CN111164814A - 圆筒形二次电池 - Google Patents

圆筒形二次电池 Download PDF

Info

Publication number
CN111164814A
CN111164814A CN201880063408.XA CN201880063408A CN111164814A CN 111164814 A CN111164814 A CN 111164814A CN 201880063408 A CN201880063408 A CN 201880063408A CN 111164814 A CN111164814 A CN 111164814A
Authority
CN
China
Prior art keywords
negative electrode
positive electrode
electrode
current collector
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880063408.XA
Other languages
English (en)
Other versions
CN111164814B (zh
Inventor
植田智博
青木诚一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of CN111164814A publication Critical patent/CN111164814A/zh
Application granted granted Critical
Publication of CN111164814B publication Critical patent/CN111164814B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

本发明的一个方面涉及一种圆筒形二次电池,其具备:具有开口的有底圆筒形的电池壳体、容纳于所述电池壳体的电极组及电解液、和封住所述电池壳体的所述开口的封口构件,所述电极组具有正极、负极和介于所述正极与所述负极之间的间隔件,所述正极和所述负极通过隔着所述间隔件被卷绕而形成,所述负极具备负极集电体和在所述负极集电体的至少一个主面上形成的负极合剂层,所述正极具备正极集电体和在所述正极集电体的至少一个主面上形成的正极合剂层,所述间隔件具备内部非接触区域,所述内部非接触区域在所述电极组中位于内周侧,且其两面与所述负极合剂层及所述正极合剂层中的任意一个均不接触,在所述电极组的卷绕方向上,所述内部非接触区域的长度为所述间隔件的长度的5%以上。根据本发明,特别是能够提供伴随快速充电的充放电循环特性优异的小型的圆筒形电池。

