CN112457847A - 一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉及其制备方法 - Google Patents

一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉及其制备方法 Download PDF

Info

Publication number
CN112457847A
CN112457847A CN202011152480.5A CN202011152480A CN112457847A CN 112457847 A CN112457847 A CN 112457847A CN 202011152480 A CN202011152480 A CN 202011152480A CN 112457847 A CN112457847 A CN 112457847A
Authority
CN
China
Prior art keywords
fluorescent powder
infrared
preparation
ions
infrared fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011152480.5A
Other languages
English (en)
Other versions
CN112457847B (zh
Inventor
张乐
张永丽
甄方正
邵岑
康健
罗泽
申冰磊
邱凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Xiyi High Tech Materials Industry Technology Research Institute Co ltd
Jiangsu Normal University
Original Assignee
Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd filed Critical Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Priority to CN202011152480.5A priority Critical patent/CN112457847B/zh
Publication of CN112457847A publication Critical patent/CN112457847A/zh
Application granted granted Critical
Publication of CN112457847B publication Critical patent/CN112457847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • C09K11/681Chalcogenides
    • C09K11/684Chalcogenides with alkaline earth metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

近红外发光二极管(NIR‑LEDs)在食品成分分析、温度和安全监测、生物测定和医学应用方面具有潜在的应用前景。本发明公开了一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉及其制备方法,该荧光材料的化学式为:Li2MgA(1‑xy)O4:xMn4+,yCr3+,其中,0<x≤1%,0<y≤1%,A=Zr,Hf。此种荧光材料以价格相对稀土元素成本低的过渡金属Mn4+离子和Cr3+离子为激活剂,在近紫外和蓝光激发下可发射出600‑900 nm范围的近红外。本发明还提供了上述材料的制备方法,采用高温固相法制备,该方法工艺简单,生产成本低,易于工业化生产。

Description

一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉及其制备方法
技术领域
本发明涉及一种发光材料制备领域,尤其是涉及一种高效、高热稳定性的Mn/Cr共掺杂Li2MgAO4的宽发射近红外荧光粉及其制备方法。
背景技术
当今,人类健康已成为最受关注的问题,随着科学技术的飞速发展。由于低损伤和高穿透性,近红外光在生物传感、食品成分分析和医学测量等领域已广受欢迎。传统的近红外光源来自卤钨灯、激光二极管和超连续谱激光器。然而发光不稳定,耗电量高,以及短的使用寿命限制了它们的进一步应用。近红外发光二极管(NIR-LED)具有高效率、低能耗、环境友好、寿命长等特点,是满足生命健康分析要求的可行策略。其中一个关键问题是高效近红外发光材料的开发。
近红外光发射除了稀土离子Eu3+、Sm3+和Yb3+可以在合适的基体中能发射NIR光。但是相对于稀土元素,过渡金属元素具有储量丰富、价格低廉的优势,有利于农业领域的应用。通常,Cr3+在650~1200 nm范围内产生超宽的近红外发射,其发射源于2E→4T24T24A2跃迁。近年来Cr3+激活的荧光粉相应地研究增多,包括La3Ga5GeO14:Cr3+、La2MgZrO6:Cr3+、ScBO3:Cr3+和ZnGa2O4:Cr3+,Sn4+。然而,其发光效率较低。因此,开发高效近红外发光材料仍然是未来近红外发光二极管应用的一大挑战,需要进一步优化荧光粉的量子效率和热稳定性。
发明内容
本发明的目的在于提供一种Mn/Cr共掺杂Li2MgAO4的宽发射近红外荧光粉及其制备方法,以解决上述背景技术中提出的问题。在这项工作中,首先由于Cr3+离子具有特殊的超宽的激发光谱(250-700 nm),二Mn4+离子发射在670 nm。可以通过Cr/Mn共掺构筑能量传递来改善近红外发光。另外固溶体结构设计对荧光粉的发光强度、量子效率、热稳定性都会产生较大的影响。受固溶体结构设计的启发,我们将Hf4+引入Li2MgZrO4: Mn4+, Cr3+的晶体结构中,以取代Zr4+离子的结晶位点构筑固溶体。
为实现上述目的,本发明提供如下技术方案:
一种宽发射近红外Mn/Cr共掺杂Li2MgAO4的荧光粉,其特征在于,化学式为Li2MgA(1-x-y)O4: xMn4+, yCr3+其中,0<x≤1%,0<y≤1%,A=Zr4+, Hf4+;激活离子为Mn4+、Cr3+;所述Li2MgAO4基质为双钙钛矿氧化物,其晶体结构属于空间基I41/amd (141)的四方晶系,含有丰富的八面体位点([AO6]、[MgO6]和[LiO6])。本发明还提供了上述LED照明用近红外荧光粉的制备方法,其特征在于,包括以下步骤:
步骤(1):按照Li2MgA(1-x-y)O4: xMn4+, yCr3+的化学计量比分别称取Li2CO3 (AR),Zr/HfO2 (AR),MgO (AR),MnO2 (AR)和Cr2O3 (AR)进行混合;
步骤(2):将得到的混合产物置于玛瑙研钵中,加入2-10 ml无水乙醇,然后研磨20-50min,直至混合均匀;
步骤(3)得到的样品粉末置于石英坩埚中,以6 ℃/min升温到500~600 ℃预热6 h,然后自然冷却到室温,再次研磨10分钟后提高均匀性,然后在空气环境下继续加热到900~1100 ℃恒温5 h,然后自然冷却到室温;
步骤(4)得到的固体样品,再次置于玛瑙研钵中磨至细粉,即得近红外Li2MgA(1-x-y)O4: xMn4+, yCr3+荧光粉。
优选地,所述步骤1)中,称量Li2CO3时,多5mol%以补偿高温蒸发的Li离子;
优选地,所述步骤1)中,Li2MgAO4基质中A为ZrO2、HfO2中的任意一种或几种的混合物;
优选地,所述步骤1)中,Mn4+离子浓度在0~1%之间;
优选地,所述步骤1)中,Cr3+离子浓度在0~1%之间;
优选地,所述步骤2)中,无水乙醇在2~10 ml之间;
优选地,所述步骤3)中,烧结温度在900~1100 ℃之间;
本发明提供了一种宽发射近红外Li2MgA(1-x-y)O4: xMn4+, yCr3+荧光粉,在蓝光激发下,该材料发射波长涵盖600-900nm的可见光区。本发明还通过能量传递和固溶体效应进一步改善发光性能。本发明采用高温固相法,制备工艺简单、安全环保。
本发明按化学计量比称取原料,进行固相反应,通过能量传递和固溶体效应,进一步改善该荧光材料发光性能,获得适用应用于生物传感、食品成分分析和医学测量等领域的宽发射近红外荧光粉。
本发明以Li2MgAO4为基质,以Mn4+和Cr3+为激活离子,原料及最终产物均不含有毒有害物质,该荧光粉对蓝波段的激发光有强的吸收,在600-900 nm的波长范围内具有可见光发射,适合应用于近紫外或蓝光LED芯片激发的宽发射近红外的人工光源领域。而且本发明公开的制备方法具有工艺简便、成本低廉、无污染、成本低,适合工业化生产等优点。
本发明与现有技术相比,其技术进步是显著的。本发明的Mn/Cr掺杂Li2MgAO4荧光材料在蓝光区具有较强吸收,发射出波长范围为600~900nm的可见光,可应用于近紫外或蓝光LED芯片激发的生物传感、食品成分分析和医学测量等领域。本发明的Mn/Cr掺杂Li2MgAO4荧光材料的制备工艺简单,制备过程无任何污染,无需苛刻的反应条件。
附图说明
图1为高温固相法合成的Li2MgA(1-x-y)O4: xMn4+, yCr3+样品XRD图;
图2为Li2MgAO4: Mn4+, Cr3+样品的SEM和晶体结构图。
图3为Li2MgZrO4: Mn4+, Cr3+样品的激发和发射图;a)为LMZO: Mn/Cr的激发和发射光谱;b)为LMZO: Mn/Cr、LMHO: Mn/Cr和LMZ/HO: Mn/Cr的发光强度对比图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1:Li2MgZr(1-x-y)O4: xMn4+, yCr3+
按照Li2MgZr(1-x-y)O4: xMn4+, yCr3+ (x = 0, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%; y=0, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%)化学计量比,分别称取Li2CO3 (AR), ZrO2(AR), MgO(AR), MnO2 (AR), Cr2O3 (AR)进行混合,另称量5 mol%的Li2CO3补偿高温蒸发的Li离子。然后将得到的混合产物置于玛瑙研钵中,加入5 mg无水乙醇,然后研磨30 min,直至混合均匀。然后将得到的样品粉末置于石英坩埚中,以6℃/min升温到600 ℃预热6 h,然后自然冷却到室温,再次研磨后提高均匀性,然后在空气环境下继续加热到1000 ℃恒温5 h,然后自然冷却到室温。最后将得到的固体样品,再次置于玛瑙研钵中研磨10-20 min,即得近红外Li2MgZr(1-x-y)O4: xMn4+, yCr3+荧光粉。
该样品经过x射线粉末衍射分析并与Li2MgZrO4标准卡片比对,确认是所得荧光粉为纯相且与Li2MgZrO4同构,见图1。图2为所得荧光粉测试的SEM和晶体结构图。将所得荧光粉进行光谱分析,在250-700nm之间,Li2MgZrO4: Mn4+, Cr3+均有不同程度的近红外光发射,另外在476 nm蓝光激发下,样品发射范围在600-900 nm左右(如图3a)。另外从图3b可以看出LMZO: Mn/Cr的发光强度增强比LMZO: Cr的发光增强了大约18%。
实施例2:Li2MgHf (1-x-y)O4: xMn4+, yCr3+
按照Li2MgHf(1-x-y)O4: xMn4+, yCr3+ (x = 0, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%; y=0, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%)化学计量比,分别称取Li2CO3 (AR), HfO2(AR), MgO(AR), MnO2 (AR), Cr2O3 (AR)进行混合,另称量5 mol%的Li2CO3补偿高温蒸发的Li离子。然后将得到的混合产物置于玛瑙研钵中,加入5 mg无水乙醇,然后研磨30 min,直至混合均匀。然后将得到的样品粉末置于石英坩埚中,以6℃/min升温到600 ℃预热6 h,然后自然冷却到室温,再次研磨后提高均匀性,然后在空气环境下继续加热到1000 ℃恒温5 h,然后自然冷却到室温。最后将得到的固体样品,再次置于玛瑙研钵中研磨10-20 min,即得近红外Li2MgHf (1-x-y)O4: xMn4+, yCr3+荧光粉。从图1的XRD分析可得,可以通过高温固相法得到纯相。另外从图3b可以看出LMHO: Mn/Cr的发光强度增强比LMHO: Cr的发光增强了约23%。而且明显LMZO: Mn/Cr的强度高于对应LMHO: Mn/Cr的发光强度。
实施例3:Li2Mg (ZrmHf1-m)O4: 0.4%Mn4+, 0.8%Cr3+
按照Li2Mg (ZrmHf1-m)O4: 0.2%Mn4+, 0.8%Cr3+ (m=0, 0.2, 0.4, 0.6, 0.8, 1.0)化学计量比,分别称取Li2CO3 (AR), ZrO2(AR), HfO2(AR), MgO (AR), MnO2 (AR), Cr2O3 (AR)进行混合,另称量5 mol%的Li2CO3补偿高温蒸发的Li离子。然后将得到的混合产物置于玛瑙研钵中,加入5 mg无水乙醇,然后研磨30 min,直至混合均匀。然后将得到的样品粉末置于石英坩埚中,以6℃/min升温到600 ℃预热6 h,然后自然冷却到室温,再次研磨后提高均匀性,然后在空气环境下继续加热到1000 ℃恒温5 h,然后自然冷却到室温。最后将得到的固体样品,再次置于玛瑙研钵中研磨,即得宽发射近红外Li2Mg(ZrmHf1-m)O4: 0.4%Mn4+,0.8%Cr3+荧光粉。图1显示制备得到的LMZ/HO: Mn/Cr是纯相。图3b将所得三组荧光粉进行光谱对比分析,可知在476 nm蓝光激发下,样品LMZ/HO:Mn4+, Cr3+最佳,同等条件下其发光强度相比LMZ/HO:Cr3+提升了17%,表明掺杂Mn4+的能量传递作用发挥了作用,增强了发光。另外Zr/Hf共掺杂的LMZ/HO:Mn4+, Cr3+荧光粉的发光强度相对于LMZO:Mn4+, Cr3+提升了7%,表明Zr/Hf的固溶体效应发挥了作用,增强了发光。
以上对本发明及其实施方式进行了描述,这种描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。总而言之如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (5)

1. 一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉,其特征在于,化学式为Li2MgA(1-x-y)O4: xMn4+, yCr3+,其中,0<x≤1%,0<y≤1%,A=Zr,Hf;所述荧光粉的激活离子是过渡金属Mn4 +离子和Cr3+离子。
2.根据权利要求1所述的近红外荧光粉,其特征在于:所述A为金属元素Zr,Hf中的一种或者多种。
3. 根据权利要求1所述的近红外荧光粉,其特征在于:所述近红外荧光粉与蓝色470nm芯片激发后,发射波长在600-900 nm之间。
4.根据权利要求1所述的Mn/Cr共掺杂Li2MgAO4的近红外荧光粉的制备方法,其特征在于,是高温固相法,所述高温固相法包括以下制备步骤:
(1) 按照Li2MgA(1-x-y)O4: xMn4+, yCr3+的化学计量比分别称取Li2CO3 (AR),MgO(AR),Zr/HfO2 (AR),MnO2 (AR),Cr2O3 (AR)进行混合,称量5 mol%的Li2CO3补偿高温蒸发的Li离子;
(2) 步骤(1)得到的混合产物置于玛瑙研钵中,加入2-10 mg无水乙醇,然后研磨20-50min,直至混合均匀;
(3) 步骤(2)得到的样品粉末置于石英坩埚中,以6 ℃/min升温到500~600 ℃预热6h,然后自然冷却到室温,再次研磨10分钟后提高均匀性,然后在空气环境下继续加热到900~1100 ℃恒温5 h,然后自然冷却到室温;
(4) 步骤(3)得到的固体样品,再次置于玛瑙研钵中磨10~20 min,即得Li2MgA(1-x-y)O4: xMn4+, yCr3+近红外荧光粉。
5. 按权利要求4所述的Mn/Cr共掺杂Li2MgAO4的近红外荧光粉制备方法,其特征在于,所述近红外荧光粉在476 nm蓝光激发下,其发光强度提升了7~20%。
CN202011152480.5A 2020-10-26 2020-10-26 一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉及其制备方法 Active CN112457847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011152480.5A CN112457847B (zh) 2020-10-26 2020-10-26 一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011152480.5A CN112457847B (zh) 2020-10-26 2020-10-26 一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉及其制备方法

