHz。
5.根据权利要求1所述的一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法,其特征在于:所述的氧化环境是指空气气氛。
CN201610573460.2A 2016-07-20 2016-07-20 一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法 Pending CN106190119A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610573460.2A CN106190119A (zh) 2016-07-20 2016-07-20 一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610573460.2A CN106190119A (zh) 2016-07-20 2016-07-20 一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法

Publications (1)

Publication Number Publication Date
CN106190119A true CN106190119A (zh) 2016-12-07

Family

ID=57494520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610573460.2A Pending CN106190119A (zh) 2016-07-20 2016-07-20 一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法

Country Status (1)

Country Link
CN (1) CN106190119A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107445610A (zh) * 2017-07-04 2017-12-08 武汉理工大学 一种微波烧结装置及核壳结构钛酸钡基陶瓷的微波烧结制备方法
CN110055066A (zh) * 2019-03-21 2019-07-26 惠州学院 一种红色荧光粉及其制备方法
CN111471460A (zh) * 2020-05-13 2020-07-31 徐州森普光电科技有限公司 一种高色纯度高热稳定性红色荧光材料及其制备方法
CN114341313A (zh) * 2019-07-23 2022-04-12 休斯敦大学体系 发射窄绿光的磷光体
CN115571916A (zh) * 2022-10-10 2023-01-06 北京航空航天大学 吸波剂及其制备方法、吸波材料和隐身设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584231A (zh) * 2011-12-23 2012-07-18 南京工业大学 离子掺杂的双钙钛矿结构钨钼酸盐氧化物粉体的制备方法
JP2013053279A (ja) * 2011-09-06 2013-03-21 Kictec Inc 無機蛍光材料
CN103058285A (zh) * 2012-12-04 2013-04-24 内蒙古工业大学 一种两步法固相合成纯相La2NiMnO6粉体的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053279A (ja) * 2011-09-06 2013-03-21 Kictec Inc 無機蛍光材料
CN102584231A (zh) * 2011-12-23 2012-07-18 南京工业大学 离子掺杂的双钙钛矿结构钨钼酸盐氧化物粉体的制备方法
CN103058285A (zh) * 2012-12-04 2013-04-24 内蒙古工业大学 一种两步法固相合成纯相La2NiMnO6粉体的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SHI YE等: "Photoluminescence and Raman Spectra of Double-Perovskite Sr2Ca(Mo/W)O6 with A- and B-Site Substitutions of Eu3+", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *
YE LI等: "Tailored upconversion emission of Eu3+ in Sr2Ca(W,Mo)O6:Yb3+,Eu3+ by a laser via an electronic polarization mechanism", 《J. MATER. CHEM. C》 *
张乐 等: "Eu3+掺杂双钙钛矿Sr2CaMoO6橙红色荧光粉的结构特征及其发光性能", 《无机化学学报》 *
张张: "双钙钛矿Sr2FeMoO6的制备、表征及电磁性能研究", 《中国优秀硕士学位论文全文数据库,工程科技Ⅰ辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107445610A (zh) * 2017-07-04 2017-12-08 武汉理工大学 一种微波烧结装置及核壳结构钛酸钡基陶瓷的微波烧结制备方法
CN107445610B (zh) * 2017-07-04 2021-01-26 武汉理工大学 一种微波烧结装置及核壳结构钛酸钡基陶瓷的微波烧结制备方法
CN110055066A (zh) * 2019-03-21 2019-07-26 惠州学院 一种红色荧光粉及其制备方法
CN114341313A (zh) * 2019-07-23 2022-04-12 休斯敦大学体系 发射窄绿光的磷光体
CN111471460A (zh) * 2020-05-13 2020-07-31 徐州森普光电科技有限公司 一种高色纯度高热稳定性红色荧光材料及其制备方法
CN111471460B (zh) * 2020-05-13 2022-12-09 徐州森普光电科技有限公司 一种高色纯度高热稳定性红色荧光材料及其制备方法
CN115571916A (zh) * 2022-10-10 2023-01-06 北京航空航天大学 吸波剂及其制备方法、吸波材料和隐身设备
CN115571916B (zh) * 2022-10-10 2023-09-05 北京航空航天大学 吸波剂及其制备方法、吸波材料和隐身设备

Similar Documents

Publication Publication Date Title
Wang et al. A novel red phosphor Ba2La4Y4 (SiO4) 6O2: Eu3+ with high quantum yield and thermal stability for warm white LEDs
Li et al. Green upconversion luminescence in Yb3+/Er3+ co-doped ALn (MoO4) 2 (A= Li, Na and K; Ln= La, Gd and Y)
CN106190119A (zh) 一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法
Yang et al. Microstructure, and luminescence properties of LiBaPO4: Dy3+ phosphors with various Dy3+ concentrations prepared by microwave assisted sintering
CN106281317B (zh) 一种高亮度、大颗粒尺寸β-SiAlON:Eu2+绿色荧光粉及其制备方法
CN102260500A (zh) 一种白光led用氮化物/氧氮化物荧光粉的制备方法
Han et al. A novel Al3+ modified Li6CaLa2Sb2O12: Mn4+ far-red-emitting phosphor with garnet structure for plant cultivation
Du et al. Novel multiband luminescence of Y2Zr2O7: Eu3+, R3+ (R= Ce, Bi) orange–red phosphors via a sol–gel combustion approach
Zhai et al. Influence of doping alkali metal ions on the structure and luminescent properties of microwave synthesized CaMoO4: Dy3+ phosphors
Wu et al. Influences of calcination temperature and charge compensators on the properties of SrMoO4: Sm3+ red phosphor prepared via the sol–gel method
Chen et al. Glass-ceramics with thermally stable blue-red emission for high-power horticultural LED applications
Yu et al. Double-site Eu3+ occupation in the langbeinite-type phosphate phosphor toward adjustable emission for pc-WLEDs
CN103980900B (zh) 一种硅酸盐蓝光荧光粉及其制备方法
Li et al. Co-substitution strategy to achieve a novel efficient deep-red-emitting SrKYTeO6: Mn4+ phosphor for plant cultivation lighting
Li et al. A novel red-emitting Ca2GdHf2Al3O12: Eu3+ phosphor for light-emitting didoes and field emission display
Yang et al. Luminescence properties and energy transfer of K 3 LuF 6: Tb 3+, Eu 3+ multicolor phosphors with a cryolite structure
Wang et al. Performance improvement of Sr4Al14O25: Mn4+ red emission phosphor via Na+ doping
Zhai et al. Novel square plate-like NaGd (WO4) 2: Tm3+, Dy3+ phosphors: Synthesis, characterization, tunable luminescence properties and energy transfer behaviors
Chun et al. Na+ and Pr 3+ co-doped orange-emitting CaYAl 3 O 7 phosphors: synthesis, luminescence properties and theoretical calculations
Zhu et al. A novel blue light pumped yellow-emitting phosphor RbZnPO 4: Dy 3+ with satisfactory color tuning and thermal properties for high-power warm white light emitting diodes
Lü et al. Multifunctional Pr3+ single doped CaLaMgTaO6: Crystal structure, thermal behavior and applications
Yang et al. Crystal structure and up-conversion luminescence properties of K3ScF6: Er3+, Yb3+ cryolite
Deng et al. Sol-gel combustion synthesis and near-infrared luminescence of Ni2+-doped MgAl2O4 spinel phosphor
Wang et al. Tunable color and energy transfer of Y2Mg3Ge3O12: Tb3+, Tm3+, Eu3+ phosphors with excellent thermal stability
Liu et al. Synthesis of Bi3+ and Eu3+ co-doped Na4CaSi3O9 blue-red light tunable emission phosphors for inducing plant growth

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207