Description

圆筒形二次电池
技术领域
本发明涉及包含卷绕式电极组的圆筒形二次电池。
背景技术
使用电池的设备的应用范围正在扩大。特别是,锂离子二次电池为轻量、高容量、及高输出功率,因此作为笔记本电脑、移动电话、其它的便携式电子设备的驱动用电源而被广泛使用。在这样的用途中,以往广泛使用的是电池直径为14mm以上且18mm以下左右、高度为40mm以上且65mm以下左右且具有高容量的锂离子二次电池。
高容量的锂离子二次电池中,通常使用将正极与负极在隔着间隔件的状态下卷绕而得的卷绕式电极组(专利文献1)。
现有技术文献
专利文献
专利文献1:国际公开第2014/132660号小册子
发明内容
发明要解决的课题
在高容量的锂离子二次电池中,充放电反应中使用大量的电解液。因此,在重复充放电的过程中电解液容易变得不足。在具备尺寸大的卷绕式电极组的圆筒形二次电池中,电极组的内周侧的曲率小。因此,即使是内周侧,电解液的保持性也高,不易发生电解液的不足。
另一方面,近年来,伴随着便携式电子设备的进一步小型化及高功能化,对于高容量和/或高输出功率的小型电源的需要也在提高。在作为这样的小型电源而使用的尺寸小的圆筒形二次电池(以下,有时称为针形电池)中,电极组的内周侧的曲率大。因此,内周侧中的电解液的保持性容易降低。特别是对于针形电池而言,伴随快速充电的充放电循环特性容易降低。
用于解决课题的方案
本发明的一个方面涉及一种圆筒形二次电池,其具备:具有开口的有底圆筒形的电池壳体、容纳于所述电池壳体的电极组及电解液、和封住所述电池壳体的所述开口的封口构件,所述电极组具有正极、负极和介于所述正极与所述负极之间的间隔件,所述正极和所述负极通过隔着所述间隔件被卷绕而形成,所述负极具备负极集电体和在所述负极集电体的至少一个主面上形成的负极合剂层,所述正极具备正极集电体和在所述正极集电体的至少一个主面上形成的正极合剂层,所述间隔件具备内部非接触区域,所述内部非接触区域在所述电极组中位于内周侧,且其两面与所述负极合剂层及所述正极合剂层中的任意一个均不接触,在所述电极组的卷绕方向上,所述内部非接触区域的长度为所述间隔件的长度的5%以上。
发明效果
根据本发明,特别是能够提供伴随快速充电的充放电循环特性优异的小型的圆筒形电池。
在所附的技术方案中记述本发明的新的特征,本发明涉及结构和内容这两方面,与本发明的其它目的和特征一起,通过对照附图的以下详细说明将会更好地理解本发明。
附图说明
图1A是示意性地示出本发明的一个实施方式涉及的正极的一例的俯视图。
图1B是图1A所示的正极的Ib-Ib线截面图。
图2A是示意性地示出本发明的一个实施方式涉及的负极的一例的俯视图。
图2B是图2A所示的负极的IIb-IIb线截面图。
图3A是示意性地示出本发明的一个实施方式涉及的间隔件的一例的俯视图。
图3B是图3A所示的间隔件的IIIb-IIIb线截面图。
图4是示意性地示出卷绕前的电极组的构成的俯视图。
图5是示意性地示出卷绕式电极组的构成的截面图。
图6是示出将卷绕后的电极组展开而取出的间隔件的俯视图。
图7是示意性地示出本发明的一个实施方式涉及的圆筒形二次电池的纵截面图。
具体实施方式
本实施方式涉及的圆筒形二次电池具备:具有开口的有底圆筒形的电池壳体、容纳于电池壳体的电极组及电解液、和封住电池壳体的开口的封口构件。电极组是具备正极、负极和介于正极与负极之间的间隔件,且正极和负极通过隔着间隔件被卷绕而形成的卷绕式电极组(以下,有时简称为电极组。)。
在针形电池中,若重复充放电,则电极组的内周侧所含的电解液(液体的电解质)的量与外周侧相比极其少。该电解液在外周侧的偏重存在化在反复进行伴随快速充电的充放电的情况下特别显著。可认为这是因为:在充放电的过程中,在快速(以高倍率)进行充电的情况下,容易失去充放电的平衡。
于是,本实施方式中,不使间隔件的整个面与合剂层接触,而是设置其两面与负极合剂层及正极合剂层中的任意一个均不接触的区域(非接触区域),将该非接触区域的至少一部分配置于电极组的内周侧。即,本实施方式涉及的间隔件具备配置于电极组的内周侧的非接触区域(内部非接触区域)。通过设为这样的构成,能够将充分量的电解液始终保持在电极组的内周侧。因此,即使在反复进行伴随快速充电的充放电的情况下,也可得到良好的循环特性。
通常,不与间隔件的合剂层接触的非接触区域对于电池反应没有贡献。因此,从电池容量的观点出发,期望非接触区域尽可能地小。例如,在圆筒形二次电池中,电极组的卷绕方向中的非接触区域的长度通常小于间隔件的卷绕方向中的长度的5%。另一方面,从提高电极组的内周侧的电解液的保持性的观点出发,特意增大配置于电极组的内周侧的内部非接触区域是极其有效的。
通过使电解液易于保持于电极组的内周侧,从而即使在反复进行伴随快速充电的充放电的情况下,内周侧中的负极的液体枯竭尤其被抑制,循环特性提高。另外,通过负极的液体枯竭得以抑制,从而金属锂不易在负极上析出为枝晶状。因此,伴随负极的膨胀及收缩的应力变小,电极组的屈曲得以抑制。进而,即使在曲率大的内周侧,构成负极的负极集电体与负极合剂层的剥离也得以抑制。
快速充电是指以0.75C以上的电流(高倍率)进行的放电。电流值没有特别限定。根据本实施方式,例如在以3C以上进行充电的情况下,循环特性提高。1C是指将二次电池进行恒电流放电时,相对于标称容量值的容量的放电以1小时完成的电流值。需要说明的是,放电也可以以高倍率进行。
最初,对于圆筒形二次电池的构成要素具体地进行说明。需要说明的是,本实施方式中,以圆筒形的锂离子二次电池为例进行说明,但不限定与此。
(间隔件)
间隔件具备基材层。
基材层的离子透过度大,例如具有适度的机械强度及绝缘性。作为基材层,在锂离子二次电池中使用的间隔件可以没有特别限制地使用,例如可举出微多孔膜、织布、和/或无纺布。基材层可以为单层,也可以为复合层或多层。基材层可以包含1种材料,也可以包含2种以上的材料。
作为基材层的材质,可以例示聚丙烯、聚乙烯等聚烯烃树脂;聚酰胺树脂;和/或聚酰亚胺树脂等树脂材料。在耐久性优异、并且具有在升高至一定的温度时孔闭合的所谓的关闭功能的方面出发,基材层也可以为包含聚烯烃树脂的微多孔膜。
基材层的厚度没有特别限定,例如,可以从5μm以上且300μm以下的范围适当选择。基材层的厚度可以为5μm以上且40μm以下,也可以为5μm以上且30μm以下。
可以在基材层的至少一个主面(第一主面)形成包含对于电解液具有溶胀性的树脂的树脂层。这样的树脂层吸收电解液并保持。因此,基于间隔件带来的电解液的保持性进一步提高。特别是,若树脂层形成于内部非接触区域,则电极组的内周侧中的电解液的保持性提高,循环特性进一步提高。树脂层与基材层一同被卷绕,构成电极组的一部分。此时,树脂层也可以与负极合剂层及正极合剂层的一部分接触。
从抑制电解液的部分不足的观点出发,树脂层可以连续地形成于占第一主面的面积的90%以上的区域、优选为整个面。树脂层也可以以上述范围形成于基材层的第一主面及其相反侧的主面(第二主面)二者。
树脂层的厚度没有特别限定,例如可以从10nm以上且5000nm以下的范围适当选择。树脂层的厚度可以为50nm以上且3000nm以下,也可以为100nm以上且2000nm以下。
溶胀性树脂例如对于电解液的溶胀度为20%以上。上述溶胀度也可以为20%以上且200%以下,也可以为100%以上且150%以下。
上述溶胀度按照以下这样进行测定。
首先,使溶胀性树脂溶解于有机溶剂来制备树脂溶液,将该树脂溶液涂布于平坦的玻璃表面,使所得的涂膜干燥来制作厚度100μm的片材。将该片材切割为10mm×10mm,制成试样。另一方面,将碳酸亚乙酯(EC)与碳酸甲乙酯(EMC)以体积比1∶1的比例进行混合,使LiPF6以1摩尔/L的浓度溶解于所得的混合溶剂中,从而制备电解液。在密闭容器内注入电解液,一边将液温保持为25℃,一边将试样浸渍于该电解液24小时。并且,以向电解液中浸渍后的试样的质量(H)相对于向电解液中浸渍前的试样的质量(G)的增加率的形式,根据下述式求出溶胀度。
溶胀度(%)={(H-G)/G}×100
溶胀性树脂例如为氟树脂。作为氟树脂,可举出包含六氟丙烯(HFP)单元、偏氟乙烯(VdF)单元、四氟乙烯(TFE)单元的树脂。氟树脂例如可以为(A)HFP与VdF的共聚物,也可以为(B)HFP与TFE的共聚物,还可以为(C)VdF与TFE的共聚物。共聚物(A)及(B)中,HFP单元的含量可以为共聚物总量的3摩尔%以上且20摩尔%以下,也可以为5摩尔%以上且10摩尔%以下。该情况下,溶胀性树脂的上述溶胀度容易成为20%以上。
溶胀性树脂的数均分子量没有特别限定,例如可以为1万以上且200万以下,也可以为20万以上且50万以下。该情况下,树脂层与负极合剂层和/或正极合剂层的粘接性容易提高,因此即使在反复充放电的情况下,也容易抑制各合剂层的剥离。
这样的树脂层例如可以通过以下方式来形成:将溶胀性树脂溶解于有机溶剂来制备涂液,将该涂液涂布于基材层的至少第一主面的一部分,将所得的涂膜干燥。作为涂布方法没有特别限定,可举出例如丝网涂布、模涂、逗点涂布、辊涂、棒涂、凹版涂布、帘式涂布、喷涂、气刀涂布、逆向涂布、浸涂、浸渍挤压涂布等。
(正极)
电极组所含的正极具有:正极集电体、和在正极集电体的至少一个主面上形成的正极合剂层。
正极集电体可以为铝箔和/或铝合金箔等金属箔。正极集电体的厚度没有特别限定,从电池的小型化及正极集电体的强度的观点出发,可以为10μm以上且50μm以下。
正极合剂层可以在正极集电体的单面形成,从高容量化的观点出发,也可以在两面形成。需要说明的是,在卷绕式电极组中,在卷绕开始处和/或卷绕结束处,为了避免成为正极合剂层与负极合剂层不相对的状态,正极合剂层也可以仅在单面形成。
正极合剂层(在正极集电体的单面形成的正极合剂层)的厚度可以为20μm以上且100μm以下,也可以为30μm以上且70μm以下。正极的总厚度例如可以为80μm以上且180μm以下。
正极合剂层包含正极活性物质。作为正极活性物质,只要是可以在锂离子二次电池中使用的材料,就没有特别限定。作为正极活性物质,可举出例如含锂的过渡金属氧化物,例如钴酸锂(LiCoO2)、镍酸锂(LiNiO2)、锰酸锂(LiMn2O4);这些化合物中Co、Ni或Mn的一部分被其他的元素(过渡金属元素和/或典型元素等)等置换而得的含锂的复合氧化物等。正极活性物质可以单独使用一种或者组合两种以上使用。
从电池的小型化及高能量密度化的观点出发,正极活性物质也可以为含锂的复合氧化物。作为其具体例,可举出通式:Lix1Niy1Ma 1-y1O2 (1)所示的复合氧化物、和/或通式:Lix2Niy2Coz1Mb 1-y2-71O2 (2)所示的复合氧化物等。
式(1)中,元素Ma例如为选自Na、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb及B中的至少一种。另外,x1及y1例如分别满足0<x1≤1.2、0.5<y1≤1.0。需要说明的是,x1是根据充放电而变化的值。
式(2)中,元素Mb例如为选自Mg、Ba、Al、Ti、Sr、Ca、V、Fe、Cu、Bi、Y、Zr、Mo、Tc、Ru、Ta及W中的至少一种。x2、y2及z1例如分别为0<x2≤1.2(优选为0.9≤x2≤1.2)、0.3≤y2≤0.9、0.05≤z1≤0.5。需要说明的是,x2是根据充放电而变化的值。另外,式(2)中,也可以为0.01≤1-y2-z1≤0.3。
正极合剂层根据需要可以包含粘结剂和/或导电剂。作为粘结剂,可以没有特别限制地使用在锂离子二次电池中使用的粘结剂。作为粘结剂的具体例,可举出聚偏氟乙烯(PVdF)等氟树脂;苯乙烯-丁二烯系橡胶、氟系橡胶等橡胶状聚合物;和/或聚丙烯酸等。正极合剂层中的粘结剂的量相对于正极活性物质100质量份,例如为1质量份以上且5质量份以下。
作为导电剂,可以没有特别限制地使用在锂离子二次电池中使用的导电剂。作为导电剂的具体例,可举出石墨、炭黑、碳纤维等碳质材料;金属纤维;和/或具有导电性的有机材料等。使用导电剂的情况下,正极合剂层中的导电剂的量相对于正极活性物质100质量份,例如为0.5质量份以上且5质量份以下。
正极可以通过以下方式来形成:将包含正极活性物质及分散介质的正极浆料涂布于正极集电体的表面并进行干燥,并沿厚度方向进行压缩。也可以在正极浆料中添加粘结剂和/或导电剂。作为分散介质,可以使用水、N-甲基-2-吡咯烷酮(NMP)等有机溶剂、及它们的混合溶剂等。
(负极)
负极包含负极集电体、和在负极集电体的至少一个主面(第三主面)上的一部分形成的负极合剂层。
负极集电体也可以为铜箔和/或铜合金箔等金属箔。铜的电阻小,因此使用包含铜的负极集电体时,容易得到高输出功率。
负极合剂层可以仅在负极集电体的第三主面形成,从高容量化的观点出发,也可以在第三主面及其相反侧的主面(第四主面)形成。与正极合剂层的情况同样地,在卷绕式电极组中,在卷绕开始处和/或卷绕结束处,可以仅在负极集电体的单面形成负极合剂层,也可以在负极集电体的对应的两个主面形成没有负极合剂层的区域。另外,在卷绕开始处和/或卷绕结束处,第三主面和第四主面中的负极合剂层的端部的位置也可以不同。
负极合剂层(在负极集电体的单面形成的负极合剂层)的厚度可以为20μm以上且120μm以下、也可以为35μm以上且100μm以下。负极的总厚度例如可以为80μm以上且250μm以下。
负极合剂层包含负极活性物质。作为负极活性物质,只要是可以在锂离子二次电池中使用的碳材料就可以没有特别限制地使用。作为负极活性物质,可举出例如能够吸储及放出锂离子的碳质材料。作为这样的碳质材料,可举出例如石墨材料(天然石墨、人造石墨等)、非晶质碳材料等。
负极合剂层可以根据需要而包含粘结剂和/或增稠剂。
作为粘结剂,在锂离子二次电池中使用的粘结剂可以没有特别限制地使用,可举出例如与能够在正极合剂层中包含的粘结剂相同的化合物。这些粘结剂之中,可以包括对于电解液具有溶胀性的材料(例如,PVdF)。因此,会有负极合剂层自身能够保持电解液的情况,负极的液体枯竭能够稍微得到缓和。其中,根据本实施方式,由于能够将电解液较多地保持于尤其电极组的内周侧,因此即使在反复进行伴随快速充电的充放电的情况下,循环特性也提高。
作为增稠剂,在锂离子二次电池中使用的增稠剂可以没有特别限制地使用,可举出例如羧甲基纤维素(CMC)等纤维素醚等。
负极可以与正极同样地形成。负极浆料包含负极活性物质和分散介质,也可以根据需要进一步包含粘结剂和/或增稠剂。作为分散介质,可以从关于正极所例示的物质中适当选择。
(卷绕式电极组)
卷绕式电极组通过使间隔件介于正极与负极之间,并使用卷芯进行卷绕后,拔出卷芯而形成。此时,以间隔件的基材层的第一主面与负极集电体的第三主面相对的方式,例如将负极作为内侧进行卷绕。卷芯为圆柱状,通过使用这样的卷芯,可得到圆筒状的电极组。需要说明的是,圆筒状的电极组还包括圆筒部分地弯曲的形状、沿圆筒的直径方向上稍微变形的形状等与圆筒状类似的形状。
以下,参照附图对本实施方式涉及的卷绕式电极组更详细地进行说明。在本实施方式的电极组的最外周配置有负极集电体和/或贴附于负极集电体的固定用绝缘胶带。
图1A是示意性地示出正极的一例的俯视图。图1B是其Ib-Ib线截面图。正极11具备正极集电体111、和在正极集电体111的两面形成的正极合剂层112。正极集电体111为矩形,在本实施方式的情况下,长边方向(图1A的Y方向)与卷绕轴方向一致。正极11的Y方向中的一个端部(以下,记为第一端部)设置有正极集电体111露出的第一露出部111a。第一露出部111a沿着第一端部设置为带状。第一露出部111a连接有短条状的正极集电引线60的一个端部。
另一方面,在正极11的Y方向中的另一端部(以下,记为第二端部),正极集电体111未露出,除了第二端部的端面111b之外,两面的整个面形成有正极合剂层112。另外,正极集电体111的短边方向(图1A的X方向)中的两个端部也是除了它们的端面及与第一露出部111a对应的部分之外,两侧的整个面被正极合剂层112覆盖。需要说明的是,“端面”是指例如裁切集电体时所形成的厚度方向的截面。
正极集电体111的Y方向中的宽度W111根据电池壳体的长度或电池容量来选择即可。第一露出部111a的Y方向中的宽度W111a例如为1mm以上且4mm以下即可。
图2A是示意性地示出负极的俯视图。图2B是其IIb-IIb线截面图。负极12具备负极集电体121、和在负极集电体121的第三主面12X及第四主面12Y的一部分形成的负极合剂层122。负极集电体121是X方向的长度设定为比正极集电体111大的矩形。在负极12的第三主面12X及第四主面12Y的X方向中的一个端部(以下,记为第一端部),设有负极集电体121露出的第二露出部121a。第二露出部121a沿着该第一端部设置为带状。第二露出部121a通过焊接而连接有短条状的负极集电引线70的一个端部。另外,在第二露出部121a以覆盖与负极集电引线70的连接部分的方式配置有固定用绝缘胶带14。固定用绝缘胶带14将卷绕后的电极组的最外周固定。
在负极12的第三主面12X和/或第四主面12Y的X方向中的另一端部(以下,记为第二端部),负极集电体121露出的第三露出部121b也设置为带状。第三露出部121b配置于卷绕式电极组的内周侧。因此,在第三露出部121b的两面,优选负极集电体121露出。这是因为内部非接触区域13c容易变宽。其中,第三主面12X中的第三露出部121b、与第四主面12Y中的第三露出部121b的大小也可以不同。例如,上述主面之中,位于电极组10的最内周的主面中的第三露出部121b可以比另一个主面中的第三露出部121b小。
第二露出部121a的X方向中的宽度W121a优选为能够覆盖电极组10的最外周至少1周的范围。例如,宽度W121a为负极集电体121的X方向中的宽度W121的10%以上且50%以下。第三露出部121b的X方向中的宽度W121b优选为能够在电极组10的内周侧卷绕0.3周以上且2周以下左右的范围。例如,宽度W121b为宽度W121的3%以上且10%以下。
对于负极12的第三主面12X及第四主面12Y的Y方向中的两端部,除了各端部的端面121c、121d、与第二露出部121a及第三露出部121b对应的部分之外,被负极合剂层122覆盖。在第四主面12Y中,在第三主面的与第二露出部121a和/或第三露出部121b对应的区域的至少一部分也可以形成负极合剂层122。
图3A是示意性地示出间隔件的俯视图。图3B是其IIIb-IIIb线截面图。间隔件13具备基材层131、和在基材层131的第一主面13X及第二主面13Y形成的树脂层132。基材层131是在X方向的长度设定为比正极合剂层112和/或负极合剂层122大的、例如矩形的长条体。树脂层132形成于第一主面13X及第二主面13Y的整个面。
图4是示意性地示出卷绕前的电极组P10的构成的俯视图。在图示例中,在间隔件13的左侧且第二主面13Y侧配置有正极11,在间隔件13的右侧且第一主面13X侧配置有负极12。通过将这样地配置的正极11、间隔件13及负极12的层叠体以卷芯200为中心进行卷绕,从而形成图5所示那样的卷绕式电极组10。
正极合剂层112的卷绕轴方向中的宽度W112比负极合剂层122的卷绕轴方向中的宽度W122略小,在卷绕时,正极合剂层112完全与负极合剂层122重叠。间隔件13的卷绕轴方向中的两端部比正极11及负极12的对应的端部更突出。
负极12的第二露出部121a的至少一部分从间隔件13伸出。伸出的该部分隔着固定用绝缘胶带14与电池壳体20(参照图7)的侧壁内面相对。
图5是示意性地示出将图4所示的电极组P10卷绕而形成的卷绕式电极组10的构成的截面图。图5中,示出了将卷绕式电极组10在与卷绕轴垂直的方向上切断时的截面。另外,图5中,为了方便,省略了正极集电引线60及负极集电引线70,并且用白色轮廓示出第二露出部121a及第三露出部121b。图5中,第三主面12X中的第三露出部121b、与第四主面12Y中的第三露出部121b的大小相同。
内部非接触区域13c的卷绕方向中的长度L占间隔件13的第一主面13X的X方向中的长度Ls的5%以上。内部非接触区域13c的长度L也可以为第一主面13X的长度Ls的7%以上,还可以为长度Ls的5%以上且20%以下。需要说明的是,内部非接触区域13c也可以与负极集电体121接触。
内部非接触区域13c的长度L由从电极组10取出的间隔件13来求出。首先,将卷绕的电极组10展开,将负极12及正极11剥离,取出间隔件13。接下来,确认所取出的间隔件13与负极合剂层122及正极合剂层112的非接触区域。间隔件13的与负极合剂层122及正极合剂层112的中任意一个不存在接触痕迹的区域为非接触区域。接触痕迹例如附着有未完全剥离的负极合剂层122或正极合剂层112的一部分。
如本实施方式那样,在将卷芯200置于间隔件13的卷绕方向中的大致中央并卷绕电极组P10的情况下(参照图4),内部非接触区域13c配置于间隔件13的该大致中央的附近。换言之,间隔件13与负极合剂层122的接触痕迹在间隔件13的一个主面中从夹着设置有卷芯200的卷绕中心轴(卷绕轴。未图示)的两侧且与中心轴隔开规定的距离的位置起,朝向端部13a及端部13b分别形成。
同样地,间隔件13与正极合剂层112的接触痕迹在间隔件13的另一个主面中从夹着设置有卷芯200的卷绕中心轴的两侧且与中心轴隔开规定的距离的位置起,朝向端部13a及端部13b分别形成。
内部非接触区域13c是间隔件13的与负极合剂层122及正极合剂层112的中任意一个不存在接触痕迹的区域。通常,负极合剂层122以比正极合剂层112更宽的面积形成。因此,内部非接触区域13c的长度L可以根据能够观察到间隔件13与负极合剂层122的接触痕迹的主面算出。
内部非接触区域13c的长度L在本实施方式中也可以根据能够观察到间隔件13与负极合剂层122的接触痕迹的主面算出。具体而言,如图6所示,将在上述主面形成的2处与负极合剂层122的接触痕迹的夹着上述中心轴相对的端部沿中心轴方向延长,并画出2条直线Lx。由该2条直线Lx与间隔件13的Y方向的2条端部围成的区域为内部非接触区域13c。图6是将卷绕后的电极组10再展开,将负极及正极剥离而取出的间隔件13的俯视图。图6中,为了方便,对内部非接触区域13c标注了双影线。
对于这样的内部非接触区域13c,例如如图4那样,通过将具备第三露出部121b的负极12配置在间隔件13上并进行卷绕而形成。该情况下,第三露出部121b配置在电极组10的内周侧。并且,在负极12的内周侧的端部,并非负极合剂层122与间隔件13接触,而是第三露出部121b的至少一部分与间隔件13接触。因此,在被卷绕时对于负极合剂层122的端部施加的应力得以缓和,不易发生负极合剂的脱落。在负极12不具备第三露出部121b的情况下,例如在图4中,将负极12在从卷芯200充分远离而配置的状态下进行卷绕。
从进一步抑制电极组10的内周侧中的液体枯竭的观点出发,间隔件13与负极12相比也可以不配置于电极组10的外周侧。换言之,位于电极组10的最外周侧的间隔件13的外侧(外周侧)也可以被负极集电体121覆盖。即,从圆周面方向360°观察电极组10的外观时,间隔件13可以不露出。
需要说明的是,在电极组10的最外周配置有固定用绝缘胶带14和/或负极集电体121。将电池壳体20用作外部正极端子的情况下,也可以在电极组10的最外周配置有正极集电体111。
电极组10具备由负极合剂层122形成的筒状部C(参照图5),所述负极合剂层122形成于位于卷绕的负极集电体121的最内周的主面。内部非接触区域13c例如配置于该筒状部C的内部。在筒状部C中易于保持电解液,但在针形电池中,筒状部C的直径小。根据本实施方式,即使在筒状部C的直径小的情况下,借助内部非接触区域13c,电极组10的内周侧中的电解液的保持性也提高。
筒状部C可以根据沿着与电极组10的卷绕轴垂直的方向切断时的截面、或者从与电极组10的卷绕轴垂直的方向观察时的端面来确定。观察上述截面或端面的经卷绕的负极12时,由位于负极集电体121的最内周的主面所形成的负极合剂层122形成的环(严格来说,一部分开环)为筒状部C。
筒状部C的直径没有特别限定,可以为2.5mm以下、可以为2mm以下、可以为1.5mm以下、可以为1mm以下。筒状部C的直径可以为0.7mm以上、可以为0.8mm以上。筒状部C的直径是指:与卷绕轴方向垂直的截面中的筒状部C的等效圆(即,具有与截面中的筒状部C的面积相同面积的圆)的直径。
电极组10的直径也没有特别限定,可以为6mm以下、可以为5mm以下。电极组10的直径可以为1mm以上、可以为2mm以上。电极组10的直径是指:与卷绕轴方向垂直的截面中的电极组10的等效圆(即,具有与截面中的电极组10的面积相同面积的圆)的直径。
电极组10的卷绕数考虑期望的容量及电极组10的直径等来适当设定即可。电极组10的卷绕数例如可以为3次以上且10次以下、也可以为3次以上且8次以下。在卷绕数为这样的范围的情况下,可以确保高容量,并且电极组10不会被过度地紧固,因此易于抑制电解液朝向外周部被排出在外。卷绕数是指:在正极合剂层112与负极合剂层122相对的状态下卷绕的部分的环绕圈数。
接下来,参照附图对本实施方式涉及的圆筒形二次电池的构成进行说明。图7是本发明的一个实施方式涉及的圆筒形二次电池的示意纵截面图。
圆筒形二次电池100包括具有开口的有底圆筒形的电池壳体20、容纳于电池壳体20内的卷绕式电极组10及电解液(未图示)、和将电池壳体20的开口进行封口的封口构件40。
封口构件40为帽状,具有环状的凸缘(边缘40a)、和从边缘40a的内周向厚度方向突出的圆柱状的端子部40b及40c。在封口构件40的周缘部以覆盖边缘40a的方式配置有环状的绝缘性的密封垫片30。并且,使电池壳体20的开口端部隔着密封垫片30向内方弯曲,铆接于封口构件40的周缘部。由此,电池壳体20与封口构件40绝缘,并且电池壳体20被封口。
在电极组10的上端面(顶面)与封口构件40的底面之间,形成有空间。在该空间中配置有第一绝缘环50A,限制电极组10与封口构件40的接触。
以覆盖电池壳体20的弯曲的开口端部的外表面及其周边的密封垫片30的表面的方式,配置有由电绝缘性材料形成的环形的第二绝缘环50B。由此,有效地抑制封口构件40与电池壳体20之间的外部短路。
电池壳体20及封口构件40的极性可以任意地确定。即,电池壳体20可以为外部正极端子及外部负极端子中的任一种。从有效利用电池壳体20内的容积的观点出发,也可以以与电池壳体20相同极性的电极位于电极组10的最外周部侧的方式形成电极组10。从位于最外周部侧的电极(图示例中为负极12)引出的集电引线连接于电池壳体20的内壁。图示例中,将电池壳体20与负极12连接并用作外部负极端子,将封口构件40与正极11连接并用作外部正极端子。
正极集电引线60的一个端部通过焊接等而连接于正极11(例如,第一露出部111a),另一端部穿过在第一绝缘环50A的中央形成的孔并通过焊接等而连接于封口构件40的底面。即,正极11与封口构件40借助正极集电引线60而电连接,封口构件40具有作为外部正极端子的功能。
在电极组10的最外周部侧,负极集电体121(第二露出部121a)露出。第二露出部121a与电池壳体20的内侧壁相对。负极集电引线70的一个端部通过焊接等而连接于第二露出部121a。负极集电引线70的另一端部与电池壳体20的内侧壁在焊接点70a处连接。即,负极12与电池壳体20借助负极集电引线70而电连接,电池壳体20具有作为外部负极端子的功能。焊接点70a例如形成在比电极组10的上端面更靠电池壳体20的开口侧的内侧壁。
圆筒形二次电池100的外径没有特别限定,可以为6.5mm以下、也可以为5mm以下。圆筒形二次电池100的外径可以为1mm以上、也可以为2mm以上、还可以为3mm以上。圆筒形二次电池100的外径是指电池壳体20的最大直径。
(电池壳体)
电池壳体20是具有开口的有底圆筒形。电池壳体20内容纳有卷绕式电极组10及电解液。
电池壳体20的底的厚度(最大厚度)可以为0.08mm以上且0.2mm以下、也可以为0.09mm以上且0.15mm以下。电池壳体20的侧壁的厚度(最大厚度)可以为0.08mm以上且0.2mm以下、也可以为0.08mm以上且0.15mm以下。需要说明的是,这些厚度是组装后的圆筒形二次电池100中的电池壳体20的底及侧壁的厚度。
电池壳体20例如为金属罐。作为构成电池壳体20的材料,可以例示铝、铝合金(含有微量的锰、铜等其他金属的合金等)、铁、和/或铁合金(包括不锈钢)等。电池壳体20也可以根据需要进行镀覆处理(例如,镀镍处理等)。构成电池壳体20的材料可以根据电池壳体20的极性等来适当选择。
(封口构件)
圆筒形二次电池100中,电池壳体20的开口被封口构件40进行封口。
封口构件40的形状没有特别限制,可以例示圆盘状、或圆盘的中央部向厚度方向突出的形状(帽状)等。封口构件40可以在内部形成有空间,也可以不形成空间。帽状的封口构件包括:具有环状的边缘(凸缘)、和从边缘的内周向厚度方向的一侧突出的端子部的构件;以及如图示例那样地,具有环状的边缘40a、和从边缘40a的内周向厚度方向的两侧突出的端子部40b、40c的构件等。后者是将2片帽以使边缘40a侧相对的状态进行重叠的外形。突出的端子部可以为圆柱状、也可以为具有顶面(或者顶面及底面)的圆筒状。封口构件40也可以设有未图示的安全阀。
作为构成封口构件40的材料,可以例示铝、铝合金(含有微量锰、铜等其他金属的合金等)、铁、铁合金(包括不锈钢)等。封口构件40也可以根据需要进行镀覆处理(例如,镀镍处理等)。构成封口构件40的材料可以根据封口构件40的极性等适当选择。
利用封口构件40对于电池壳体20的开口的封口可以使用公知的方法来进行。封口可以利用焊接来进行,优选将电池壳体20的开口与封口构件40隔着密封垫片30进行铆接封口。铆接封口例如可以通过将电池壳体20的开口端部隔着密封垫片30相对于封口构件40向内侧弯曲而进行。
(集电引线)
作为正极集电引线60的材质,可举出例如铝、钛、镍等金属、或其合金等。作为负极集电引线70的材质,可举出例如铜、镍等金属、或其合金等。
集电引线的形状没有特别限制,例如可以为线状、也可以为片状(或带状)。对于与电池壳体20的内侧壁连接的集电引线的宽度和/或厚度,只要从确保电极组10向电池壳体20容易插入和/或集电引线的强度、和/或减小集电引线在电池壳体20内所占的体积的观点出发适当确定即可。带状的集电引线的宽度从确保一定程度的焊接强度、并且节省空间的观点出发,可以为1mm以上且2mm以下、也可以为1mm以上且1.5mm以下。从集电引线的强度、及电极组10容易插入等观点出发,集电引线的厚度可以为0.05mm以上且0.15mm以下、也可以为0.05mm以上且0.1mm以下。
(密封垫片)
密封垫片30介于电池壳体20的开口(具体而言,开口端部)与封口构件40(具体而言,封口构件40的周缘部)之间,具有将两者绝缘,并且确保圆筒形二次电池100内的密闭性的功能。
密封垫片30的形状没有特别限制,优选为覆盖封口构件40的周缘部那样地环状。对于密封垫片30而言,在使用圆盘状的封口构件的情况下,可以为覆盖圆盘状的周缘那样的形状,在使用帽状的封口构件的情况下,可以为覆盖边缘的周缘那样的形状。
作为构成密封垫片30的材料,可以使用合成树脂等绝缘性材料。作为这样的绝缘性材料,可以没有特别限制地举出锂离子二次电池的密封垫片所使用的材料。作为绝缘性材料的具体例,可举出例如聚丙烯、聚乙烯等聚烯烃;聚四氟乙烯、全氟烷氧基乙烯共聚物等氟树脂;聚苯硫醚、聚醚醚酮、聚酰胺、聚酰亚胺、液晶聚合物等。这些绝缘性材料可以单独使用一种,也可以组合使用两种以上。密封垫片30可以根据需要包含公知的添加剂(例如,无机纤维等填料)。
(电解液)
电解液包含例如非水溶剂、和溶解于非水溶剂的溶质(支持电解质)。
作为支持电解质,可以没有特别限制地使用在锂离子二次电池中使用的支持电解质(例如、锂盐)。
电解液中的支持电解质的浓度没有特别限制,例如为0.5摩尔/L以上且2摩尔/L以下。
作为支持电解质(锂盐),可以使用例如含氟酸的锂盐[六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、三氟甲磺酸锂(LiCF3SO3)等]、含氯酸的锂盐[高氯酸锂(LiClO4)等]、含氟酸酰亚胺的锂盐[双(三氟甲基磺酰基)酰亚胺锂(LiN(CF3SO2)2)、双(五氟乙基磺酰基)酰亚胺锂(LiN(C2F5SO2)2)、双(三氟甲基磺酰基)(五氟乙基磺酰基)酰亚胺锂(LiN(CF3SO2)(C2F55O2))等]、含氟酸甲基化物的锂盐[三(三氟甲基磺酰基)甲基化锂(LiC(CF3SO2)3)等]等。这些支持电解质可以单独使用一种,也可以组合使用两种以上。
作为非水溶剂,可举出例如碳酸亚丙酯、碳酸亚丙酯衍生物、EC、碳酸亚丁酯、碳酸亚乙烯酯、碳酸乙烯基亚乙酯等环状碳酸酯(还包括衍生物(具有取代基的取代物等));碳酸二甲酯、碳酸二乙酯(DEC)、EMC等链状碳酸酯;1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、三甲氧基甲烷、乙二醇二乙醚等链状醚;四氢呋喃、2-甲基四氢呋喃、四氢呋喃衍生物、二氧戊环、二氧戊环衍生物等环状醚(还包括衍生物(具有取代基的取代物等));γ-丁内酯等内酯;甲酰胺、N,N-二甲基甲酰胺、乙酰胺等酰胺;乙腈、丙腈等腈;硝基甲烷等硝基烷烃;二甲基亚砜等亚砜;环丁砜、甲基环丁砜等环丁砜化合物等。它们可以单独使用一种,也可以组合使用两种以上。
(绝缘环)
第一绝缘环50A配置于电极组10的上部与封口构件40之间。
第二绝缘环50B配置于封口构件40的周缘。
作为各绝缘环,可以没有特别限制地使用在锂离子二次电池中使用的绝缘环。作为绝缘环的材质,只要是绝缘材料就没有特别限定,例如可以从作为密封垫片的材质而例示的材料中适当选择。
圆筒形二次电池100的构成及电解液的组成等不限制于上述的例子,可以适当选择公知的构成及组成。
以下,基于实施例及比较例来具体地说明本发明,但本发明不限定于以下的实施例。
[评价]
关于实施例及比较例的电池,进行下述的评价。
(1)循环特性
对于各例中制作的6个电池,按照以下的步骤,测定初始放电容量。
以3C的恒电流进行充电直至电池的闭路电压达到4.35V为止,然后,以1C的恒电流进行放电直至电池的闭路电压达到3V为止。该充放电中,监测放电时的放电电压,求出放电容量,算出6个电池的平均值。将所得的平均值作为初始放电容量(mAh)。充放电在20℃的环境下进行。
将上述充放电合计重复300次,根据上述由放电电压求出第300次放电时的放电容量,算出6个电池的平均值。算出所得平均值相对于初始放电容量的比率,作为容量保持率(%)。
(2)电极组及筒状部的直径
将评价了循环特性的电池进行分解,取出卷绕的电极组。由6个电极组的横截面照片确定筒状部C,并且分别测定电极组的直径及筒状部C的直径,求出它们的平均值。
(3)有无屈曲
由在(2)中拍摄的横截面照片,确认电极组有无屈曲。
(4)内部非接触区域的长度的比例
将从评价了循环特性的电池中取出的电极组展开为平面状并剥离正极及负极,分离间隔件。根据图6所示的方法,算出卷绕方向中的、内部非接触区域的长度相对于间隔件的比例(L/Ls)。
(5)电解液的配置
将在(4)中剥离的负极以负极合剂层被二等分的方式沿着卷绕轴方向切断,分为内周侧负极和外周侧负极。将分为两份的负极分别浸渍于γ-丁内酯后,进行超声波处理,提取负极所含的电解液成分。接下来,对该提取液所含的低挥发性的电解液成分(此处为EC及LiPF6)的浓度进行定量。EC浓度利用气相色谱法进行定量,LiPF6浓度利用ICP发光光谱分析法进行定量。
另外从所制作的循环特性评价前(初次的充放电后)的电池中取出电极组。接下来,同样地对于在内周侧负极及外周侧负极所含的EC及LiPF6的浓度进行定量。
[实施例1]
按照以下的顺序,制作6个图7所示的圆筒形二次电池100。
(a)正极的制作
在作为正极活性物质的钴酸锂100质量份、作为导电剂的乙炔黑4质量份、及作为粘结剂的PVdF 4质量份中加入作为分散介质的NMP并混合,由此制备正极浆料。将正极浆料涂布于作为正极集电体的铝箔(厚度为15μm)的两面,进行干燥后,沿厚度方向进行压缩,由此制作正极11(厚度为0.08mm)。正极11在制作时设置了没有正极合剂层112的区域(第一露出部111a),将带状的正极引线(宽度为1.0mm、厚度为0.05mm)的一个端部连接于第一露出部111a。
(b)负极的制作
将作为负极活性物质的人造石墨粉末100质量份、作为粘结剂的苯乙烯-甲基丙烯酸-丁二烯共聚物(SBR)1质量份、作为增稠剂的CMC 1质量份进行混合,将所得的混合物分散于去离子水中,由此制备负极浆料。在作为负极集电体121的铜箔(厚度为6μm)的两面涂布负极浆料,进行干燥后,沿厚度方向进行压缩,由此制作负极12(厚度为0.11mm)。负极12在制作时设置了没有负极合剂层122的区域(第二露出部121a及第三露出部121b)。在第二露出部121a连接了带状的负极集电引线70(宽度为1.5mm、厚度为0.1mm)的一个端部。
(c)间隔件的准备
在作为基材层131的聚乙烯制微多孔膜(厚度为9μm)的两面的整个面,准备形成有包含HFP和VdF的共聚物的树脂层132的间隔件13(厚度为12μm)。
(d)电极组的制作
将间隔件13夹入在卷芯200(直径1.2mm的圆柱状)形成的狭缝部。接下来,如图4所示,分别配置间隔件13、正极11和负极12。在该状态下,以卷芯200为中心,卷绕正极11、负极12及间隔件13,由此形成卷绕式电极组10。稍微松弛卷绕并拔出卷芯,在卷绕结束处粘贴固定用绝缘胶带14,由此固定电极组10。电极组10的卷绕数设为4次以上且6次以下。
在所得的电极组10中,负极集电体121的第三露出部121b配置于内周侧的端部。在电极组10的内周侧具备树脂层132,并且配置有其两面不与负极合剂层122接触的间隔件13(内部非接触区域13c)。另外,电极组10中位于最外周侧的间隔件13的外侧被负极集电体121覆盖。
(e)电解液的制备
在以1∶1的质量比包含EC和DEC的混合溶剂中溶解LiPF6,由此制备电解液。此时,电解液中的LiPF6的浓度设为1.0摩尔/L。
(f)圆筒形锂离子二次电池的制作
将在(d)中得到的电极组10插入由镀镍铁板形成的具有开口的有底圆筒形的电池壳体20(外径为4.6mm)中,将负极集电引线70的另一端部在焊接点70a处利用焊接而连接于电池壳体20的内侧壁。焊接点70a位于比电极组10的上端面更靠电池壳体20的开口侧。在电极组10的上部配置第一绝缘环50A,将从电极组10引出的正极集电引线60的另一端部穿过第一绝缘环50A的孔而连接于封口构件40的底面。此时,在封口构件40的周缘部安装了环状的绝缘性的密封垫片30。在电池壳体20内注入在(e)中制备的电解液68μL(每1mAh放电容量为2.1μL)。将实施了镀镍的铁制的封口构件40配置于电池壳体20的开口,通过将电池壳体20的开口端部相对于封口构件40的周缘部以隔着密封垫片30的状态进行铆接从而进行封口。
以覆盖弯曲的电池壳体20的开口端部的外表面、和其周边的密封垫片30的表面的方式,将丁基橡胶系的绝缘性涂料涂布为环形,由此形成第二绝缘环50B。
按照这样,得到标称容量为35.0mAh的圆筒形锂离子二次电池100。评价结果示于表1。电极组10的直径为3mm,筒状部C的直径约为1.3mm。
[比较例1]
使内部非接触区域的长度的比例成为3%,除此以外,与实施例1同样地制作圆筒形二次电池,进行评价。结果示于表1。
[表1]
Figure BDA0002429220460000211
如表1所示,实施例1中,容量保持率非常高,也未确认到屈曲。可认为这是因为:由于间隔件的内部非接触区域,在电极组的内周侧持续保持有充分的电解液。这一点由以下方面示出:在充放电的前后,在内周侧和外周侧,负极所含的电解液的量没有大的差别。另一方面,比较例1中,与实施例1相比,容量保持率低,且观察到电极组的屈曲。另外,充放电后,在内周侧和外周侧,负极所含的电解液的量产生大的差别,电解液偏重存在于外周侧。
[实施例2]
关于负极合剂层,将增稠剂(CMC)变更为NMP,且将粘结剂(SBR)变更为PVdF,除此以外,与实施例1同样地制作6个圆筒形二次电池,进行评价。评价(1)、(3)及(4)的结果示于表2。
[比较例2]
关于负极合剂层,将增稠剂(CMC)变更为NMP,且将粘结剂(SBR)变更为PVdF,除此以外,与比较例1同样地制作6个圆筒形二次电池,进行评价。评价(1)、(3)及(4)的结果示于表2。
[表2]
实施例2 比较例2
(1)循环试验后的容量保持率 85% 61%
(3)循环试验后有无屈曲
(4)内部非接触区域的长度的比例 7% 3%
实施例2中,也获得与实施例1同样的高的充放电循环特性。另一方面,比较例2中,虽然与比较例1相比容量保持率提高,但比实施例2差。实施例2及比较例2中,负极合剂层包含对于电解液具有溶胀性的PVdF。然而,可知:负极合剂层所含的溶胀性树脂无法达成超过80%那样的非常高的容量保持率。
产业上的可利用性
本发明的实施方式涉及的圆筒形二次电池不仅小型且轻量,而且特别是伴随快速充电的充放电的循环特性优异。因此,能够适合用作各种电子设备、特别是要求小型电源的各种便携电子设备[也包括眼镜(3D眼镜等)、助听器、触控笔、可穿戴终端等]的电源。
虽然本发明已经结合目前优选的实施方案进行了描述,但并不旨在对本申请进行限制性解释。通过阅读上述公开内容,对于本发明所属技术领域的本领域技术人员来说,各种变形和改变将是毫无疑问地清楚的。因此,所附技术方案应被解释为涵盖不脱离本发明的真实精神和范围的所有变化和修改。
附图标记说明
10:卷绕式电极组
P10:卷绕前的电极组
C:筒状部
11:正极
111:正极集电体
111a:第一露出部
111b:第二端部的端面
112:正极合剂层
12:负极
12X:第三主面
12Y:第四主面
121:负极集电体
121a:第二露出部
121b:第三露出部
121c、121d:端面
122:负极合剂层
13:间隔件
13X:第一主面
13Y:第二主面
13a、13b:间隔件的端部
13c:内部非接触区域
131:基材层
132:树脂层
14:固定用绝缘胶带
100:圆筒形二次电池
20:电池壳体
30:密封垫片
40:封口构件
40a:边缘
40b、40c:端子部
50A:第一绝缘环
50B:第二绝缘环
60:正极集电引线
70:负极集电引线
70a:焊接点
200:卷芯

Claims (7)

1.一种圆筒形二次电池,其具备:
具有开口的有底圆筒形的电池壳体、
容纳于所述电池壳体的电极组及电解液、和
封住所述电池壳体的所述开口的封口构件,
所述电极组具有正极、负极和介于所述正极与所述负极之间的间隔件,所述正极和所述负极通过隔着所述间隔件被卷绕而形成,
所述负极具备:负极集电体、和在所述负极集电体的至少一个主面上形成的负极合剂层,
所述正极具备:正极集电体、和在所述正极集电体的至少一个主面上形成的正极合剂层,
所述间隔件具备内部非接触区域,所述内部非接触区域在所述电极组中位于内周侧,且其两面与所述负极合剂层及所述正极合剂层中的任意一个均不接触,
在所述电极组的卷绕方向上,所述内部非接触区域的长度为所述间隔件的长度的5%以上。
2.根据权利要求1所述的圆筒形二次电池,其中,所述间隔件具备基材层、和在所述基材层的至少一个主面上形成的树脂层,
所述树脂层包含对于所述电解液具有溶胀性的树脂。
3.根据权利要求1或2所述的圆筒形二次电池,其中,所述电极组具备由所述负极合剂层形成的筒状部,所述负极合剂层形成在所述电极组中位于所述负极集电体的最内周的主面上,
所述筒状部的直径为2.5mm以下。
4.根据权利要求1~3中任一项所述的圆筒形二次电池,其中,所述负极具备露出部,所述露出部为所述负极集电体的至少一个主面露出,且位于所述电极组的内周侧的端部。
5.根据权利要求1~4中任一项所述的圆筒形二次电池,其中,在所述电极组中位于最外周侧的所述间隔件的外侧被所述负极集电体覆盖。
6.根据权利要求1~5中任一项所述的圆筒形二次电池,其中,所述圆筒形二次电池的外径为6.5mm以下。
7.根据权利要求1~6中任一项所述的圆筒形二次电池,其中,所述电极组的卷绕数为3次以上且10次以下。
CN201880063408.XA 2017-09-29 2018-09-27 圆筒形二次电池 Active CN111164814B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017-191954 2017-09-29
JP2017191954 2017-09-29
PCT/JP2018/036023 WO2019065871A1 (ja) 2017-09-29 2018-09-27 円筒形二次電池

Publications (2)

Publication Number Publication Date
CN111164814A true CN111164814A (zh) 2020-05-15
CN111164814B CN111164814B (zh) 2023-04-04

Family

ID=65900884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880063408.XA Active CN111164814B (zh) 2017-09-29 2018-09-27 圆筒形二次电池

Country Status (4)

Country Link
US (1) US20200313241A1 (zh)
JP (1) JP7182108B2 (zh)
CN (1) CN111164814B (zh)
WO (1) WO2019065871A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013617A1 (ja) * 2021-08-04 2023-02-09 マクセル株式会社 円筒形リチウム一次電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300108A (zh) * 1999-12-15 2001-06-20 三洋电机株式会社 非水电解质蓄电池
CN1433101A (zh) * 2001-10-16 2003-07-30 三星Sdi株式会社 具有改进的胶卷状电极结构的二次电池
CN1801507A (zh) * 2005-01-12 2006-07-12 松下电器产业株式会社 锂二次电池及其制造方法
JP2010067450A (ja) * 2008-09-10 2010-03-25 Toyota Motor Corp 非水電解液二次電池
CN101785137A (zh) * 2008-05-28 2010-07-21 松下电器产业株式会社 圆筒形非水电解液二次电池
CN101834308A (zh) * 2009-03-10 2010-09-15 三洋电机株式会社 非水电解质二次电池
JP2013143224A (ja) * 2012-01-10 2013-07-22 Toyota Industries Corp 蓄電装置、及び車両

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3166880B2 (ja) * 1992-11-04 2001-05-14 日本電信電話株式会社 非水電解液二次電池
JP3732584B2 (ja) * 1996-08-05 2006-01-05 東芝電池株式会社 筒型電池の製造方法
JP5091507B2 (ja) * 2007-03-08 2012-12-05 日立ビークルエナジー株式会社 捲回式電池
JP2010055753A (ja) * 2008-08-26 2010-03-11 Sanyo Electric Co Ltd 巻回状電極体を備えた電池の製造方法
JP5754802B2 (ja) * 2011-06-09 2015-07-29 Fdk株式会社 ニッケル水素二次電池用の負極及びこの負極を用いたニッケル水素二次電池
JP5470335B2 (ja) 2011-07-19 2014-04-16 株式会社日立製作所 捲回式二次電池
WO2017010046A1 (ja) * 2015-07-10 2017-01-19 パナソニックIpマネジメント株式会社 捲回型電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300108A (zh) * 1999-12-15 2001-06-20 三洋电机株式会社 非水电解质蓄电池
CN1433101A (zh) * 2001-10-16 2003-07-30 三星Sdi株式会社 具有改进的胶卷状电极结构的二次电池
CN1801507A (zh) * 2005-01-12 2006-07-12 松下电器产业株式会社 锂二次电池及其制造方法
CN101785137A (zh) * 2008-05-28 2010-07-21 松下电器产业株式会社 圆筒形非水电解液二次电池
JP2010067450A (ja) * 2008-09-10 2010-03-25 Toyota Motor Corp 非水電解液二次電池
CN101834308A (zh) * 2009-03-10 2010-09-15 三洋电机株式会社 非水电解质二次电池
JP2013143224A (ja) * 2012-01-10 2013-07-22 Toyota Industries Corp 蓄電装置、及び車両

Also Published As

Publication number Publication date
WO2019065871A1 (ja) 2019-04-04
CN111164814B (zh) 2023-04-04
US20200313241A1 (en) 2020-10-01
JPWO2019065871A1 (ja) 2020-10-22
JP7182108B2 (ja) 2022-12-02

Similar Documents

Publication Publication Date Title
US8435675B2 (en) Non-aqueous electrolyte secondary battery with high capacity and good life characteristics
US20110159344A1 (en) Non-aqueous electrolyte secondary cell
EP3024084B1 (en) Method for manufacturing rectangular battery cell using metal plates
KR20150126820A (ko) 리튬이온 이차전지
CN105190945B (zh) 薄型电池
CN112204791A (zh) 电池及电池包
CN108352561B (zh) 锂离子二次电池
WO2015129376A1 (ja) 捲回型電極群及び非水電解質電池
WO2016195062A1 (ja) 非水電解液一次電池およびその製造方法
JP2007172879A (ja) 電池およびその製造方法
CN111164814B (zh) 圆筒形二次电池
JP7232814B2 (ja) 非水電解質二次電池
JP7003775B2 (ja) リチウムイオン二次電池
KR20210038257A (ko) 일부 패턴 코팅된 양극을 포함하는 젤리-롤형 전극조립체, 및 이를 포함하는 이차전지
JP2019121500A (ja) 円筒形二次電池
US20190067729A1 (en) Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime
JP2007172878A (ja) 電池およびその製造方法
CN111316495A (zh) 圆筒形二次电池
CN109891639B (zh) 非水电解质二次电池用电极以及非水电解质二次电池
JP2010205739A (ja) リチウム電池
JP4211542B2 (ja) リチウム二次電池
CN111386622B (zh) 圆筒形二次电池
US20220216546A1 (en) Secondary battery
CN109997270B (zh) 非水电解质二次电池
JP2004014248A (ja) 非水電解質電池及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant