CN111129114A - 一种Si基GaN外延低位错薄膜及其制备方法 - Google Patents

一种Si基GaN外延低位错薄膜及其制备方法 Download PDF

Info

Publication number
CN111129114A
CN111129114A CN201911365345.6A CN201911365345A CN111129114A CN 111129114 A CN111129114 A CN 111129114A CN 201911365345 A CN201911365345 A CN 201911365345A CN 111129114 A CN111129114 A CN 111129114A
Authority
CN
China
Prior art keywords
layer
gan
dislocation
thickness
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911365345.6A
Other languages
English (en)
Inventor
陆俊
王东
吴勇
陈兴
汪琼
葛林男
严伟伟
何滇
曾文秀
王俊杰
操焰
崔傲
袁珂
陈军飞
张进成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu Research Institute of Xidian University
Original Assignee
Wuhu Research Institute of Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhu Research Institute of Xidian University filed Critical Wuhu Research Institute of Xidian University
Priority to CN201911365345.6A priority Critical patent/CN111129114A/zh
Publication of CN111129114A publication Critical patent/CN111129114A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0688Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions characterised by the particular shape of a junction between semiconductor regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

一种Si基GaN外延低位错薄膜,属于微电子技术领域,包括从下至上依次层叠设置的硅衬底、AlN成核层、AlGaN缓冲层、低温GaN位错阻隔层、GaN沟道层、AlGaN势垒层及GaN盖帽层,本发明利用低温GaN位错阻隔层能够有效降低氮化镓外延层中的位错密度,同时有效控制外延薄膜中的应力,得到Si衬底上无裂纹、低翘曲度的高质量AlGaN/GaN异质结外延材料。

Description

一种Si基GaN外延低位错薄膜及其制备方法
技术领域
本发明属于微电子技术领域,涉及高质量的半导体器件外延生长中的位错阻隔层技术,具体涉及一种Si基GaN外延低位错薄膜及其制备方法。
背景技术
由于Si衬底上生长GaN薄膜存在着非常严重的热失配和晶格失配问题,如(0001)面GaN与(111)面Si之间的热失配为54%,晶格失配为17%,使得Si基GaN薄膜在外延生长中常常处于张应变状态,很容易导致裂纹的产生。严重的失配问题也会致使薄膜产生大量位错、层错等微结构缺陷,引起薄膜的电学和光学特性下降。
发明内容
本发明的目的在于克服现有技术不足之处,提供一种Si基GaN薄膜结构中位错阻隔层技术,其原理是,在Si基GaN薄膜生长中,插入一层位错阻隔层,降低失配导致的位错穿透GaN薄膜,改善晶体质量。
一种Si基GaN外延低位错薄膜,包括从下至上依次层叠设置的硅衬底、AlN成核层、AlGaN缓冲层、低温GaN位错阻隔层、GaN沟道层、AlGaN势垒层及GaN盖帽层。
一种Si基GaN外延低位错薄膜的制备方法,包括如下步骤:
(1)首先将Si衬底放入反应室中并升温至1100℃,在H2条件下去除表面的氧化膜;
(2)在前述步骤基础上降温至950-1050℃,生长一层ALN成核层,其厚度为80-240nm,用于为后续的缓冲层生长提供成核节点,该厚度能够通过控制沉积时间及配合MOCVD的监控系统实现;
(3)在前述步骤基础上升温至1000-1100℃,生长ALGaN缓冲层,其厚度为600-1500nm;
(4)在前述步骤基础上降温至750-850℃,生长厚度为200-500nm的GaN位错阻隔层,形成V坑,阻隔位错,降低位错密度;
(5)在前述步骤基础上升温至1000-1100℃,生长GaN沟道层和AlGaN势垒层及GaN盖帽层,厚度分别为0.8-2.0um,5-35nm,3-5nm,所述GaN沟道层和AlGaN势垒层界面处形成的高浓度二维电子气(2DEG)沟道。
优选的,所述硅衬底为绝缘或半绝缘的硅材料,尺寸为2-8inch;
优选的,所述AlN成核层的生长温度为1000℃,厚度为100nm。
优选的,所述AlGaN缓冲层的生长温度为1100℃,厚度为1um。
优选的,所述低温GaN位错阻隔层的生长温度为800℃,厚度为200nm。
优选的,所述GaN沟道层的生长温度为1100℃,厚度为2.0μm。
优选的,所述AlGaN势垒层的生长温度为1100℃,厚度为30nm。
优选的,所述GaN盖帽层的生长温度为1100℃,厚度为3nm。
优选的,上述各层均采用金属有机化学气相沉积法生长。
与现有技术相比,本发明具有如下优点:
在Si基GaN材料生长底层时,由于晶格失配导致缺陷密度大,引起薄膜的电学特性下降。本发明是在AlGaN缓冲层上生长一层厚度低温GaN位错阻隔层,在底层穿透位错延伸至该层时,AlGaN和低温GaN界面处发生水平弯转而湮灭。在该种发明下生长的AlGaN/GaN异质结外延材料位错密度由原来8.6E18/cm2降低至4.2E18/cm2。
附图说明
图1为本发明的结构示意图。
图2为本发明结构的透射电镜扫描位错图。
其中:100-衬底,101-AlN成核层,102-AlGaN缓冲层,103-低温GaN位错阻隔层,104-GaN沟道层,105-AlGaN势垒层,106-GaN盖帽层。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
本发明的一种Si基GaN外延低位错薄膜,包括从下至上依次层叠设置的硅衬底(100)、AlN成核层(101)、AlGaN缓冲层(102)、低温GaN位错阻隔层(103)、GaN沟道层(104)、AlGaN势垒层(105)及GaN盖帽层(106),具体采用以下方法制得:
实施例1:
采用金属有机化学气相沉积法在MOCVD系统生长:
1、首先将Si衬底放入反应室中并升温至1100℃,在H2条件下去除表面的氧化膜;
2、在前述步骤基础上降温至1000℃,生长一层ALN成核层,其厚度为100nm。所述的薄膜厚度通过控制沉积时间及配合MOCVD的监控系统实现。
3、在前述步骤基础上升温至1100℃,生长ALGaN缓冲层,其厚度为1um。
4、在前述步骤基础上降温至800℃,生长厚度为200nm的位错阻挡层。
5、在前述步骤基础上升温至1100℃,生长GaN沟道层和AlGaN势垒层及GaN盖帽层,厚度分别为:2um,30nm,3nm。
实施例2:
采用金属有机化学气相沉积法在MOCVD系统生长:
1、首先将Si衬底放入反应室中并升温至1100℃,在H2条件下去除表面的氧化膜;
2、在前述步骤基础上降温至1000℃,生长一层ALN成核层,其厚度为100nm。所述的薄膜厚度通过控制沉积时间及配合MOCVD的监控系统实现。
3、在前述步骤基础上升温至1100℃,生长ALGaN缓冲层,其厚度为1um。
4、在前述步骤基础上降温至800℃,生长厚度为300nm的位错阻挡层。
5、在前述步骤基础上升温至1100℃,生长GaN沟道层和AlGaN势垒层及GaN盖帽层,厚度分别为:2um,30nm,3nm。
实施例3:
采用金属有机化学气相沉积法在MOCVD系统生长:
1、首先将Si衬底放入反应室中并升温至1100℃,在H2条件下去除表面的氧化膜;
2、在前述步骤基础上降温至1000℃,生长一层ALN成核层,其厚度为100nm。所述的薄膜厚度通过控制沉积时间及配合MOCVD的监控系统实现。
3、在前述步骤基础上升温至1100℃,生长ALGaN缓冲层,其厚度为1um。
4、在前述步骤基础上降温至800℃,生长厚度为400nm的位错阻挡层。
5、在前述步骤基础上升温至1100℃,生长GaN沟道层和AlGaN势垒层及GaN盖帽层,厚度分别为:2um,30nm,3nm。
实施例4:
采用金属有机化学气相沉积法在MOCVD系统生长:
1、首先将Si衬底放入反应室中并升温至1100℃,在H2条件下去除表面的氧化膜;
2、在前述步骤基础上降温至1000℃,生长一层ALN成核层,其厚度为100nm。所述的薄膜厚度通过控制沉积时间及配合MOCVD的监控系统实现。
3、在前述步骤基础上升温至1100℃,生长ALGaN缓冲层,其厚度为1um。
4、在前述步骤基础上降温至800℃,生长厚度为500nm的位错阻挡层。
5、在前述步骤基础上升温至1100℃,生长GaN沟道层和AlGaN势垒层及GaN盖帽层,厚度分别为:2um,30nm,3nm。
由图2可知,实施例1获得的产品在透射电镜TEM观测下,使用本发明结构生长材料中的位错密度明显低于原结构生长材料中的位错密度,位错密度由8.6E18/cm2改善至4.2E18/cm2。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (9)

1.一种Si基GaN外延低位错薄膜,其特征在于,包括从下至上依次层叠设置的硅衬底(100)、AlN成核层(101)、AlGaN缓冲层(102)、低温GaN位错阻隔层(103)、GaN沟道层(104)、AlGaN势垒层(105)及GaN盖帽层(106)。
2.一种根据权利要求1所述的Si基GaN外延低位错薄膜的制备方法,其特征在于,包括如下步骤:
(1)首先将Si衬底(100)放入反应室中并升温至1100℃,在H2条件下去除表面的氧化膜;
(2)在前述步骤基础上降温至950-1050℃,生长一层ALN成核层(101),其厚度为80-240nm,该厚度能够通过控制沉积时间及配合MOCVD的监控系统实现;
(3)在前述步骤基础上升温至1000-1100℃,生长ALGaN缓冲层(102),其厚度为600-1500nm;
(4)在前述步骤基础上降温至750-850℃,生长厚度为200-500nm的GaN位错阻隔层(103);
(5)在前述步骤基础上升温至1000-1100℃,生长GaN沟道层(104)和AlGaN势垒层(105)及GaN盖帽层(106),厚度分别为0.8-2.0um,5-35nm,3-5nm。
3.根据权利要求2所述的一种Si基GaN外延低位错薄膜的制备方法,其特征在于,所述AlN成核层(101)的生长温度为1000℃,厚度为100nm。
4.根据权利要求2所述的一种Si基GaN外延低位错薄膜的制备方法,其特征在于,所述AlGaN缓冲层(102)的生长温度为1100℃,厚度为1um。
5.根据权利要求2所述的一种Si基GaN外延低位错薄膜的制备方法,其特征在于,所述低温GaN位错阻隔层(103)的生长温度为800℃,厚度为200nm。
6.根据权利要求2所述的一种Si基GaN外延低位错薄膜的制备方法,其特征在于,所述GaN沟道层(104)的生长温度为1100℃,厚度为2.0μm。
7.根据权利要求2所述的一种Si基GaN外延低位错薄膜的制备方法,其特征在于,所述AlGaN势垒层(105)的生长温度为1100℃,厚度为30nm。
8.根据权利要求2所述的一种Si基GaN外延低位错薄膜的制备方法,其特征在于,所述GaN盖帽层(106)的生长温度为1100℃,厚度为3nm。
9.根据权利要求2所述的一种Si基GaN外延低位错薄膜的制备方法,其特征在于,上述各层均采用金属有机化学气相沉积法在MOCVD系统生长。
CN201911365345.6A 2019-12-26 2019-12-26 一种Si基GaN外延低位错薄膜及其制备方法 Pending CN111129114A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911365345.6A CN111129114A (zh) 2019-12-26 2019-12-26 一种Si基GaN外延低位错薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911365345.6A CN111129114A (zh) 2019-12-26 2019-12-26 一种Si基GaN外延低位错薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN111129114A true CN111129114A (zh) 2020-05-08

Family

ID=70502990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911365345.6A Pending CN111129114A (zh) 2019-12-26 2019-12-26 一种Si基GaN外延低位错薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111129114A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834454A (zh) * 2020-06-08 2020-10-27 西安电子科技大学 一种具有自对准源漏电极的氮化镓晶体管及其制备方法
CN114613847A (zh) * 2022-05-10 2022-06-10 合肥工业大学 硅基AlGaN/GaN HEMT外延薄膜及其生长方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090236634A1 (en) * 2008-03-18 2009-09-24 Hitachi Cable, Ltd. Nitride semiconductor epitaxial wafer and nitride semiconductor device
JP2010147165A (ja) * 2008-12-17 2010-07-01 Stanley Electric Co Ltd 半導体素子の製造方法
CN103849853A (zh) * 2014-02-21 2014-06-11 中国科学院半导体研究所 缓解mocvd工艺中硅衬底与氮化镓薄膜间应力的方法
CN104091759A (zh) * 2014-06-25 2014-10-08 华南师范大学 一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法
US20150102357A1 (en) * 2013-10-14 2015-04-16 National Chiao Tung University GaN-containing semiconductor structure
CN105336770A (zh) * 2014-08-06 2016-02-17 江西省昌大光电科技有限公司 氮化镓基高电子迁移率晶体管外延结构及其制造方法
CN106128948A (zh) * 2016-07-26 2016-11-16 中国科学院半导体研究所 在Si衬底上利用应变调制层减少GaN层穿透位错的结构及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090236634A1 (en) * 2008-03-18 2009-09-24 Hitachi Cable, Ltd. Nitride semiconductor epitaxial wafer and nitride semiconductor device
JP2010147165A (ja) * 2008-12-17 2010-07-01 Stanley Electric Co Ltd 半導体素子の製造方法
US20150102357A1 (en) * 2013-10-14 2015-04-16 National Chiao Tung University GaN-containing semiconductor structure
CN103849853A (zh) * 2014-02-21 2014-06-11 中国科学院半导体研究所 缓解mocvd工艺中硅衬底与氮化镓薄膜间应力的方法
CN104091759A (zh) * 2014-06-25 2014-10-08 华南师范大学 一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法
CN105336770A (zh) * 2014-08-06 2016-02-17 江西省昌大光电科技有限公司 氮化镓基高电子迁移率晶体管外延结构及其制造方法
CN106128948A (zh) * 2016-07-26 2016-11-16 中国科学院半导体研究所 在Si衬底上利用应变调制层减少GaN层穿透位错的结构及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTOAKI IWAYA ET AL,: "Reduction of Etch Pit Density in Organometallic Vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature –deposited buffer layer between high-temperature –grown GaN", 《JPN.J.APPL.PHYS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834454A (zh) * 2020-06-08 2020-10-27 西安电子科技大学 一种具有自对准源漏电极的氮化镓晶体管及其制备方法
CN114613847A (zh) * 2022-05-10 2022-06-10 合肥工业大学 硅基AlGaN/GaN HEMT外延薄膜及其生长方法

Similar Documents

Publication Publication Date Title
US10580879B2 (en) Enhancement-mode GaN-based HEMT device on Si substrate and manufacturing method thereof
EP2538434B1 (en) Epitaxial substrate and method for producing same
CN100530543C (zh) 外延生长方法
JP6705831B2 (ja) 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法
CN100492592C (zh) 基于Al2O3衬底的GaN薄膜的生长方法
CN100485959C (zh) 复合隔离层氮化物高电子迁移率晶体管外延结构及制造方法
EP2251464B1 (en) Epitaxial substrate for semiconductor device, semiconductor device, and method of manufacturing epitaxial substrate for semiconductor device
CN101145516A (zh) 硅基氮化物单晶薄膜的外延结构及生长方法
CN111129114A (zh) 一种Si基GaN外延低位错薄膜及其制备方法
US8994032B2 (en) III-N material grown on ErAIN buffer on Si substrate
CN105702826B (zh) 一种在Si衬底上制备无裂纹GaN薄膜的方法
CN101901756B (zh) 基于c面Al2O3衬底上极性c面GaN薄膜的MOCVD生长方法
CN114242815A (zh) N极性GaN/AlGaN异质结外延结构及其制备方法
CN101901759A (zh) 基于r面Al2O3衬底上非极性a面GaN薄膜的MOCVD生长方法
CN111477534A (zh) 氮化铝模板及其制备方法
CN115896938A (zh) 一种GaN外延低位错薄膜及其制备方法
CN116646248B (zh) 一种外延片制备方法及其外延片、高电子迁移率晶体管
CN104465720A (zh) 一种半导体外延结构及其生长方法
US8736025B2 (en) III-nitride semiconductor growth substrate, III-nitride semiconductor epitaxial substrate, III-nitride semiconductor element, III-nitride semiconductor freestanding substrate all having improved crystallinity
CN114574970B (zh) 一种大尺寸柔性氮化镓单晶薄膜的制备方法
CN104979377A (zh) Ⅲ族氮化物/异质衬底复合模板及其制备方法
CN209626222U (zh) 一种Si衬底上GaN基功率半导体器件的外延层结构
TWI360186B (zh)
CN114005728A (zh) 一种低应力高质量氮化物材料外延方法
US20100200956A1 (en) Compound semiconductor substrate, process for producing compound semiconductor substrate, and semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 241000 building 7, science and Technology Industrial Park, high tech Industrial Development Zone, Yijiang District, Wuhu City, Anhui Province

Applicant after: Wuhu Research Institute of Xidian University

Address before: No. 8, Wen Jin Xi Road, Yijiang District, Wuhu, Anhui Province

Applicant before: Wuhu Research Institute of Xidian University

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200508