Publications (2)

Publication Number Publication Date
CN112457847A true CN112457847A (zh) 2021-03-09
CN112457847B CN112457847B (zh) 2023-08-29

Family

ID=74834245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011152480.5A Active CN112457847B (zh) 2020-10-26 2020-10-26 一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉及其制备方法

Country Status (1)

Country Link
CN (1) CN112457847B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116285965A (zh) * 2023-03-31 2023-06-23 江西理工大学 新型Mn4+、Cr3+共掺氟化物近红外荧光粉及其制备方法
CN116463121A (zh) * 2023-03-16 2023-07-21 广东省科学院资源利用与稀土开发研究所 四价锰离子和铬离子共掺杂钪基氟化物宽带近红外发光材料及其制备方法
CN116925762A (zh) * 2023-06-14 2023-10-24 福建江夏学院 一种Mn掺杂的可调谐宽矩形红色荧光材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAO RENPING: "Preparation and luminescence properties of Li2MgZrO4:Mn4+ red phosphor for plant growth" *
陈铁金: "Mn4+ /Cr4+、Ho3+ /Yb3+掺杂氧化物的深红发光与近红外发光研究" *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116463121A (zh) * 2023-03-16 2023-07-21 广东省科学院资源利用与稀土开发研究所 四价锰离子和铬离子共掺杂钪基氟化物宽带近红外发光材料及其制备方法
CN116463121B (zh) * 2023-03-16 2024-02-02 广东省科学院资源利用与稀土开发研究所 四价锰离子和铬离子共掺杂钪基氟化物宽带近红外发光材料及其制备方法
CN116285965A (zh) * 2023-03-31 2023-06-23 江西理工大学 新型Mn4+、Cr3+共掺氟化物近红外荧光粉及其制备方法
CN116285965B (zh) * 2023-03-31 2023-12-15 江西理工大学 锰铬共掺氟化物近红外荧光粉及其制备方法
CN116925762A (zh) * 2023-06-14 2023-10-24 福建江夏学院 一种Mn掺杂的可调谐宽矩形红色荧光材料及其制备方法
CN116925762B (zh) * 2023-06-14 2024-04-30 福建江夏学院 一种Mn掺杂的可调谐宽矩形红色荧光材料及其制备方法

Also Published As

Publication number Publication date
CN112457847B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
Peng et al. Combustion synthesis and photoluminescence of SrAl2O4: Eu, Dy phosphor nanoparticles
Krishnaiah et al. Spectroscopic properties of Dy3+-doped oxyfluoride glasses for white light emitting diodes
Guan et al. Tunable luminescence and energy transfer properties of NaGdF 4: Dy 3+, Eu 3+ nanophosphors
CN102120931B (zh) 一种红色荧光体及其制备方法
Bandi et al. Citric based sol–gel synthesis and luminescence characteristics of CaLa2ZnO5: Eu3+ phosphors for blue LED excited white LEDs
Zheng et al. Ultra-wideband phosphor Mg2Gd8 (SiO4) 6O2: Ce3+, Mn2+: Energy transfer and pressure-driven color tuning for potential applications in LEDs and pressure sensors
CN112457847A (zh) 一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉及其制备方法
Li et al. Fluorescence quenching of 5DJ (J= 1, 2 and 3) levels and Judd–Ofelt analysis of Eu3+ in NaGdTiO4 phosphors
JP5970534B2 (ja) 酸窒化物蛍光体
Wang et al. Considerable photoluminescence enhancement of LiEu (MoO4) 2 red phosphors via Bi and/or Si doping for white LEDs
CN105331364B (zh) 一种YAG:Mn红色荧光粉以及其制备方法和应用
Xue et al. A far-red phosphor LaSrZnNbO6: Mn4+ for plant growth lighting
CN101391803B (zh) 一种制备宽带激发光谱的白光led荧光粉的方法
CN113736461B (zh) 一种Cr3+/Yb3+共掺杂的宽带近红外发光材料、其制备方法及照明与显示光源
WO2019153760A1 (zh) 一种氮化物发光材料及包含其的发光装置
Zhong et al. Luminescence and energy transfer of Tm/Tb/Mn tri-doped phosphate glass for white light-emitting diodes
Khan et al. Deep reddish-orange emitting Sr3Gd (PO4) 3: Sm3+ phosphors via modified citrate-gel combustion method
CN114590831A (zh) LaSi2N3O晶体及荧光粉和制备方法
Remya Mohan et al. Judd–Ofelt analysis, structural and spectroscopic properties of sol–gel derived LaNbO 4: Dy 3+ phosphors
CN101735810B (zh) 一种发靛蓝色光的稀土掺杂七铝酸十二钙蓄光型发光粉的制备方法
CN111269718B (zh) 一种复合钙钛矿型深红色荧光粉及其制备方法与应用
CN114836204A (zh) 一种超宽带近红外发光材料及其制备方法和应用
CN112410029A (zh) 一种植物生长灯用深红色荧光粉及其制备方法
CN103421491A (zh) 铽镱共掺杂七铝酸十二钙基上转换发光材料、制备方法及其应用
CN105838369A (zh) 一种橙红色荧光粉及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 221000 rooms 101-102, building C, No.10 Huangshan Road, Beigou street, Xinyi City, Xuzhou City, Jiangsu Province

Patentee after: Jiangsu Xiyi High-tech Materials Industry Technology Research Institute Co.,Ltd.

Country or region after: China

Address before: Room 101-102, building C, No. 10, Huangshan Road, Beigou street, Xinyi City, Xuzhou City, Jiangsu Province

Patentee before: Xinyi Xiyi high tech Material Industry Technology Research Institute Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address
TR01 Transfer of patent right

Effective date of registration: 20240201

Address after: 221000 rooms 101-102, building C, No.10 Huangshan Road, Beigou street, Xinyi City, Xuzhou City, Jiangsu Province

Patentee after: Jiangsu Xiyi High-tech Materials Industry Technology Research Institute Co.,Ltd.

Country or region after: China

Patentee after: Jiangsu Normal University

Address before: 221000 rooms 101-102, building C, No.10 Huangshan Road, Beigou street, Xinyi City, Xuzhou City, Jiangsu Province

Patentee before: Jiangsu Xiyi High-tech Materials Industry Technology Research Institute Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right