CN116154007A - 过渡金属掺杂MoSe2膜及其制备方法和应用、CZTSSe电池 - Google Patents

过渡金属掺杂MoSe2膜及其制备方法和应用、CZTSSe电池 Download PDF

Info

Publication number
CN116154007A
CN116154007A CN202211304614.XA CN202211304614A CN116154007A CN 116154007 A CN116154007 A CN 116154007A CN 202211304614 A CN202211304614 A CN 202211304614A CN 116154007 A CN116154007 A CN 116154007A
Authority
CN
China
Prior art keywords
film
transition metal
cztsse
mose
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211304614.XA
Other languages
English (en)
Inventor
符俊杰
寇东星
武四新
郑直
高迁迁
崔长城
王梦阳
马琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuchang University
Original Assignee
Xuchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuchang University filed Critical Xuchang University
Priority to CN202211304614.XA priority Critical patent/CN116154007A/zh
Publication of CN116154007A publication Critical patent/CN116154007A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing

Abstract

本发明提供了一种过渡金属掺杂MoSe2膜及其制备方法和应用、CZTSSe电池。该过渡金属掺杂MoSe2膜厚度为60‑90nm,过渡金属为V、Nb或Ta。其制备为:1)在Mo薄膜表面沉积一层过渡金属膜;2)将沉积过渡金属膜的Mo薄膜与过量硒粒一起密封后,在惰性气体氛围下进行热退火处理,自然冷却至室温即得过渡金属掺杂MoSe2膜。本发明通过在MoSe2中掺杂过渡金属元素,用于CZTSSe电池中时,促使CZTSSe吸收层和MoSe2由肖特基接触转变成欧姆接触,降低背界面载流子传输势垒,降低界面复合,提高器件的光电转换效率,所得CZTSSe太阳能电池背界面势垒较低,光电转换效率有明显提升。

Description

过渡金属掺杂MoSe2膜及其制备方法和应用、CZTSSe电池
技术领域
本发明涉及太阳能电池领域,具体涉及一种过渡金属掺杂MoSe2膜及其制备方法和应用、CZTSSe电池。
背景技术
铜锌锡硫薄膜太阳能电池(即CZTSSe太阳能电池)是以多晶CZTSSe半导体薄膜为吸收层的太阳电池。典型的CZTSSe电池结构包括钠钙玻璃衬底、Mo背电极、MoSe2界面层、CZTSSe吸收层、CdS缓冲层、本征ZnO和ITO窗口层以及Ag顶电极组成。
CZTSSe太阳能电池具有铜铟镓硒(CIGS)类似的器件结构,并使用含有镀Mo薄膜基底作为背接触。不同之处在于CZTSSe/Mo界面处存在较大电荷提取势垒,引起载流子复合损失导致器件中较大的开路电压损失。背接触不仅对吸收层薄膜的质量起着重要作用,而且对器件中载流子的传输和分离也起着关键作用。然而,CZTSSe在高温硒化过程中由于背界面处的化学热力学稳定性低和较低形成能的硒空位,容易在背界面处形成较厚的弱n型MoSe2。弱n型MoSe2的功函数小于p型CZTSSe,在MoSe2/CZTSSe界面形成异质结;向上的能带弯曲和高界面传输势垒,不利于空穴从吸收层到钼背电极的转移。此外,弱背电场导致光生电子向前界面传输的驱动力不足,空穴和电子在背界面的严重复合最终导致开路电压损失。肖特基接触的n-MoSe2/p-CZTSSe界面会产生非理想的背界面势垒高度,这会增加器件的串联电阻并降低填充因子。
因此,如何将CZTSSe吸收层和MoSe2由肖特基接触转变成欧姆接触,降低背界面载流子传输势垒,降低界面复合,提高器件的光电转换效率是当务之急。
发明内容
本发明提出了一种过渡金属掺杂MoSe2膜及其制备方法和应用、CZTSSe电池,该过渡金属掺杂MoSe2膜作为背界面层用于CZTSSe电池中时,有效提高了电池的光电转换效率。
为了解决上述技术问题,本发明采用以下技术方案:
提供一种过渡金属掺杂MoSe2膜,所述膜厚度为60-90nm,所述过渡金属为V、Nb或Ta。
按上述方案,所述过渡金属掺杂量为8~12%。掺杂量指即过渡金属占过渡金属掺杂MoSe2膜的质量百分比。
提供一种上述过渡金属掺杂MoSe2膜的制备方法,具体包括以下步骤:
1)在Mo膜表面沉积一层过渡金属膜;
2)将步骤1)所得沉积过渡金属膜的Mo膜与过量硒粒一起密封后,在惰性气体氛围下进行热退火处理,自然冷却至室温即得过渡金属掺杂MoSe2膜。
按上述方案,所述步骤1)中,Mo膜厚度为700~900nm。
按上述方案,所述步骤1)中,过渡金属膜厚度为4-6nm。
按上述方案,所述步骤1)中,所述过渡金属膜沉积工艺为:通过热蒸发法在Mo膜上热蒸一层过渡金属膜,其中热蒸发时将腔室抽真空至4×10-4Pa以下,热蒸发时的电流为0.8~1A,蒸发速率为
Figure SMS_1
按上述方案,所述步骤2)中,退火温度350~410℃、处理时间为5-15min,升温速率为5~9℃/s。
按上述方案,所述步骤2)中,在快速升温炉中进行退火处理。
按上述方案,所述步骤2)中,沉积过渡金属膜的Mo膜放置在含有硒粒的密闭石墨盒中,再将密闭石墨盒进行放入快速升温炉中进行退火处理。
提供一种上述过渡金属掺杂MoSe2膜作为背界面层在CZTSSe电池中的应用。
提供一种CZTSSe电池,包括钠钙玻璃衬底、Mo背电极、背界面层、CZTSSe吸收层、CdS缓冲层、本征ZnO和ITO薄膜窗口层以及Ag顶电极;其中,所述背界面层为上述过渡金属掺杂MoSe2膜。
按上述方案,所述Mo背电极厚度为700~900nm;CZTSSe吸收层厚度为1.4~1.6μm;CdS缓冲层厚度为40~60nm;本征ZnO厚度为40~60nm;ITO薄膜厚度为180~220nm;Ag顶电极厚度为180~220nm。
提供一种上述CZTSSe电池的制备方法,包括以下步骤:
1)在钠钙玻璃衬底表面沉积Mo背电极;
2)在步骤1)所得Mo背电极表面沉积过渡金属膜,随后与过量硒粒一起密封后,在惰性气体氛围下进行热退火处理,发生硒化反应,在Mo表面形成一层致密的过渡金属掺杂MoSe2膜作为背界面层;
3)在步骤2)所得过渡金属掺杂MoSe2膜表面依次沉积CZTSSe吸收层、CdS缓冲层、本征ZnO和ITO薄膜窗口层以及Ag顶电极,即得CZTSSe电池。
按上述方案,所述步骤1)中,通过直流磁控溅射制备Mo背电极。
按上述方案,所述步骤2)中,通过电子束热蒸法沉积过渡金属膜。
按上述方案,所述步骤3)中,CdS缓冲层采用化学浴沉积法制备;本征ZnO和ITO薄膜均由射频磁控溅射法制备;Ag顶电极由热蒸发法制备。
本发明的有益效果是:
1.本发明提供了一种过渡金属掺杂MoSe2膜,其中MoSe2可以通过掺杂过渡金属元素在价带最小值附近产生一个杂质带,导致掺杂后材料的价带上移,费米能级下移,使半导体类型呈现p型;作为背界面层用于CZTSSe电池中时,促使CZTSSe吸收层和MoSe2由肖特基接触转变成欧姆接触,降低背界面载流子传输势垒,降低界面复合,提高器件的光电转换效率。
2.本发明提供了一种过渡金属掺杂MoSe2膜的制备方法,通过在钼表面沉积一层薄的过渡金属薄膜,经过硒化后在钼表面形成一层过渡金属掺杂的MoSe2薄膜,通过简单方法在硒化过程中即实现了过渡金属的均匀掺杂,具有工业化应用前景。
3.本发明提供一种CZTSSe太阳能电池,以过渡金属掺杂MoSe2膜作为背界面层,背界面势垒较低,电池光电转换效率有显著提升。
附图说明
图1是本发明实施例中CZTSSe电池结构示意图。
图2是本发明对比例1所得MoSe2和实施例1-3所得分别V、Nb和Ta掺杂MoSe2薄膜的扫描电镜形貌图。
图3是本发明以对比例1所得未掺杂和实施例1-3所得分别V、Nb和Ta掺杂MoSe2作为背界面层的CZTSSe薄膜太阳能电池的电流-电压曲线图比较。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
提供一种V掺杂MoSe2膜的制备方法,具体包括以下步骤:
步骤一、将Mo薄膜(厚度为800nm)放置于蒸发样品台上,取适量的V块状固体放置于干锅中,热蒸发时将腔室抽真空至4×10-4Pa以下;
步骤二、设置热蒸发薄膜的厚度为5nm,热蒸发时的电流为1A,蒸发速率为
Figure SMS_2
步骤三、将步骤二中得到沉积V后的薄膜放置于含有0.6g硒粒的方形密闭石墨盒中;
步骤四:把步骤三中石墨盒放入快速升温炉中在氮气环境下进行热退火处理,设置参数为1min从25℃升温至380℃,处理时间为10min。待自然冷却至室温后将薄膜取出,即得V掺杂MoSe2膜,厚度为80nm;按质量百分比计,掺杂元素V占V掺杂MoSe2膜的10.31%。
实施例2
提供一种Nb掺杂MoSe2膜的制备方法,具体包括以下步骤:
步骤一、将Mo薄膜(厚度为800nm)放置于蒸发样品台上,取适量的Nb块状固体放置于干锅中,热蒸发时将腔室抽真空至4×10-4Pa以下;
步骤二、设置热蒸发薄膜的厚度为5nm,热蒸发时的电流为1A,蒸发速率为
Figure SMS_3
步骤三、将步骤二中得到沉积Nb后的薄膜放置于含有0.6g硒粒的方形密闭石墨盒中;
步骤四:把步骤三中石墨盒放入快速升温炉中进行热退火处理,设置参数为1min从25℃升温至380℃,处理时间为10min。待自然冷却至室温后将薄膜取出,即得Nb掺杂MoSe2膜,厚度为80nm;按质量百分比计,掺杂元素Nb占Nb掺杂MoSe2膜的10.95%。
实施例3
提供一种Ta掺杂MoSe2膜的制备方法,具体包括以下步骤:
步骤一、将制得的Mo片放置于蒸发样品台上,取适量的Ta块状固体放置于干锅中,热蒸发时将腔室抽真空至4×10-4Pa以下;
步骤二、设置热蒸发薄膜的厚度为5nm,热蒸发时的电流为1A,蒸发速率为
Figure SMS_4
/>
步骤三、将步骤二中得到沉积Ta后的薄膜放置于含有0.6g硒粒的方形密闭石墨盒中;步骤四:把步骤三中石墨盒放入快速升温炉中进行热退火处理,设置参数为1min从25℃升温至380℃,处理时间为10min。待自然冷却至室温后将薄膜取出,即得Ta掺杂MoSe2膜,厚度为80nm;按质量百分比计,掺杂元素Ta占Ta掺杂MoSe2膜的11.02%。
实施例4
提供一种CZTSSe电池,具体结构为:钠钙玻璃衬底、Mo背电极、V掺杂MoSe2界面层(实施例1制备所得V掺杂MoSe2膜)、CZTSSe吸收层、CdS缓冲层、本征ZnO和ITO薄膜窗口层以及Ag顶电极(结构如图1所示)。
所述CZTSSe电池具体制备包括以下步骤:
步骤一、清洗钠盖玻璃基底。依次采用洗洁精、去离子水、甲醇、丙酮、异丙醇超声清晰钠盖玻璃30min,随后放置于真空干燥箱中烘干备用。
步骤二、沉积Mo背电极。Mo电极往往是采用溅射法沉积在SLG基底上,在溅射过程中需要控制真空度以保证Mo和钠钙玻璃基底良好的结合力。目前镀钼工艺是采用两层工艺来制备,第一层Mo薄膜的厚度约为300nm,Ar气流量为7mTorr,溅射功率为100watts,溅射时间32min;第二层Mo薄膜的厚度约为500nm,Ar气流量为3mTorr,溅射功率为170watts,溅射时间35min。气压较高时,Mo层与基底有较好的结合力和较大的电阻率;气压较低时,Mo层的附着力会下降但是电阻率也会降低。
步骤三、制备V掺杂MoSe2背界面层,具体步骤同实施例1。
步骤四、制备CZTSSe前驱体溶液。首先,将1.65mmol铜粉、1.13mmol锌粉、1.08mmol锡粉、0.69mmol硒粉和4.01mmol硫粉依次加入25mL圆底烧瓶。通入氩气30min,以排尽烧瓶中的空气。接着加入5mL乙二胺和0.5m乙二硫醇。最后,将圆底烧瓶密封后放入加热套中60℃磁力搅拌数2h,直至全部估计金属粉末完全溶解,形成均一稳定的CZTSSe前驱体溶液。
步骤五、制备CZTSSe吸收层薄膜。采用旋涂法将前驱体溶液涂敷在含有V掺杂MoSe2薄膜样品上,在3000r/min的条件下旋涂30s,接着立即把薄膜样品放置于预先加热到310℃的热台上煅烧2min。重复旋涂和预退火处理工艺,直至前驱体薄膜厚度达到1.5μm。最后把前驱体薄膜放入含有0.6g硒粒的方形石墨盒中进行高温硒化处理,处理温度为550℃,处理时间为15min,升温速率为9℃/s,氮气气流量为80sccm。自然降温冷却后取出即得CZTSSe吸收层薄膜。
步骤六、制备CdS缓冲层。采用传统的化学浴沉积法制备CdS缓冲层薄膜。首先称取0.0768g硫酸镉加入含有250mL三次水的烧杯中,完全溶解后加入12.5mL氨水。随后将硒化后的吸收层薄膜浸没在上述溶液中,5min后加入0.11g硫脲直至硫脲全部溶解。最后,将含有混合溶液的烧杯放入65℃的恒温水浴锅中以500r/min的速度搅拌,沉积时间约10min,厚度为50nm。将沉积好的样品用去离子水冲洗5min去除残留的CdS颗粒,并用氮气吹干。
步骤七、制备本征ZnO和ITO窗口层。具体实验参数如下:采用磁控溅射沉积50nm的本征ZnO薄膜,Ar气流量为5mTorr,溅射功率为80watts,溅射时间为1500s;磁控溅射沉积200nm的ITO薄膜,Ar气流量为1mTorr,溅射功率为75watts,时间为;2500s。
步骤八、制备Ag顶电极。采用热蒸发法在窗口层上沉积一层Ag顶电极,Ag电极厚度为200nm,蒸发电流为12A,时间为3min。即得CZTSSe电池。
实施例5
提供一种CZTSSe电池,具体结构为:钠钙玻璃衬底、Mo背电极、Nb掺杂MoSe2界面层(实施例2制备所得Nb掺杂MoSe2膜)、CZTSSe吸收层、CdS缓冲层、本征ZnO和ITO薄膜窗口层以及Ag顶电极(结构如图1所示)。
所述CZTSSe电池具体制备步骤同实施例4,不同之处在于本实施例为Nb掺杂MoSe2界面层。
实施例6
提供一种CZTSSe电池,具体结构为:钠钙玻璃衬底、Mo背电极、Ta掺杂MoSe2界面层(实施例3制备所得Ta掺杂MoSe2膜)、CZTSSe吸收层、CdS缓冲层、本征ZnO和ITO薄膜窗口层以及Ag顶电极(结构如图1所示)。
所述CZTSSe电池具体制备步骤同实施例4,不同之处在于本实施例为Ta掺杂MoSe2界面层。
对比例1
对比例与实施例4除MoSe2界面层外,电池其他各层制备条件基本相同,对比例采用未掺杂的MoSe2界面层。
图2为对比例1制备的未掺杂MoSe2薄膜和实施例1-3中制备所得分别含有V、Nb和Ta掺杂MoSe2薄膜的扫描电镜形貌对比图,从中可以看出,掺杂前后MoSe2薄膜表面形貌发生明显变化;实施例中经过V、Nb或Ta掺杂后MoSe2薄膜更加致密规则。
图3为以对比例1未掺杂和实施例1-3中分别V、Nb和Ta掺杂MoSe2作为背界面层的CZTSSe薄膜太阳能电池的电流-电压曲线图比较。从图中可以看出,实施例4中V掺杂MoSe2的CZTSSe薄膜太阳能电池开路电压(Voc)为470.43mV,短路电流密度(Jsc)为37.18mA/cm2,填充因子(FF)为65.97%,光电转换效率为11.54%;实施例5中Nb掺杂MoSe2的CZTSSe薄膜太阳能电池开路电压(Voc)为478.67mV,短路电流密度(Jsc)为37.28mA/cm2,填充因子(FF)为67.56%,光电转换效率为12.05%;实施例6中Ta掺杂MoSe2的CZTSSe薄膜太阳能电池开路电压(Voc)为487.01mV,短路电流密度(Jsc)为38.14mA/cm2,填充因子(FF)为68.51%,光电转换效率为12.72%;
下述表1为实施例4-6与对比例1制备得到的CZTSSe太阳能电池各参数对比。
表1实施例4-6与对比例1所得CZTSSe太阳能电池的各参数对比
Figure SMS_5
从表1可以看出,本发明实施例所得V、Nb或Ta掺杂MoSe2作为背界面层制备的CZTSSe电池与对比例相比,器件的短路电流密度、开路电压和填充因子均有不同程度的提高。其中Ta掺杂MoSe2界面层的CZTSSe器件PCE从10.82%(457.83mV,36.64mA/cm2和64.51%)提高到12.72%(487.01mV,38.13mA/cm2和68.52%),这主要是归因于Voc和FF的显著增加。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种过渡金属掺杂MoSe2膜,其特征在于,所述膜厚度为60-90nm,所述过渡金属为V、Nb或Ta。
2.根据权利要求1所述的过渡金属掺杂MoSe2膜,其特征在于,所述过渡金属掺杂量为8~12%。
3.一种权利要求1-2任一项所述的过渡金属掺杂MoSe2膜的制备方法,其特征在于,具体包括以下步骤:
1)在Mo膜表面沉积一层过渡金属膜;
2)将步骤1)所得沉积过渡金属膜的Mo膜与过量硒粒一起密封后,在惰性气体氛围下进行热退火处理,自然冷却至室温即得过渡金属掺杂MoSe2膜。
4.根据权利要求3所述的制备方法,其特征在于,所述步骤1)中,Mo膜厚度为700~900nm。
5.根据权利要求3所述的制备方法,其特征在于,所述步骤1)中,过渡金属膜厚度为4-6nm。
6.根据权利要求3所述的制备方法,其特征在于,所述步骤2)中,退火温度350~410℃、处理时间为5-15min,升温速率为5~9℃/s。
7.一种权利要求1-2任一项所述的过渡金属掺杂MoSe2膜作为背界面层在CZTSSe电池中的应用。
8.一种CZTSSe电池,其特征在于,包括钠钙玻璃衬底、Mo背电极、背界面层、CZTSSe吸收层、CdS缓冲层、本征ZnO和ITO薄膜窗口层以及Ag顶电极;其中所述背界面层为权利要求1-2任一项所述的过渡金属掺杂MoSe2膜。
9.根据权利要求8所述的CZTSSe电池,其特征在于,所述Mo背电极厚度为700~900nm;CZTSSe吸收层厚度为1.4~1.6μm;CdS缓冲层厚度为40~60nm;本征ZnO厚度为40~60nm;ITO薄膜厚度为180~220nm;Ag顶电极厚度为180~220nm。
10.一种权利要求8所述的CZTSSe电池的制备方法,其特征在于,包括以下步骤:
1)在钠钙玻璃衬底表面沉积Mo背电极;
2)在步骤1)所得Mo背电极表面沉积过渡金属膜,随后与过量硒粒一起密封后,在惰性气体氛围下进行热退火处理,在Mo背电极表面形成一层致密的过渡金属掺杂MoSe2膜作为背界面层;
3)在步骤2)所得过渡金属掺杂MoSe2膜表面依次沉积CZTSSe吸收层、CdS缓冲层、本征ZnO和ITO薄膜窗口层以及Ag顶电极,即得CZTSSe电池。
CN202211304614.XA 2022-10-24 2022-10-24 过渡金属掺杂MoSe2膜及其制备方法和应用、CZTSSe电池 Pending CN116154007A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211304614.XA CN116154007A (zh) 2022-10-24 2022-10-24 过渡金属掺杂MoSe2膜及其制备方法和应用、CZTSSe电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211304614.XA CN116154007A (zh) 2022-10-24 2022-10-24 过渡金属掺杂MoSe2膜及其制备方法和应用、CZTSSe电池

Publications (1)

Publication Number Publication Date
CN116154007A true CN116154007A (zh) 2023-05-23

Family

ID=86349558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211304614.XA Pending CN116154007A (zh) 2022-10-24 2022-10-24 过渡金属掺杂MoSe2膜及其制备方法和应用、CZTSSe电池

Country Status (1)

Country Link
CN (1) CN116154007A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117174593A (zh) * 2023-08-22 2023-12-05 中山大学 一种基于添加氨水制备铜锌锡硫硒薄膜前驱体溶液、铜锌锡硫硒薄膜及其光伏器件的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117174593A (zh) * 2023-08-22 2023-12-05 中山大学 一种基于添加氨水制备铜锌锡硫硒薄膜前驱体溶液、铜锌锡硫硒薄膜及其光伏器件的方法
CN117174593B (zh) * 2023-08-22 2024-04-09 中山大学 一种基于添加氨水制备铜锌锡硫硒薄膜前驱体溶液、铜锌锡硫硒薄膜及其光伏器件的方法

Similar Documents

Publication Publication Date Title
US7632701B2 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
WO2022206038A1 (zh) 一种铜锌锡硫硒半透明太阳能电池器件及其制备方法
US8110428B2 (en) Thin-film photovoltaic devices
WO2021159728A1 (zh) 叠层光伏器件及生产方法
CN111092130A (zh) 一种银掺杂铜锌锡硫薄膜太阳电池及其制备方法
CN113078239B (zh) 一种硒化锑薄膜太阳电池及其制备方法
CN104143579A (zh) 一种锑基化合物薄膜太阳能电池及其制备方法
CN116154007A (zh) 过渡金属掺杂MoSe2膜及其制备方法和应用、CZTSSe电池
CN110085683A (zh) 无掺杂晶体硅异质结太阳能电池及其制备方法
CN113745359A (zh) 一种碲化镉梯度吸收层的制备方法及太阳电池
US20200243700A1 (en) Cigs solar cell and preparation method thereof
CN113410340B (zh) CZTSSe薄膜太阳能电池吸收层改性方法
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
CN112736150B (zh) 一种铜铟镓硒薄膜太阳能电池及其制备方法
CN109841697B (zh) 一种基于CuO/Se复合材料薄膜的太阳能电池
CN111755538B (zh) 一种具有锗梯度的铜锌锡锗硒吸收层薄膜的制备方法
CN109920862B (zh) 能抑制铜锌锡硫薄膜中MoS2层的预制层结构及制备方法
CN114122169A (zh) 一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法及应用
CN113078224A (zh) 透明导电玻璃铜铟硒薄膜太阳能电池器件及其制备方法与应用
KR102057234B1 (ko) Cigs 박막 태양전지의 제조방법 및 이의 방법으로 제조된 cigs 박막 태양전지
CN112259639A (zh) 一种应用于玻璃衬底cigs薄膜太阳电池的低成本制备方法
CN114122170B (zh) 一种铜锌锡硫吸收层薄膜、制备及包含其的太阳电池
CN112563117B (zh) 一种具有硫组分梯度的铜锌锡硫硒薄膜的制备方法
CN115498052B (zh) 一种cigs太阳能电池的制备方法
CN109801980A (zh) 一种碲化镉薄膜太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination