CN107445610B - 一种微波烧结装置及核壳结构钛酸钡基陶瓷的微波烧结制备方法 - Google Patents

一种微波烧结装置及核壳结构钛酸钡基陶瓷的微波烧结制备方法 Download PDF

Info

Publication number
CN107445610B
CN107445610B CN201710537272.9A CN201710537272A CN107445610B CN 107445610 B CN107445610 B CN 107445610B CN 201710537272 A CN201710537272 A CN 201710537272A CN 107445610 B CN107445610 B CN 107445610B
Authority
CN
China
Prior art keywords
crucible
ceramic
microwave sintering
sol
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710537272.9A
Other languages
English (en)
Other versions
CN107445610A (zh
Inventor
郝华
陈卫进
陈程
刘韩星
曹明贺
尧中华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201710537272.9A priority Critical patent/CN107445610B/zh
Publication of CN107445610A publication Critical patent/CN107445610A/zh
Application granted granted Critical
Publication of CN107445610B publication Critical patent/CN107445610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62821Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering

Abstract

本发明公开了一种微波烧结装置及核壳结构钛酸钡基陶瓷的微波烧结制备方法。该微波烧结装置包括微波烧结炉和置于所述微波烧结炉内的保温装置,所述保温装置包括第一坩埚、第二坩埚、第三坩埚及保温棉,第一坩埚、第二坩埚、第三坩埚的宽度依次减小。本发明采用溶胶‑凝胶法,制备得到0.25Bi(Zn0.5Ti0.5)O3‑0.75BaTiO3溶胶,并将其加入BaTiO3悬浊液中水浴搅拌,将得到的溶胶烘干得到干凝胶;然后将干凝胶置于马弗炉中煅烧得到陶瓷粉末,加入粘合剂造粒、压片成型,保温排出粘合剂得到陶瓷片生坯;最后以SiC为助烧剂,将陶瓷片生坯置于保温装置中进行微波烧结成瓷。该方法制备的核壳结构BaTiO3基陶瓷具有成瓷温度低、烧结时间短、介电常数较高、“核‑壳”比例高、温度稳定性较好的特点。

Description

一种微波烧结装置及核壳结构钛酸钡基陶瓷的微波烧结制备 方法
技术领域
本发明涉及一种微波烧结装置及“核-壳”结构钛酸钡基陶瓷的微波烧结制备方法。该方法是用溶胶凝胶法进行化学包覆,采用传统煅烧得到陶瓷粉体,并用微波烧结制备陶瓷的方法。
背景技术
BaTiO3基材料是最早研究的,也是MLCC用介电材料中最早被商业化应用的。由于BaTiO3介电常数较高,同时介电损耗也很小,所以迅速发展为最广泛的一种用于制备多层陶瓷电容器的介质材料,被广泛应用于低频大容量电容器。由于BaTiO3的居里温度在120℃左右,在该温度附近的介电常数变化很大,不适合实际的应用中对容温变化的要求。而晶粒中“核-壳”结构的形成能够很大程度上提高BaTiO3基陶瓷介电温度稳定性,使其能满足MLCC实际应用的规格要求。
采用传统固相烧结所需温度较高,这样会加速壳层包覆离子的扩散,渗透进入晶粒核从而形成成分均匀的固溶体,导致“核-壳”结构的坍塌,因此选择合理的烧结制度是保持“核-壳”结构获得介电性能温度稳定性的原因之一。
发明内容
本发明要解决的技术问题是提供一种提高“核-壳”结构形成率的微波烧结装置及“核-壳”结构钛酸钡基陶瓷的微波烧结制备方法。
为了实现上述目的,本发明的技术方案是:
一种微波烧结装置,包括微波烧结炉和置于所述微波烧结炉内的保温装置,所述保温装置包括第一坩埚、第二坩埚、第三坩埚及保温棉,所述第一坩埚、第二坩埚、第三坩埚的宽度依次减小,所述第三坩埚收容于第二坩埚内,所述第二坩埚收容于第一坩埚内,所述第一坩埚的内壁和第二坩埚的外壁的空间内填充有碳化硅助烧剂,陶瓷片生坯设置于所述第三坩埚内,所述保温棉包覆于所述第一坩埚的外壁。
一种“核-壳”结构钛酸钡基陶瓷的微波烧结制备方法,它包括以下步骤:
1)依照化学计量比将钛酸四正丁酯溶于pH=5~6之间的柠檬酸I溶液中,并于70-90℃水浴1-2h,得溶胶I;将Bi(NO3)3·5H2O、Zn(CH3COO)2·2H2O、Ba(CH3COO)2分别溶于适量乙酸中,混合后加入柠檬酸II,并调pH=5~6,并通过75-80℃水浴稳定得溶胶II;最后将溶胶I和II混合并充分搅拌,即得0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3溶胶;
2)将0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3溶胶加入到BaTiO3悬浊液中,90-100℃水浴搅拌至搅不动为止,将得到的溶胶烘干得到干凝胶;
3)将步骤2)中得到的干凝胶置于马弗炉中750-850℃煅烧5-7h得到BaTiO3@x(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷粉末,其中x=0.5-1.0,加入粘合剂造粒、压片成型,在600℃保温2h排出粘合剂得到陶瓷片生坯,将陶瓷片生坯置于所述的保温装置中进行微波烧结成瓷。
上述方案中,所述BaTiO3悬浊液是通过将BaTiO3粉体采用超声分散到聚乙二醇水溶液中,并搅拌形成,所述的聚乙二醇水溶液中的去离子水:聚乙二醇:BaTiO3=12mL:0.3g:1g。
上述方案中,所述的粘合剂为质量分数为5%的聚乙烯醇水溶液。
上述方案中,所述的摩尔比n(柠檬酸I):n(Ti2+)=2:1,摩尔比n(柠檬酸II):n(Bi2 ++Zn2++Ba2+)=3:1。
上述方案中,所述的微波烧结温度范围为950~1000℃,升温速率为10~12℃/min,保温时间为30min。
本发明的有益效果是:
1、该陶瓷的化学组分为BaTiO3@x(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)(x=0.5-1.0),其中以商用300nm BaTiO3作为“核”,并以0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3作为包覆“壳层”。
2、该方法降低烧结温度,极大缩短烧结时间,提高生产率,降低成本,提高产品质量。常规烧结最佳温度为1200~1300℃,升温速率为2℃/min,保温时间为2h。而本发明所述的微波烧结温度普遍比常规烧结低,烧结时间极大缩短,微波烧结最佳温度范围为950~1000℃,升温速率为10~12℃/min,保温时间为30min。
3、陶瓷的介电常数有所提高:微波烧结还可防止晶粒异常长大,提高致密度,从而提升材料的介电性能。
4、陶瓷晶粒中“核-壳”结构比例较高:由于微波烧结温度较低,烧结时间极大缩短,有效防止包覆层扩散速率太快而导致“核-壳”结构的坍塌,提高“核-壳”结构的形成率。
附图说明
图1是微波烧结所采用的保温装置的结构示意图。其中,1-是保温棉,2-填充的SiC助烧剂,3-陶瓷样品,4-第一坩埚,5-第二坩埚,6-第三坩埚。
图2微波烧结BaTiO3@0.8(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷样品的TEM图像。
图3是常规烧结BaTiO3@x(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷的XRD图谱,x分别为0.5,0.6,0.7,0.8,0.9,1.0。
图4是微波烧结BaTiO3@x(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷的XRD图谱,x分别为0.5,0.6,0.7,0.8,0.9,1.0。
图5是常规烧结BaTiO3@(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷的介温曲线。
图6是微波烧结BaTiO3@(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷的介温曲线。
图7是常规烧结BaTiO3@0.9(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷的介温曲线。
图8是微波烧结BaTiO3@0.9(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷的介温曲线。
图9是常规烧结BaTiO3@0.8(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷的介温曲线。
图10是微波烧结BaTiO3@0.8(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷的介温曲线。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
本发明提供一种微波烧结装置,包括微波烧结炉(图未示)和置于微波烧结炉内的保温装置(如图1所示),保温装置包括第一坩埚4、第二坩埚5、第三坩埚6及保温棉1。第一坩埚4、第二坩埚5、第三坩埚6的宽度依次减小,第三坩埚6收容于第二坩埚5内,第二坩埚5收容于第一坩埚4内,第一坩埚4的内壁和第二坩埚5的外壁的空间内填充有碳化硅助烧剂2,陶瓷片生坯设置于第三坩埚6内,保温棉1包覆于第一坩埚4的外壁。本发明所述的微波烧结保温装置为多层嵌套加热装置。保温装置设计的思路为:综合实际烧结情况发现,该陶瓷体系并不能直接在微波场中烧结成瓷,这两种陶瓷在常温下的介质损耗较小,吸波能力较弱。因此,我们考虑使用微波混合加热系统以完成陶瓷的烧结和致密化。为此,设计了如图1的保温装置。采用多晶莫来石纤维作为保温棉,在300ml圆形氧化铝的第一坩埚4外面包上保温棉1,然后在氧化铝第一坩埚4里面嵌套一个100ml圆形氧化铝的第二坩埚5,在它们之间填充绿色SiC作为助烧剂2。由于微波烧结过程中,陶瓷样品可能出现过烧,粘结在100ml圆形的第二坩埚5底部,影响再次使用,故在100ml圆形氧化铝的第二坩埚5中再嵌套一个30ml圆形氧化铝的第三坩埚6,该30ml氧化铝的第三坩埚6成本较低,易于更换。
将陶瓷样品3置于其中,并加上保温棉盖子,只留一个圆形小孔,对准红外测温探头,以测量样品表面温度。SiC在常温下吸波性能就很好的材料在微波场中和微波耦合产生热量,而本发明中所涉及陶瓷体系在低温段吸波能力较弱,故采用SiC作为助烧剂,通过热辐射形式先对陶瓷样品进行加热,陶瓷样品在高温下介电损耗大大增加,与微波耦合能力加强,实现微波烧结成瓷。此外,SiC在高温下吸波能力大大减弱,不会影响陶瓷材料对微波的吸收。
实施例2制备BaTiO3@(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)组分
本实施例提供一种核壳结构钛酸钡基陶瓷的微波烧结制备方法,包括如下步骤:
(1)将2.1g聚乙二醇(PEG)溶解到84ml水中,再加入7g BaTiO3粉体,超声分散1h,并搅拌形成BaTiO3悬浊液;
(2)依照化学计量比计算的原料质量进行称量,取9.0895g钛酸四正丁酯溶于用适量的氨水调pH=5~6之间的柠檬酸I(CAI)溶液中,其中摩尔比n(CAI):n(Ti2+)=2:1,并于80℃水浴1h,得溶胶I;将3.6638g Bi(NO3)3·5H2O、1.4167g Zn(CH3COO)2·2H2O、5.7876gBa(CH3COO)2分别溶于适量乙酸中,混合后加入一定比例柠檬酸II(CAII),其中摩尔比n(CAII):n(Bi2++Zn2++Ba2+)=3:1,并用氨水调pH到6左右,并通过75℃水浴稳定得溶胶II;最后将溶胶I和II混合并充分搅拌,即得0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3溶胶。最后将0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3溶胶加入(1)中BaTiO3悬浊液中,90℃水浴搅拌至搅不动为止,将得到的溶胶置于烘箱中130℃条件下烘干得到干凝胶;
(3)将(2)中得到的干凝胶装入方形氧化铝坩埚中,并置于马弗炉中750℃煅烧5h(升温速率为2℃/min)得到BaTiO3@(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷粉末,加入粘合剂(5wt%的聚乙烯醇水溶液),研磨造粒,然后过100目筛子,陈化24h后压成Φ12×1.5mm的陶瓷片生坯(干压成型,压片机的压力为200Mpa),在600℃保温2h(升温速率为1℃/min)排出粘合剂。
(4)将(3)中排胶后的陶瓷片置于图1的保温装置中(多层嵌套加热装置,如图1所示,进行微波烧结成瓷。微波烧结使用的是南京杰全微波设备有限公司的NJZ4-3微波真空烧结炉(具体参数见表1)。微波烧结最佳温度范围为950℃,升温速率为12℃/min,保温时间为30min。体积密度和烧结制度具体见表1。
同样,将(3)中排胶后的陶瓷片进行常规烧结作为对比,最佳常规烧结温度为1200℃,升温速率为2℃/min,保温时间为2h。
打磨烧结成瓷的样品并抛光,进行XRD测试,从而分析其物相结构。如图3和4所示,与常规烧结相比,微波烧结制备的陶瓷也是理想钙钛矿结构,没有第二相产生。然后在陶瓷片两面涂上高温银浆,在800℃下保温15min形成银电极,利用介电测试系统测试其介电常数,对比两种烧结方式对材料的介电性能影响,如图5和图6。微波烧结的陶瓷其介电常数要比常规烧结的要高,这是由于微波烧结的陶瓷更为致密。图5中常规烧结的陶瓷介电常数,最高不超过3000,而图6所示微波烧结陶瓷的介电常数在较宽温度范围内已超过3000。此外,相比于常规烧结,微波烧结的居里峰比较明显,即核壳之间扩散得到抑制,壳层更接近设计组分,微波烧结陶瓷中晶粒核所占比重更高,即微波快速烧结有利于“核-壳”结构的保持。
实施例3制备BaTiO3@0.9(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)组分
本实施例提供一种核壳结构钛酸钡基陶瓷的微波烧结制备方法,包括如下步骤:
(1)将2.1g聚乙二醇(PEG)溶解到84ml水中,再加入7g BaTiO3粉体,超声分散1h,并搅拌形成BaTiO3悬浊液;
(2)依照化学计量比计算的原料质量进行称量,取8.1806g钛酸四正丁酯溶于用适量的氨水调pH=5~6之间的柠檬酸I(CAI)溶液中,其中摩尔比n(CAI):n(Ti2+)=2:1,并于80℃水浴1h,得溶胶I;将3.2974g Bi(NO3)3·5H2O、1.2750g Zn(CH3COO)2·2H2O、5.2089gBa(CH3COO)2分别溶于适量乙酸中,混合后加入一定比例柠檬酸II(CAII),其中摩尔比n(CAII):n(Bi2++Zn2++Ba2+)=3:1,并用氨水调pH到6左右,并通过75℃水浴稳定得溶胶II;最后将溶胶I和II混合并充分搅拌,即得0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3溶胶。最后将0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3溶胶加入(1)中BaTiO3悬浊液中,90℃水浴搅拌至搅不动为止,将得到的溶胶置于烘箱中130℃条件下烘干得到干凝胶;
(3)将(2)中得到的干凝胶装入方形氧化铝坩埚中,并置于马弗炉中750℃煅烧5h(升温速率为2℃/min)得到BaTiO3@0.9(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷粉末,加入粘合剂(5%的聚乙烯醇水溶液),研磨造粒,然后过100目筛子,陈化24h后压成Φ12×1.5mm的陶瓷片生坯(干压成型,压片机的压力为200Mpa),在600℃保温2h(升温速率为1℃/min)排出粘合剂将(3)中排胶后的陶瓷片置于保温装置中(双层嵌套或多层嵌套加热装置,如图1所示)进行微波烧结成瓷。微波烧结使用的是南京杰全微波设备有限公司的NJZ4-3微波真空烧结炉(具体参数见表1)。微波烧结最佳温度范围为960℃,升温速率为10℃/min,保温时间为30min。体积密度和烧结制度具体见表1。
同样,将(3)中排胶后的陶瓷片进行常规烧结作为对比,最佳常规烧结温度为1200℃,升温速率为2℃/min,保温时间为2h。
打磨烧结成瓷的样品并抛光,进行XRD测试。如图3和4所示,与常规烧结相比,微波烧结制备的陶瓷也是理想钙钛矿结构,没有第二相产生。然后在陶瓷片两面涂上高温银浆,在800℃下保温15min形成银电极,利用介电测试系统测试其介电常数,对比两种烧结方式对材料的介电性能影响,如图7和图8。微波烧结的陶瓷其介电常数要比常规烧结的要高,这是由于微波烧结的陶瓷更为致密。图7中常规烧结的陶瓷介电常数最高也不超过3000,而图8所示微波烧结陶瓷的介电常数在较宽温度范围内已达3500左右。此外,相比于常规烧结,微波烧结的居里峰比较明显,即核壳之间扩散得到抑制,壳层更接近设计组分,微波烧结陶瓷中晶粒核所占比重更高,即微波快速烧结有利于“核-壳”结构的保持。
实施例4制备BaTiO3@0.8(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)组分
本实施例提供一种“核-壳”结构钛酸钡基陶瓷的微波烧结制备方法,包括如下步骤:
(1)将2.4g聚乙二醇(PEG)溶解到96ml水中,再加入8g BaTiO3粉体,超声分散1h,并搅拌形成BaTiO3悬浊液;
(2)依照化学计量比计算的原料质量进行称量,取8.3104g钛酸四正丁酯溶于用适量的氨水调pH=5~6之间的柠檬酸I(CAI)溶液中,其中摩尔比n(CAI):n(Ti2+)=2:1,并于80℃水浴1h,得溶胶I;将3.3497g Bi(NO3)3·5H2O、1.2953g Zn(CH3COO)2·2H2O、5.2916gBa(CH3COO)2分别溶于适量乙酸中,混合后加入一定比例柠檬酸II(CAII),其中摩尔比n(CAII):n(Bi2++Zn2++Ba2+)=3:1,并用氨水调pH到6左右,并通过75℃水浴稳定得溶胶II;最后将溶胶I和II混合并充分搅拌,即得0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3溶胶。最后将0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3溶胶加入(1)中BaTiO3悬浊液中,90℃水浴搅拌至搅不动为止,将得到的溶胶置于烘箱中130℃条件下烘干得到干凝胶;
(3)将(2)中得到的干凝胶装入方形氧化铝坩埚中,并置于马弗炉中750℃煅烧5h(升温速率为2℃/min)得到BaTiO3@0.8(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷粉末,加入粘合剂(5%的聚乙烯醇水溶液),研磨造粒,然后过100目筛子,陈化24h后压成Φ12×1.5mm的陶瓷片生坯(干压成型,压片机的压力为200Mpa),在600℃保温2h(升温速率为1℃/min)排出粘合剂,将(3)中排胶后的陶瓷片置于保温装置中(多层嵌套加热装置,如图1所示)进行微波烧结成瓷。微波烧结使用的是南京杰全微波设备有限公司的NJZ4-3微波真空烧结炉(具体参数见表1)。微波烧结最佳温度范围为980℃,升温速率为10℃/min,保温时间为30min。体积密度和烧结制度具体见表1。
同样,将(3)中排胶后的陶瓷片进行常规烧结作为对比,最佳常规烧结温度为1200℃,升温速率为2℃/min,保温时间为2h。
打磨烧结成瓷的样品并抛光,进行XRD测试。如图3和4所示,与常规烧结相比,微波烧结制备的陶瓷也是理想钙钛矿结构,没有第二相产生。然后在陶瓷片两面涂上高温银浆,在800℃下保温15min形成银电极,利用介电测试系统测试其介电常数,对比两种烧结方式对材料的介电性能影响,如图9和图10。微波烧结的陶瓷其介电常数要比常规烧结的要高,这是由于微波烧结的陶瓷更为致密。图9中常规烧结的陶瓷介电常数和图10所示微波烧结陶瓷的介电常数在低温端介电峰值,均在3500左右。而在高温端介电峰差异非常明显,常规烧结的介电常数峰值在3000左右,且明显被压低,微波烧结的居里峰则比较明显,最大值高于3500,即微波烧结过程中核壳之间扩散得到抑制,壳层更接近设计组分,微波烧结陶瓷中晶粒核所占比重更高,即微波快速烧结有利于“核-壳”结构的保持。
使用离子剪薄仪(Precision Ion Polishing System 691/691,美国GATAN公司生产,压力:7×e-7Torr,加速电压:5KeV,枪电流:0μA)对微波烧结最致密的陶瓷片离子减薄后利用透射电镜观察“核-壳”结构的存在和形成率,如图2所示,该方法烧结的陶瓷中核壳结构形成率比较高。
表1是微波烧结最佳烧结温度及对应的体积密度。
表1
组分 烧结制度 体积密度
实施例2 x=1.0 950℃*30min 6.39g/cm<sup>3</sup>
实施例3 x=0.9 960℃*30min 6.20g/cm<sup>3</sup>
实施例4 x=0.8 980℃*30min 6.19g/cm<sup>3</sup>
本发明所列举的各原料都能实现本发明,以及各原料的上下限取值、区间值都能实现本发明,本发明的工艺参数如温度、时间等的上下限取值以及区间值都能实现本发明,在此不一一列举实施。

Claims (5)

1.一种核壳结构钛酸钡基陶瓷的微波烧结制备方法,其特征在于,它包括以下步骤:
1)依照化学计量比将钛酸四正丁酯溶于pH=5~6之间的柠檬酸I溶液中,并于70-90℃水浴1-2h,得溶胶I;将Bi(NO3)3·5H2O、Zn(CH3COO)2·2H2O、Ba(CH3COO)2分别溶于适量乙酸中,混合后加入柠檬酸II,并调pH=5~6,并通过75-80℃水浴稳定得溶胶II;最后将溶胶I和II混合并充分搅拌,即得0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3溶胶;
2)将0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3溶胶加入到BaTiO3悬浊液中,90-100℃水浴搅拌至搅不动为止,将得到的溶胶烘干得到干凝胶;
3)将步骤2)中得到的干凝胶置于马弗炉中750-850℃煅烧5-7h得到BaTiO3@x(0.25Bi(Zn0.5Ti0.5)O3-0.75BaTiO3)陶瓷粉末,其中x=0.5-1.0,加入粘合剂造粒、压片成型,在600℃保温2h排出粘合剂得到陶瓷片生坯,将陶瓷片生坯置于微波烧结装置的微波烧结炉内的保温装置中进行微波烧结成瓷,所述保温装置包括第一坩埚、第二坩埚、第三坩埚及保温棉,所述第一坩埚、第二坩埚、第三坩埚的宽度依次减小,所述第三坩埚收容于第二坩埚内,所述第二坩埚收容于第一坩埚内,所述第一坩埚的内壁和第二坩埚的外壁的空间内填充有碳化硅助烧剂,陶瓷片生坯设置于所述第三坩埚内,所述保温棉包覆于所述第一坩埚的外壁。
2.根据权利要求1所述的核壳结构钛酸钡基陶瓷的微波烧结制备方法,其特征在于,所述BaTiO3悬浊液是通过将BaTiO3粉体采用超声分散到聚乙二醇水溶液中,并搅拌形成,所述的聚乙二醇水溶液中的去离子水:聚乙二醇:BaTiO3=12mL:0.3g:1g。
3.根据权利要求1所述的核壳结构钛酸钡基陶瓷的微波烧结制备方法,其特征在于,所述的粘合剂为质量分数为5%的聚乙烯醇水溶液。
4.根据权利要求1所述的核壳结构钛酸钡基陶瓷的微波烧结制备方法,其特征在于,摩尔比n(柠檬酸I):n(Ti2+)=2:1,摩尔比n(柠檬酸II):n(Bi2++Zn2++Ba2+)=3:1。
5.根据权利要求1所述的核壳结构钛酸钡基陶瓷的微波烧结制备方法,其特征在于,所述的微波烧结温度范围为950~1000℃,升温速率为10~12℃/min,保温时间为30min。
CN201710537272.9A 2017-07-04 2017-07-04 一种微波烧结装置及核壳结构钛酸钡基陶瓷的微波烧结制备方法 Active CN107445610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710537272.9A CN107445610B (zh) 2017-07-04 2017-07-04 一种微波烧结装置及核壳结构钛酸钡基陶瓷的微波烧结制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710537272.9A CN107445610B (zh) 2017-07-04 2017-07-04 一种微波烧结装置及核壳结构钛酸钡基陶瓷的微波烧结制备方法

Publications (2)

Publication Number Publication Date
CN107445610A CN107445610A (zh) 2017-12-08
CN107445610B true CN107445610B (zh) 2021-01-26

Family

ID=60487692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710537272.9A Active CN107445610B (zh) 2017-07-04 2017-07-04 一种微波烧结装置及核壳结构钛酸钡基陶瓷的微波烧结制备方法

Country Status (1)

Country Link
CN (1) CN107445610B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108946797B (zh) * 2018-09-05 2020-05-22 河南工程学院 一维核壳结构的钛酸钡@氮化硼复合材料及制备方法
CN111121454A (zh) * 2019-12-23 2020-05-08 武汉科技大学 一种双层嵌套结构的高温烧结结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323529A (zh) * 2008-07-11 2008-12-17 中国科学院上海硅酸盐研究所 微波烧结中的梯度透波结构及其用于制备陶瓷材料的方法
CN101570440A (zh) * 2009-06-10 2009-11-04 付明 一种ptc陶瓷微波烧结方法
CN201586527U (zh) * 2009-06-30 2010-09-22 南京信息工程大学 微波样品烧结炉盛料装置
CN102320826A (zh) * 2011-05-31 2012-01-18 武汉理工大学 多壳层结构x8r电容器介电陶瓷及其制备方法
CN104086172A (zh) * 2014-07-16 2014-10-08 武汉理工大学 一种超宽温高稳定无铅电容器陶瓷介质材料及其制备方法
CN104529433A (zh) * 2014-12-12 2015-04-22 武汉理工大学 一种多层包覆的x9r电容器陶瓷介质材料及其制备方法
CN106190119A (zh) * 2016-07-20 2016-12-07 上海应用技术学院 一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323529A (zh) * 2008-07-11 2008-12-17 中国科学院上海硅酸盐研究所 微波烧结中的梯度透波结构及其用于制备陶瓷材料的方法
CN101570440A (zh) * 2009-06-10 2009-11-04 付明 一种ptc陶瓷微波烧结方法
CN201586527U (zh) * 2009-06-30 2010-09-22 南京信息工程大学 微波样品烧结炉盛料装置
CN102320826A (zh) * 2011-05-31 2012-01-18 武汉理工大学 多壳层结构x8r电容器介电陶瓷及其制备方法
CN104086172A (zh) * 2014-07-16 2014-10-08 武汉理工大学 一种超宽温高稳定无铅电容器陶瓷介质材料及其制备方法
CN104529433A (zh) * 2014-12-12 2015-04-22 武汉理工大学 一种多层包覆的x9r电容器陶瓷介质材料及其制备方法
CN106190119A (zh) * 2016-07-20 2016-12-07 上海应用技术学院 一种白光LED用Eu3+掺杂钼酸盐红粉的制备方法

Also Published As

Publication number Publication date
CN107445610A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
CN104177083B (zh) 用于中温烧结具有偏压特性的温度稳定x8r型mlcc介质材料
CN106587987A (zh) C0g微波介质材料及制备方法及陶瓷材料的制备方法
CN107445610B (zh) 一种微波烧结装置及核壳结构钛酸钡基陶瓷的微波烧结制备方法
US11735360B2 (en) Sandwich-structured dielectric materials for pulse energy storage as well as preparation method and application thereof
CN101531510A (zh) 高温稳定无铅电容器陶瓷及其制备方法
CN110759728A (zh) 一种类线性无铅弛豫铁电陶瓷材料及其制备方法
US20130277622A1 (en) Metal paste manufacturing method for internal electrode of multi layer ceramic capacitor
CN103739283A (zh) 一种钛酸锶钡陶瓷的制备方法
CN105801112A (zh) Nd、Al共掺杂取代Ba0.4Sr0.6TiO3巨介电陶瓷及其制备方法
CN112390645A (zh) 一种在高电场下具有高储能密度和高功率密度的钛酸钡基弛豫铁电陶瓷材料及其制备方法
US10759704B2 (en) Large-size, high-dielectric breakdown strength titanium oxide based dielectric ceramic materials, preparation method and application thereof
CN113880569A (zh) 一种多层片式陶瓷电容器的介质材料及其制备方法
CN108863348A (zh) 一种超宽温度稳定性的介电陶瓷材料及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN105198410B (zh) 一种核壳结构高储能密度电介质陶瓷的制备方法
CN101357848A (zh) 激光烧结复合制备电子陶瓷的方法
CN114230335B (zh) 一种巨介电常数、低损耗和高电阻率的BaTiO3基细晶陶瓷及其制备方法
CN105819850B (zh) 一种y8r型电容器陶瓷介质材料及其制备方法
CN106145932B (zh) 一种高介电常数的多层陶瓷电容器介质材料及其制备方法
CN109456055A (zh) 一种高击穿高极化钛酸铋钠陶瓷材料、制备方法及应用
CN106588008B (zh) 具备巨介电性能的钨铜酸钡陶瓷材料及其制备方法
CN107188559B (zh) 一种高击穿场强和储能密度二氧化硅掺杂钛酸铜镉巨介电陶瓷材料及制备方法
CN106866143A (zh) 微波复相陶瓷AWO4‑TiO2及其制备方法
CN113860866A (zh) 一种钛酸钡基x8r型多层陶瓷电容器用介质材料及制备方法
CN108249918B (zh) 低温烧结巨介电常数细晶陶瓷材料及制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant