CN111092130A - 一种银掺杂铜锌锡硫薄膜太阳电池及其制备方法 - Google Patents

一种银掺杂铜锌锡硫薄膜太阳电池及其制备方法 Download PDF

Info

Publication number
CN111092130A
CN111092130A CN201911407581.XA CN201911407581A CN111092130A CN 111092130 A CN111092130 A CN 111092130A CN 201911407581 A CN201911407581 A CN 201911407581A CN 111092130 A CN111092130 A CN 111092130A
Authority
CN
China
Prior art keywords
film
layer
zinc
solar cell
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911407581.XA
Other languages
English (en)
Inventor
郝瑞亭
顾康
李晓明
王云鹏
李勇
郭杰
魏国帅
马晓乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan University YNU
Yunnan Normal University
Original Assignee
Yunnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Normal University filed Critical Yunnan Normal University
Priority to CN201911407581.XA priority Critical patent/CN111092130A/zh
Publication of CN111092130A publication Critical patent/CN111092130A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • H01L31/0327Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4 characterised by the doping material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种银掺杂铜锌锡硫薄膜太阳电池及其制备方法,属于薄膜太阳电池领域。所述太阳电池包括依次连接的玻璃衬底、背电极、吸收层、缓冲层、透明导电窗口层和顶电极。所述吸收层通过在背电极上沉积一层25nm厚的Ag薄膜,再在Ag薄膜上采用旋涂法涂覆铜锌锡前驱体溶液,最后经高温硫化制得。本发明所沉积25nm厚的Ag有两方面的作用:1)Ag作为临时保护层避免了所配置的反应物溶液与背电极直接接触,从而阻止了反应物溶液对背电极的侵蚀;2)Ag掺杂对铜锌锡硫薄膜的结晶性、表面形貌和吸收层/背电极异质结接触等性能都有明显提升,可提高电池的吸收效率。

Description

一种银掺杂铜锌锡硫薄膜太阳电池及其制备方法
技术领域
本发明涉及薄膜太阳电池领域,具体涉及一种结构优化的银掺杂铜锌锡硫薄膜太阳电池及其制备方法。
背景技术
随着现代社会经济的高速发展,人们对能源和环境问题越来越关注。而作为主要能源来源的化石能源日渐枯竭,因此,寻找清洁、无污染、储量大、分布广泛的新能源已成为当务之急。太阳能是一种取之不尽、用之不竭的可再生能源。其开发和利用对于缓解能源危机和环境问题具有重要的科学意义和实际价值。
要将太阳能转换为电能,需要低成本、高效率的太阳电池,这涉及到太阳电池器件的高质量制备技术。铜锌锡硫(CZTS)属于四元化合物半导体材料,具有锌黄锡矿结构。此电池具有以下特点:1)CZTS是一种直接带隙半导体材料,禁带宽度为1.45eV~1.50eV,光吸收系数超过10 4 cm -1,只需要1.5μm~2.5μm厚的材料,就可以吸收绝大多数可见光;2)元素组成丰富、无毒,相比于同类型的铜铟镓硒,制备成本更低。3)相比于钙钛矿太阳电池,稳定性更好。4)弱光特性好。
目前,CZTS太阳电池的最高效率为12.6%,距离其理论值还有很大的差距。限制其效率提升的几个主要因素如下:1)硫化镉缓冲层(CdS)和CZTS吸收层之间载流子的界面复合问题;2)CZTS吸收层内的体缺陷;3)CZTS吸收层和Mo背电极之间的载流子传输复合导致开路电压低的问题。其中,对于第三点的研究还比较少。事实上,在接近CZTS / Mo的准中性区域,光生载流子扩散的驱动力变弱,电子和空穴聚集并复合,这是导致开路电压降低的重要原因。此外,Mo背电极可能会引起CZTS的分解从而造成孔隙和二次相的形成,这会降低并联电阻从而降低电池的填充因子和开路电压。
CZTS的制备方法有很多,包括溅射法、蒸发法、喷雾热解法、电沉积法和溶液法。其中,溶液法制备成本低、工艺简单、均匀性好。但是,通过旋涂法在背电极即Mo薄膜上涂覆反应物溶液时,溶液会对Mo电极形成侵蚀从而导致硫化后吸收层与Mo的附着性较差。因此,如何提高CZTS和Mo背电极的附着性是采用溶液法制备高性能CZTS的器件亟待解决的技术难题。
发明内容
鉴于现有技术存在的上述缺陷,本发明的目的是提供一种既可以提高CZTS与Mo电极附着性,又能提高器件的开路电压的银掺杂铜锌锡硫薄膜太阳电池及其制备方法,可以解决溶液法制备的CZTS与Mo电极附着性差、载流子复合等问题,提高器件的开路电压。
实现本发明目的的技术方案是:本发明所述的银掺杂铜锌锡硫(ACZTS)薄膜太阳电池,包括依次连接的玻璃衬底、背电极、吸收层、缓冲层、透明导电窗口层和顶电极,所述背电极为双层Mo薄膜,包括高阻层Mo薄膜和低阻层Mo薄膜,其总厚度为1μm;所述吸收层为银掺杂铜锌锡硫薄膜,厚度为2000nm~2500nm;所述缓冲层为CdS薄膜,厚度为50~60nm;所述透明导电窗口层为依次沉积的60~80nm的本征ZnO薄膜和500~600nm的ZnO:Al薄膜;所述顶电极为蒸发镀银电极。
较佳的,所述的吸收层通过在背电极上沉积一层25nm厚的Ag薄膜,再在Ag薄膜上采用旋涂法涂覆铜锌锡前驱体溶液制备前驱体薄膜,最后经高温硫化制得。上述结构优化的ACZTS薄膜太阳电池的制备方法,包括以下步骤:
(1)在洁净的钠钙玻璃衬底上采用直流法溅射双层Mo薄膜作为背电极;
(2)在背电极上,采用射频法溅射沉积一层25nm厚的Ag薄膜;
(3)在Ag薄膜上采用旋涂法制备前驱体薄膜;
(4)对前驱体薄膜进行高温硫化制得吸收层;
(5)在吸收层上,采用化学水浴法沉积CdS薄膜作为缓冲层;
(6) 在缓冲层上,采用射频溅射法溅射一层本征ZnO薄膜和一层ZnO:Al薄膜作为透明导电窗口层;
(7)在透明导电窗口层上,采用电子束蒸发法制备银电极作为顶电极。
进一步的,步骤(1)中,将钠钙玻璃衬底依次用去污粉、洗衣粉清洗,然后放入酒精、丙酮中各超声30分钟,使用Ⅰ号液、Ⅱ号液加热煮沸10分钟,最后待样品冷却后用去离子水冲洗并用N2吹干,得到洁净的钠钙玻璃衬底。
具体的,Ⅰ号液由体积比为1:2:5的氨水、过氧化氢和水混合而成;Ⅱ号液由体积比为1:2:8的盐酸、过氧化氢和水混合而成。
进一步的,步骤 (1) 中,所述的双层Mo薄膜包括高阻层Mo薄膜和低阻层Mo薄膜,其制备步骤为:抽真空至5×10-4Pa,溅射时通入Ar作为工作气体,在洁净的钠钙玻璃衬底上溅射高阻层Mo薄膜,溅射功率为250W,工作气压为1.2Pa,溅射时间为15min;接着溅射低阻Mo薄膜,溅射功率为250W,工作气压为0.3Pa,溅射时间为50min。
进一步的,步骤 (2) 中,沉积Ag薄膜时,Ag靶的溅射功率为100W,溅射气压为0.3Pa,溅射厚度为25nm。
进一步的,步骤(3)中,在Ag薄膜上采用旋涂法制备前驱体薄膜,其步骤如下:取1mL前驱体溶液滴在Ag薄膜上,将匀胶机调至4000转/分钟,甩胶20秒,再于300℃下保温5min,将旋涂、甩胶、保温三个步骤重复5~6次即可制得前驱体薄膜。
具体的,前驱体溶液为铜锌锡前驱体溶液,通过如下步骤制备:取0.006mol乙酸铜,0.0037mol乙酸锌和0.0033mol氯化亚锡加入10mL二甲基甲酰胺溶剂中,于50℃的水浴下封口加热15min,加入0.026mol硫脲,封口,继续水浴加热50min,取上述溶液放入离心管中,8000转/分钟离心5分钟。
进一步的,步骤(4)中,硫化温度为560℃,保温时间为45min。
进一步的,步骤 (5) 中,采用化学水浴法沉积CdS薄膜,其步骤如下:取10mL 浓度为0.01mol/L乙酸镉、12mL 浓度为1mol/L的硫脲、8mL 浓度为1mol/L乙酸铵和15mL浓度为25~28%氨水,加入450mL去离子水中,加热至80℃~85℃保温12min,取出样品,干燥。
进一步的,步骤(6)中, 本征ZnO薄膜的溅射功率为60~80W,溅射气压为0.3~0.5Pa;ZnO:Al薄膜的溅射功率为60~80W,溅射气压为0.3~0.5Pa。
与现有技术相比,本发明具有以下优点:(1)本发明采用磁控溅射法沉积了一层25nm的Ag薄膜,然后通过旋涂法将前驱体(反应物)溶液涂覆到Ag薄膜上制备出前驱体。溅射法沉积的Ag薄膜均匀、致密,能与Mo电极很好附着在一起。(2)本发明中的Ag薄膜作为临时保护层避免了反应物溶液对Mo的侵蚀,Ag在之后会与溶质发生反应,生成ACZTS,Ag的掺入增强了CZTS的结晶性并增大了晶粒尺寸,最终提高器件的开路电压,提升太阳电池的光电转换效率。
附图说明
附图不意在按比例绘制。在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。
图1为本发明所述的银掺杂铜锌锡硫薄膜太阳电池的结构示意图。
图2为本发明所述的吸收层的结构示意图。
图3为本发明实施例1制备的银掺杂铜锌锡硫薄膜的X射线衍射谱。
图4为本发明实施例1制备的银掺杂铜锌锡硫薄膜的拉曼光谱。
图5为本发明实施例1制备的银掺杂铜锌锡硫薄膜的扫描电子显微镜表面图。
图6为本发明实施例1制备的银掺杂铜锌锡硫薄膜的扫描电子显微镜截面图。
图7为实施例2制备的银掺杂铜锌锡硫薄膜太阳电池和传统铜锌锡硫薄膜太阳电池的J-V曲线对比图。
图8为实施例3制备的银掺杂铜锌锡硫薄膜太阳电池和传统铜锌锡硫薄膜太阳电池的EQE曲线对比图。
附图中的标号为:1-玻璃衬底、2-背电极、3-吸收层、4-缓冲层、5-透明导电窗口层、6-顶电极。
具体实施方式
为了使本发明的沉积顺序等内容更容易被清楚理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明。
银掺杂铜锌锡硫薄膜吸收层的制备工艺包含三个步骤:第一步采用磁控溅射法溅射Ag薄膜。第二步,采用旋涂法将反应物溶液涂覆到Ag薄膜上,金属Ag和旋涂的物质共同构成前驱体。第三步将前驱体放在硫蒸气中高温发生化学反应,形成一种新的物质即银掺杂铜锌锡硫薄膜(ACZTS)。本发明就是采用溅射法制备25nm的Ag薄膜作为临时保护层,避免反应物溶液对Mo电极的侵蚀,从而提高吸收层和Mo电极的附着性。另外,Ag的掺入对CZTS薄膜的结晶性有明显提升。
结合图1、图2,本发明所述的ACZTS薄膜太阳电池由下而上包括依次连接的玻璃衬底1、背电极2、吸收层3、缓冲层4、透明导电窗口层5和顶电极6。所述背电极为双层Mo薄膜,厚度为1μm;所述吸收层3为银掺杂铜锌锡硫薄膜(ACZTS),其厚度为2000~2500nm,通过在背电极2上沉积Ag薄膜,再涂覆Cu、Zn、Sn,最后经高温硫化得到;缓冲层4为CdS薄膜,厚度为50~60nm;透明导电窗口层5为依次沉积的60~80nm的本征ZnO薄膜和500~600nm的ZnO:Al薄膜;上电极6为蒸镀的银电极。
本发明的原理在于:先采用磁控溅射法沉积Ag薄膜,Ag与Mo形成均匀、致密的薄膜。涂覆前驱体即反应物溶液时,Ag作为临时的保护层与溶液接触,并在后续的硫化退火过程中与溶液中的Cu、Zn、Sn和S物质发生反应,进一步提高吸收层的致密性。另外,Ag作为一种掺杂物质,对CZTS本身的结晶性、均匀性和致密性都有一定的提升,并最终提升电池的光电转换效率。
实施例1
(1)衬底清洗:
将钠钙玻璃依次用去污粉、洗衣粉清洗,然后放入酒精、丙酮中各超声30分钟。之后用去离子水冲洗3~4遍,使用Ⅰ号液(体积比为氨水:过氧化氢:水=1:2:5)、Ⅱ号液(体积比为盐酸:过氧化氢:水=1:2:8)加热煮沸10分钟。最后待样品冷却后用去离子水冲洗并用氮气吹干;
(2)沉积背电极:
将清洗好的样品放入磁控溅射腔室内,抽真空至5×10-4pa。再通入气体流量5.5 sccm的高纯氩气作为工作气体。调整基片台转速为8.0rpm。采用直流法溅射高、低阻层的双层Mo薄膜作为背电极,首先溅射高阻层Mo薄膜,溅射功率为250W,工作气压为1.2Pa,溅射时间为15min;接着溅射低阻层Mo薄膜,溅射功率为250W,工作气压为0.3Pa,溅射时间为50min。
(3)沉积Ag薄膜:
在Mo电极上,采用射频溅射法,溅射一层25nm厚的Ag薄膜。溅射功率为100W,溅射气压为0.3Pa、开始溅射前,预溅射3min。
(4)制备前驱体薄膜:
取0.006mol乙酸铜,0.0037mol乙酸锌和0.0033mol氯化亚锡加入10mL二甲基甲酰胺溶剂中。在装有溶液的玻璃瓶中放入磁子并放置于50℃的水浴锅中封口加热15min。之后,加入0.026mol硫脲,封口,继续水浴加热50min。然后,取上述溶液放入5 mL 离心管中,8000转/分钟离心5分钟,制得前驱体溶液;
取配置好的前驱体溶液1mL 滴在25nm厚的Ag薄膜上,将匀胶机调转速调至4000转/分钟,甩胶20秒。最后将样品放置于300℃加热盘保温5min。此步骤重复5次,制得前驱体薄膜。
(5)制备吸收层:
先将所制得的前驱体薄膜放入20cm长的石墨舟中,加入0.5g硫粉,然后将石墨舟放入管式炉中通入N2作为保护气体,气体流量为20sccm。升温速率12℃/min,升温至560℃后保温45min。前驱体在加热硫化过程中往往伴随着体积膨胀。因此,待硫化后自然冷却至室温即可制得厚度为2000nmnm的ACZTS吸收层。
(6)沉积CdS缓冲层:
取10mL 浓度为0.01mol/L乙酸镉、12mL 浓度为1mol/L的硫脲、8mL 浓度为1mol/L乙酸铵和15mL度为25~28%氨水加入450mL的去离子水中加热至80℃~85℃保持12min;后取出样品,在干燥箱干燥,得到沉积厚度为50~60nm的CdS缓冲层。
(7) 沉积透明导电窗口层:
采用射频溅射法溅射一层60~80nm的本征ZnO薄膜和一层500~600nm的ZnO:Al薄膜,其中,本征ZnO薄膜的溅射功率为60~80W,溅射气压为0.3~0.5Pa;ZnO:Al薄膜的溅射功率为60~80W,溅射气压为0.3~0.5Pa。
(8)采用电子束蒸发法制备顶电极。
图3为实施例1制备的ACZTS薄膜的X射线衍射谱图,从图中可以看出所制备的ACZTS与CZTS的标准衍射峰吻合(JCPDS: 26-0575),并在(112)、(220)、(312)择优生长,说明25nm的Ag掺杂对CZTS的衍射峰位并未造成太大影响。图中衍射峰较高,半高宽较窄,说明结晶性更好。图4为实施例1制备的ACZTS薄膜拉曼谱图。该图显示位于251cm-1、287cm-1、338cm-1和373cm-1波数处出现了特征散射峰,经过比对,这些峰均为CZTS薄膜的Raman特征峰,无其他二次相的散射峰。从图3和图4中均未发现Ag和Ag2S峰位,说明了Ag原子很好的掺入CZTS的晶格中。图5和图6分别为实施例1制备的ACZTS薄膜的场发射扫描电镜表面图和截面图。图5表面图和图6截面图显示实施例1制备的ACZTS薄膜表面平整、无孔洞且Mo电极与吸收层结合紧密,晶粒尺寸在0.8μm~2.0μm,晶粒尺寸大,晶界较少 ,这对载流子传输非常有利。
实施例2
实施例2与实施例1的区别在于,实施例1的ACZTS吸收层厚度为2000nm,实施例2的ACZTS吸收层厚度为2300nm。本实施例为了说明,在Ag薄膜厚度不变的情况下,采用同样的工艺条件和步骤,即使改变了吸收层ACZTS的厚度,一样可以得到具有大的晶粒尺寸、高的开路电压的ACZTS薄膜太阳电池。这就说明通过加入Ag薄膜,可以显著增大吸收层的晶粒尺寸,从而提高器件的开路电压和光电转换效率。
实施例结果:结合图7,实施例2制备的ACZTS电池和传统CZTS电池的J-V曲线对比图表明:Ag掺入CZTS显著提高了CZST太阳电池的电学性能,Jsc从10.356mA/cm2增长到14.357mA/cm2,Voc从543mV增长到631mV,Eff从2.02%增长到3.43%。结合图8,ACZTS在450nm~750nm之间的吸收较CZTS明显增强。采用溅射法在底部掺Ag并结合溶液法制备ACZTS吸收层,显著的增强了吸收层与Mo电极的附着强度,有利于载流子的传输,从而提高了器件的短路电流。Ag的掺入增大了CZTS带隙,从而提高开路电压。从上述实施例和本发明所描述的方案可知,本发明通过增加一层银薄膜,解决了溶液法制备CZST吸收层与Mo电极附着性差的问题,最终对CZTS薄膜太阳电池性能有明显的提升。
以上的具体实施例,对本发明的目的、技术方案和优点进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种银掺杂铜锌锡硫薄膜太阳电池,其特征在于,包括依次连接的玻璃衬底(1)、背电极(2)、吸收层(3)、缓冲层(4)、透明导电窗口层(5)和顶电极(6),所述吸收层(3)为银掺杂铜锌锡硫薄膜,厚度为2000nm~2500nm。
2.如权利要求1所述的太阳电池,其特征在于,所述背电极(2)为双层Mo薄膜,包括高阻层Mo薄膜和低阻层Mo薄膜,其总厚度为1μm。
3.如权利要求1所述的太阳电池,其特征在于,所述缓冲层(4)为CdS薄膜,厚度为50~60nm。
4.如权利要求1所述的太阳电池,其特征在于,所述透明导电窗口层(5)为依次沉积的60~80nm的本征ZnO薄膜和500~600nm的ZnO:Al薄膜。
5.如权利要求1所述的太阳电池,其特征在于,所述的吸收层(3)通过在背电极(2)上沉积一层25nm厚的Ag薄膜,再在Ag薄膜上采用旋涂法涂覆铜锌锡前驱体溶液,最后经高温硫化制得。
6.如权利要求1-5任一所述的银掺杂铜锌锡硫薄膜太阳电池的制备方法,其特征在于,包括以下步骤:
(1)在洁净的钠钙玻璃衬底上采用直流法溅射双层Mo薄膜作为背电极;
(2)在背电极上,采用射频法溅射沉积一层25nm厚的Ag薄膜;
(3)在Ag薄膜上采用旋涂法制备前驱体薄膜;
(4)对前驱体薄膜进行高温硫化制得吸收层;
(5)在吸收层上,采用化学水浴法沉积CdS薄膜作为缓冲层;
(6) 在缓冲层上,采用射频溅射法溅射一层本征ZnO薄膜和一层ZnO:Al薄膜作为透明导电窗口层;
(7)在透明导电窗口层上,采用电子束蒸发法制备银电极作为顶电极。
7.如权利要求6所述的方法,其特征在于,步骤 (2) 中,沉积Ag薄膜时,Ag靶的溅射功率为100W,溅射气压为0.3Pa,溅射厚度为25nm。
8.如权利要求6所述的方法,其特征在于,步骤(3)中,在Ag薄膜上采用旋涂法涂覆铜锌锡前驱体溶液制备前驱体薄膜。
9.如权利要求6或8所述的方法,其特征在于,步骤(3)中,前驱体薄膜具体制备步骤如下:取1mL前驱体溶液滴在Ag薄膜上,将匀胶机调至4000转/分钟,甩胶20秒,再于300℃下保温5min,将旋涂、甩胶、保温三个步骤重复5~6次即得前驱体薄膜。
10.如权利要求9所述的方法,其特征在于,前驱体溶液通过如下步骤制备:取0.006mol乙酸铜,0.0037mol乙酸锌和0.0033mol氯化亚锡加入10mL二甲基甲酰胺溶剂中,于50℃的水浴下封口加热15min,加入0.026mol硫脲,封口,继续水浴加热50min,取上述溶液放入离心管中,8000转/分钟离心5分钟。
CN201911407581.XA 2019-12-27 2019-12-27 一种银掺杂铜锌锡硫薄膜太阳电池及其制备方法 Pending CN111092130A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911407581.XA CN111092130A (zh) 2019-12-27 2019-12-27 一种银掺杂铜锌锡硫薄膜太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911407581.XA CN111092130A (zh) 2019-12-27 2019-12-27 一种银掺杂铜锌锡硫薄膜太阳电池及其制备方法

Publications (1)

Publication Number Publication Date
CN111092130A true CN111092130A (zh) 2020-05-01

Family

ID=70397851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911407581.XA Pending CN111092130A (zh) 2019-12-27 2019-12-27 一种银掺杂铜锌锡硫薄膜太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN111092130A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540796A (zh) * 2020-05-15 2020-08-14 东莞市中天自动化科技有限公司 高附着力的太阳能电池背电极和吸收层结构及制作工艺
CN112225468A (zh) * 2020-10-13 2021-01-15 天津理工大学 电沉积法与溶胶凝胶法相结合制备czts吸收层的方法
CN112301387A (zh) * 2020-10-13 2021-02-02 天津理工大学 一种新型大晶粒aczts吸收层的制备方法
CN113972301A (zh) * 2021-10-20 2022-01-25 南开大学 铜基薄膜太阳电池及其制备方法
CN114447128A (zh) * 2022-01-29 2022-05-06 江西理工大学 一种基于无硫源前驱体制备锌黄锡矿结构薄膜太阳能电池吸收层的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400903A (zh) * 2013-08-15 2013-11-20 吉林大学 一种提高铜锌锡硫薄膜晶粒尺寸和致密度的制备方法
CN103606591A (zh) * 2013-11-13 2014-02-26 福州大学 一种太阳电池吸收层材料铜锌锡硫薄膜的制备方法
KR20180034274A (ko) * 2016-09-27 2018-04-04 재단법인대구경북과학기술원 은이 첨가된 czts계 박막 태양전지 및 이의 제조방법
CN108257852A (zh) * 2018-01-16 2018-07-06 北京工业大学 一种银掺杂铜锌锡硫薄膜太阳能电池吸收层的制备方法
CN110176517A (zh) * 2019-04-22 2019-08-27 云南师范大学 结构优化的银掺杂铜锌锡硫薄膜太阳电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400903A (zh) * 2013-08-15 2013-11-20 吉林大学 一种提高铜锌锡硫薄膜晶粒尺寸和致密度的制备方法
CN103606591A (zh) * 2013-11-13 2014-02-26 福州大学 一种太阳电池吸收层材料铜锌锡硫薄膜的制备方法
KR20180034274A (ko) * 2016-09-27 2018-04-04 재단법인대구경북과학기술원 은이 첨가된 czts계 박막 태양전지 및 이의 제조방법
CN108257852A (zh) * 2018-01-16 2018-07-06 北京工业大学 一种银掺杂铜锌锡硫薄膜太阳能电池吸收层的制备方法
CN110176517A (zh) * 2019-04-22 2019-08-27 云南师范大学 结构优化的银掺杂铜锌锡硫薄膜太阳电池及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540796A (zh) * 2020-05-15 2020-08-14 东莞市中天自动化科技有限公司 高附着力的太阳能电池背电极和吸收层结构及制作工艺
CN111540796B (zh) * 2020-05-15 2022-06-03 东莞市中天自动化科技有限公司 高附着力的太阳能电池背电极和吸收层结构及制作工艺
CN112225468A (zh) * 2020-10-13 2021-01-15 天津理工大学 电沉积法与溶胶凝胶法相结合制备czts吸收层的方法
CN112301387A (zh) * 2020-10-13 2021-02-02 天津理工大学 一种新型大晶粒aczts吸收层的制备方法
CN113972301A (zh) * 2021-10-20 2022-01-25 南开大学 铜基薄膜太阳电池及其制备方法
CN113972301B (zh) * 2021-10-20 2024-04-30 南开大学 铜基薄膜太阳电池及其制备方法
CN114447128A (zh) * 2022-01-29 2022-05-06 江西理工大学 一种基于无硫源前驱体制备锌黄锡矿结构薄膜太阳能电池吸收层的方法
CN114447128B (zh) * 2022-01-29 2024-04-23 江西理工大学 一种基于无硫源前驱体制备锌黄锡矿结构薄膜太阳能电池吸收层的方法

Similar Documents

Publication Publication Date Title
CN111092130A (zh) 一种银掺杂铜锌锡硫薄膜太阳电池及其制备方法
US7632701B2 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
CN107369766B (zh) 一种高质量金属氧化物电子传输层的钙钛矿太阳电池及其制备方法
CN108447936B (zh) 一种锑基双结叠层太阳电池的制备方法
CN107946393B (zh) 基于SnTe作为背电极缓冲层的CdTe薄膜太阳能电池及其制备方法
CN110176517B (zh) 结构优化的银掺杂铜锌锡硫薄膜太阳电池及其制备方法
CN113078239B (zh) 一种硒化锑薄膜太阳电池及其制备方法
CN115241386A (zh) 一种钙钛矿太阳能电池及其制备方法
EP2867931A1 (en) Photovoltaic device and method of fabricating thereof
CN105355699B (zh) 一种多结多叠层碲化镉薄膜太阳能电池及其制备方法
CN111009589A (zh) 氮化铜薄膜太阳能电池及其制备方法
CN110085683A (zh) 无掺杂晶体硅异质结太阳能电池及其制备方法
CN113745359A (zh) 一种碲化镉梯度吸收层的制备方法及太阳电池
CN111029466B (zh) 一种无载流子传输层的钙钛矿太阳能电池及其制备方法
CN110165020B (zh) 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN116154007A (zh) 过渡金属掺杂MoSe2膜及其制备方法和应用、CZTSSe电池
CN113410340B (zh) CZTSSe薄膜太阳能电池吸收层改性方法
KR20150035298A (ko) Czts계 태양전지의 박막 제조방법 및 이로부터 제조된 태양전지
CN109841697B (zh) 一种基于CuO/Se复合材料薄膜的太阳能电池
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
CN114784138A (zh) 一种铜锌锡硫薄膜太阳能电池光吸收层及其制备方法、铜锌锡硫薄膜太阳能电池
CN114122169A (zh) 一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法及应用
CN113078224A (zh) 透明导电玻璃铜铟硒薄膜太阳能电池器件及其制备方法与应用
CN112259639A (zh) 一种应用于玻璃衬底cigs薄膜太阳电池的低成本制备方法
CN114093862A (zh) 一种半透明钙钛矿/柔性cigs四端叠层太阳电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200501

RJ01 Rejection of invention patent application after publication