CN113972301B - 铜基薄膜太阳电池及其制备方法 - Google Patents

铜基薄膜太阳电池及其制备方法 Download PDF

Info

Publication number
CN113972301B
CN113972301B CN202111225067.1A CN202111225067A CN113972301B CN 113972301 B CN113972301 B CN 113972301B CN 202111225067 A CN202111225067 A CN 202111225067A CN 113972301 B CN113972301 B CN 113972301B
Authority
CN
China
Prior art keywords
layer
alkali
silver
compound
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111225067.1A
Other languages
English (en)
Other versions
CN113972301A (zh
Inventor
刘玮
王超杰
姚毅峰
程世清
孙云
周志强
张毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202111225067.1A priority Critical patent/CN113972301B/zh
Publication of CN113972301A publication Critical patent/CN113972301A/zh
Application granted granted Critical
Publication of CN113972301B publication Critical patent/CN113972301B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种铜基薄膜太阳电池及其制备方法,该制备方法包括:在衬底上形成金属电极层;在金属电极层上形成光吸收层,其中,光吸收层包括依次层叠形成的银碱共掺化合物预置层和铜基化合物半导体层,银碱共掺化合物预置层形成于金属电极层上;在光吸收层上形成碱金属化合物钝化层;在碱金属化合物钝化层上形成缓冲层;在缓冲层上形成窗口层;在窗口层上形成顶电极层。基于此方法,在低温制备中够充分完成薄膜内结晶生长,有效提升器件性能。

Description

铜基薄膜太阳电池及其制备方法
技术领域
本发明涉及太阳电池领域,尤其涉及一种铜基薄膜太阳电池及其制备方法。
背景技术
近几年,光伏研究的热点之一为叠层太阳电池,以期获得更高光电转换效率的光伏组件。铜基化合物薄膜太阳电池是以铜基化合物作为光吸收层的薄膜电池,铜基化合物薄膜太阳电池性能稳定,抗辐射能力强,光电转化效率高,可应用于太空,兼容性广,可制作柔性电池等优点。其中,铜铟镓硒(GIGS)薄膜电池具有高达105cm-1的吸收系数、且光学带隙可调、电池性能稳定和高效率等优点,在铜基薄膜太阳电池中应用最为广泛。GIGS薄膜电池可以通过调控薄膜内部Ga含量的调节比例,可实现带隙在1.02~1.67eV之间变化,既可以作为叠层电池的顶电池,也可以作为低电池,因此受到广泛关注。
在GIGS薄膜电池作为顶电池时,宽带隙GIGS薄膜需要的Ga含量较高,随着薄膜内Ga含量的增加,GIGS/CdS界面由Spike结构变为Cliff结构,从而出现开路电压饱和现象,继续增加薄膜内的Ga含量,器件的开路电压不会升高,反而会引起严重的晶格畸变现象,增加薄膜内缺陷态密度,恶化宽带隙太阳电池的器件性能,制约高效电池的发展。
此外,在低温工艺(小于等于450℃)中,GIGS薄膜电池在制备过程中,无铜硒液相(生成温度为523℃)的生成,镓梯度不合理,界面复合导致器件性能损失严重。
发明内容
有鉴于此,为了较好消除晶格畸变现象,减小界面复合,提升器件开路电压和器件效率,本发明提供了一种铜基薄膜太阳电池及其制备方法,以解决至少上述问题之一。
为了实现上述目的,本发明提供了一种铜基薄膜太阳电池及其制备方法。其中,该制备方法包括:在衬底上形成金属电极层;在金属电极层上形成光吸收层,其中,光吸收层包括依次层叠形成的银碱共掺化合物预置层和铜基化合物半导体层,银碱共掺化合物预置层形成于金属电极层上;在光吸收层上形成碱金属化合物钝化层;在碱金属化合物钝化层上形成缓冲层;在缓冲层上形成窗口层;在窗口层上形成顶电极层。
根据本公开的实施例,其中,银碱共掺化合物预置层形成于金属电极层上包括:对银源、碱源和X源分别加热至银源、碱源和X源的蒸发温度,并进行共蒸发,得到银碱共掺化合物;在金属电极层上沉积银碱共掺化合物,形成银碱共掺化合物预置层。
根据本公开的实施例,其中,银源的蒸发温度为980~1200℃,碱源的蒸发温度为680~780℃,X源的蒸发温度为300~360℃;银碱共掺化合物的沉积速率为(15nm~30nm)/min;银碱共掺化合物预置层的厚度为10~100nm。
根据本公开的实施例,其中,光吸收层包括具有X、M1、M2及其组合的化合物,其中,X包括以下至少之一:硒、硫或其组合,M1包括:铜、银、碱金属;M2包括以下至少之一:铟、镓、铝、锌、锗、锡或其组合。
根据本公开的实施例,其中,镓的原子量与M2中至少两个元素的原子量总和之比大于或等于0.5,至少两个元素的原子量之和为镓与M2中除镓之外的任意元素的原子量之和;M1中的铜和银的原子量总和与M2的原子量总和之比为0.60~0.95。
根据本公开的实施例,其中,碱金属化合物钝化层通过调节碱金属氟化物蒸发源的温度和蒸发时间形成的;碱金属氟化物蒸发源的温度为330~420℃;碱金属氟化物的蒸发时间为5~15min。
根据本公开的实施例,其中,缓冲层的材料以下至少之一:CdS、ZnS、(Cd,Zn)S、Zn(O,S)、In2S3、(Zn,Mg)O;窗口层包括依次层叠的本征氧化锌层和掺杂氧化锌层,本征氧化锌层形成于缓冲层上,掺杂氧化锌层形成于本征氧化锌层上。
根据本公开的实施例,其中,光吸收层的厚度为1.5~3.5μm;碱金属化合物钝化层的厚度为10~40nm;缓冲层的厚度为30~100nm;本征氧化锌的厚度为30~150nm,掺杂氧化锌的厚度为300~1500nm。
根据本公开的实施例,其中,衬底包括:钠钙玻璃、无钠玻璃、不锈钢或聚酰亚胺,衬底的加热温度为275~450℃。
本发明还提供了一种利用上述制备方法制备的铜基薄膜太阳电池,包括:衬底,金属电极层,光吸收层,碱金属化合物钝化层,缓冲层,窗口层,顶电极层;光吸收层包括银碱硒化合物预置层和铜基化合物半导体层。
从上述技术方案可以看出,本发明提供的铜基薄膜太阳电池及其制备方法具有以下至少之一有益效果:
(1)碱金属化合物钝化层可以和光吸收层的高镓结合,有助于光吸收层表面价带下移,引起光吸收层表面空穴势垒增加,降低空穴在光吸收层表面的累积,从而有效减小光吸收层与缓冲层之间的界面复合,提升器件开路电压和器件效率。
(2)碱金属化合物对光吸收层表面进行钝化缺陷处理,改善表面粗糙度,可以有效的减薄与其接触的缓冲层厚度,增加短波吸收。
(3)银碱共掺化合物预置层可以改善整个铜基薄膜的结晶质量,降低铜基薄膜的熔点及钝化光吸收层内部体缺陷,减少了晶格失配,同时降低吸收层价带,改善宽带隙所引起的开压饱和现象,提升整体器件性能。
附图说明
图1示意性示出了根据本发明实施例的铜基薄膜太阳电池的制备方法流程图。
图2示意性示出了根据本发明实施例的铜基薄膜太阳电池的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
目前,单一带隙的太阳电池不能充分利用太阳能,即,光子能量太小不能产生电子空穴对,而能量太大的光子又只能激发出一个电子空穴对,多余的能量往往会被浪费,因此,从提高太阳电池效率的角度出发,尽可能的多吸收光子。
相关技术中,为了解决尽可能的多吸收光子这一问题,利用拓宽光伏材料对太阳光谱能量的吸收范围,例如,采用多叠层或多带隙结构,实现多光子吸收。而铜铟镓硒(GIGS)薄膜是由Ga取代CIS中部分In形成的四元化合物半导体,随着Ga/(In+Ga)的增大,其带隙在1.02~1.67eV之间可调,其带隙的变化主要来源于导带的变化,其带隙Eg满足以下公式:
Eg=1.02+0.65x+bx(x-1)
其中,x=Ga/(In+Ga),b为光学弯曲系数。这种带隙可调的特性非常适用于叠层电池。底电池吸收层的带隙一般小于1eV。作为顶电池所采用的宽带隙吸收层,其带隙值一般大于1.6eV。CIGS在较宽带隙范围内可调的特性,使得CIGS可以和不同带隙吸收层材料匹配构造叠层电池,例如Si太阳电池、钙钛矿太阳电池等。但是由于宽带隙GIGS薄膜需要的Ga含量较高,吸收层和缓冲层的界面已发生结构变化,出现开路电压饱和,引起晶格畸变。
基于上述发明构思,本发明提出了一种铜基薄膜太阳电池及其制备方法,通过在制备宽带隙铜基薄膜之前,需制备银碱硒化合物预置层,并在制备光吸收层之后,进行碱金属钝化表面处理,以实现在低温制备中能够充分完成薄膜内结晶生长,改善结晶质量,以有效提升器件性能。
图1示意性示出了根据本发明实施例的铜基薄膜太阳电池的制备方法流程图。
如图1所示,该方法可以包括操作:S101~S106。
在操作S101,在衬底上形成金属电极层。
根据本发明的实施例,衬底可以包括但不限于:钠钙玻璃、无钠玻璃、不锈钢或聚酰亚胺。
根据本发明的实施例,在形成金属电极层之前,需对衬底进行预处理,可以包括:利用去离子水,对衬底进行清洗,以去除衬底表面大颗粒杂质;再对衬底表面进行无泡沫清洗剂进一步清洗,以去除衬底表面细小颗粒、附着油污等杂质;将清洗后的衬底放入恒定温度80℃水域中,进行超声清洗30~60min,以进一步去除附着力较强的物质或离子杂质;将清洗完的衬底进行烘干,完成衬底的预处理。
根据本发明的实施例,可以采用直流溅射工艺在衬底上形成金属电极层,金属电极层可以包括钼金属电极。
根据本发明的实施例,金属电极层可以包括双层金属电极层,依次叠层第一金属电极层和第二金属电极层,第一金属电极层的溅射气压高于第二金属电极层的溅射气压,第一金属电极层形成于衬底表面,第二金属电极层形成于第一金属电极层上。
根据本发明的实施例,第一金属电极层的溅射气压可以为0.8~1.5Pa,厚度约为0.25~0.35μm;第二金属电极层的溅射气压可以为0.1~0.3Pa,厚度约为0.45~0.90μm。
根据本发明的实施例,通过在衬底上形成双层金属电极层,以便后续制备的吸收层不容易从金属电极层上脱落,同时吸收层与金属电极层之间的接触从肖特基接触转换为准欧姆接触,从而可以与吸收层之间匹配形成具有良好附着力的接触。
在操作S102,在金属电极层上形成光吸收层,其中,光吸收层包括依次层叠形成的银碱共掺化合物预置层和铜基化合物半导体层,银碱共掺化合物预置层形成于金属电极层上。
根据本发明的实施例,在形成金属电极层之后,在形成光吸收层之前,将具有金属电极层的衬底置于高真空环境中,对具有金属电极层的衬底进行升温加热至稳定且均匀的温度;再通入X源并对X源进行预设时间的加热,使得X气氛充裕,且与第二金属电极层形成X化物,并与后续形成的吸收层形成准欧姆接触,有利于电子空穴对的传输,其中,X可以包括以下至少之一:硒、硫或其组合。
根据本发明的实施例,高真空环境的真空度可以为9.9×10-4Pa~1.0×10-5Pa,衬底加热至稳定且均匀的温度可以为270~450℃,优选为430℃,X源加热温度可以为300~360℃,优选为315℃。
根据本发明的实施例,通过对具有金属电极层的衬底进行稳定且均匀的温度的加热,可以使得在制备铜基薄膜的过程中避免衬底受到加热温度不均匀的影响,从而使得铜基薄膜太阳电池的结晶大小差异较小,性能稳定。
根据本发明的实施例,在金属电极层上形成光吸收层包括:首先在金属电极层上形成银碱共掺化合物预置层,再在银碱共掺化合物预置层上形成铜基化合物半导体层,最终形成光吸收层,光吸收层的厚度可以为1.5~3.5μm。
根据本发明的实施例,形成铜基化合物半导体层可以利用共蒸发“三步法”进行制备,整个制备过程中衬底温度保持恒功率加热,保持在280~450℃,优选为430℃。需要说明的是,在制备铜基化合物半导体层时的第二步中,在保持吸收层镓的U型梯度的状态下,再进行外加镓源的蒸发,以弥补最小带隙不足,使得开路电压进行提升。
根据本发明的实施例,由于低温下镓梯度扩散不充分,造成低温下的铜基薄膜太阳电池开路电压过低,使其表面镓含量太高,引起晶格畸变,从而引起界面复合,导致开路电压损失严重,通过外加镓源的蒸发,结合银碱共掺化合物层,可以改善晶格畸变现象,减少开路电压的损耗,改善结晶质量。
在操作S103,在光吸收层上形成碱金属化合物钝化层。
根据本发明的实施例,碱金属化合物钝化层可以通过调节碱金属氟化物源的温度和蒸发时间沉积形成的,碱金属化合物钝化层的厚度可以为10~40nm。
根据本发明的实施例,碱金属氟化物源的温度可以为330~420℃,蒸发时间可以为5~15min。
根据本发明的实施例,碱金属氟化物源的温度可以为330℃、370℃、420℃,可以优选为370℃;蒸发时间可以为5min、10min、15min,可以优选为10min。
根据本发明的实施例,通过在光吸收层上制备碱金属化合物钝化层,对光吸收层进行碱处理,以便于进一步优化低温工艺下光吸收层的表面。由于低温制备的光吸收层元素扩散不足,利用碱金属化合物钝化层可以使得光吸收层表面钝化,减小界面复合,更好匹配缓冲层界面,减薄缓冲层,提升开路电压和光电流。
在操作S104,在碱金属化合物钝化层上形成缓冲层。
根据本发明的实施例,在碱金属化合物钝化层上形成缓冲的制备方法可以包括但不限于:原子层沉积法、蒸发法、溅射法;缓冲层的材料包括但不限于以下至少之一:CdS、ZnS、(Cd,Zn)S、Zn(O,S)、In2S3、(Zn,Mg)O;缓冲层的厚度可以为30~100nm。
在操作S105,在缓冲层上形成窗口层。
根据本发明的实施例,窗口层可以包括:本征氧化锌层和掺杂氧化锌层;在缓冲层上形成窗口层可以包括:利用磁控溅射法在缓冲层上形成本征氧化锌,即,高阻缓冲层,厚度可以为30~150nm;在本征氧化锌层上溅射形成掺杂氧化锌层,即,低阻缓冲层,厚度可以为300~1500nm。
根据本发明的实施例,形成本征氧化锌层的溅射工艺可以包括:溅射功率可以为70~100Wt,溅射气压可以为0.7~0.8Pa;形成掺杂氧化锌层的溅射工艺可以包括:溅射功率可以为230~240Wt,溅射气压可以为0.7~0.8Pa,本征氧化锌和掺杂氧化锌的方阻可以为5~30Ω/□。
在操作S106,在窗口层上形成顶电极层。
根据本发明的实施例,利用电子束蒸发法在窗口层的两侧进行蒸镀,形成顶电极层。
根据本发明的实施例,顶电极层的材料可以包括但不限于:金、银、铝、或镍铝合金等,顶电极层的厚度可以为0.35~3.35μm。
根据本发明的实施例,通过在制备宽带隙铜基薄膜之前,需制备银碱硒化合物预置层,并在制备光吸收层之后,制备碱金属化合物钝化层,进行碱金属钝化表面处理,以实现在低温制备中能够充分完成薄膜内结晶生长,改善结晶质量,降低铜基薄膜的熔点及光吸收层内部钝化体缺陷,减少了晶格失配,以有效提升器件性能。
根据本发明的实施例,银碱共掺化合物预置层形成于金属电极层上可以包括:对银源、碱源和X源分别加热至银源、碱源和X源的蒸发温度,并进行共蒸发,得到银碱共掺化合物;在金属电极层上沉积银碱共掺化合物,形成银碱共掺化合物预置层。
根据本发明的实施例,碱源可以包括但不限于:锂、钠、钾、铷、铯;X源可以包括以下至少之一:硒源、硫源或其组合。
根据本发明的实施例,例如,若X源为硒源,则形成的银碱共掺化合物预置层为银碱硒化合物预置层;若X源为硫源,则形成的银碱共掺化合物预置层为银碱硫化合物预置层;若X源为硒硫化合物,则形成的银碱共掺化合物预置层为银碱硒硫化合物预置层。
根据本发明的实施例,通过在制备光吸收层时,先沉积银碱共掺化合物预置层,可以改善铜基薄膜中镓梯度,提升填充因子,增加开路电压,改善结晶质量及钝化体缺陷,减少界面复合,同时也可以使得电流密度也得到较好改善。
根据本发明的实施例,对银源、碱源和X源分别在恒定功率下进行加热,银源的蒸发温度可以为980~1200℃;碱源的蒸发温度可以为680~780℃;X源的蒸发温度为300~360℃。
根据本发明的实施例,银源的预设加热温度可以为980℃、1000℃、1100℃、1200℃,可以优选为1000℃;碱源的预设加热温度可以为680℃、720℃、750℃、780℃,可以优选为720℃;X源的预设加热温度可以为300℃、320℃、340℃、360℃,可以优选为320℃。
根据本发明的实施例,银碱共掺化合物的沉积速率可以为(15nm~30nm)/min;银碱共掺化合物预置层的厚度为10~100nm。
根据本发明的实施例,光吸收层包括具有X、M1、M2及其组合的化合物,其中,X包括以下至少之一:硒、硫或其组合,M1包括:铜、银、碱金属;M2包括以下至少之一:铟、镓、铝、锌、锗、锡或其组合。
根据本发明的实施例,宽带隙可以表征为镓的原子量与M2中至少两个元素的原子量总和之比大于或等于0.5,至少两个元素的原子量之和为镓与M2中除镓之外的任意元素的原子量之和。
根据本发明的实施例,M1中的铜的和银的原子量总和与M2的原子量总和之比为0.60~0.95。
图2示意性示出了根据本发明实施例的铜基薄膜太阳电池的结构示意图。
如图2所示,由上述铜基薄膜太阳电池的制备方法制备的铜基薄膜太阳电池结构可以包括:衬底1,金属电极层2可以包括第一金属电极层2-1,第二金属电极层2-2,光吸收层3可以包括银碱共掺化合物层3-1和铜基化合物半导体层3-2,碱金属化合物钝化层4,缓冲层5,窗口层6可以包括本征氧化锌层6-1和掺杂氧化锌层6-2,顶电极层7。
根据本发明的实施例,第一金属电极层2-1的溅射气压高于第二金属电极层2-2;第一金属电极层可以为高压金属电极层,第二金属电极层可以为低压金属电极层。
还需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本发明的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本发明的理解造成混淆时,将省略常规结构或构造。
并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本发明实施例的内容。再者,单词"包含"不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面发明的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
以上的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种铜基薄膜太阳电池的制备方法,包括:
在衬底上形成金属电极层,所述衬底的加热温度为275~450℃;
在所述金属电极层上形成光吸收层,其中,所述光吸收层包括依次层叠形成的银碱共掺化合物预置层和铜基化合物半导体层,所述银碱共掺化合物预置层形成于所述金属电极层上;
在所述光吸收层上形成碱金属化合物钝化层;
在所述碱金属化合物钝化层上形成缓冲层;
在所述缓冲层上形成窗口层;
在所述窗口层上形成顶电极层;
其中,所述银碱共掺化合物预置层形成于所述金属电极层上包括:
对银源、碱源和X源分别加热至所述银源、所述碱源和所述X源的蒸发温度,并进行共蒸发,得到银碱共掺化合物,所述X包括以下至少之一:硒、硫或其组合;
在所述金属电极层上沉积所述银碱共掺化合物,形成银碱共掺化合物预置层;
其中,所述光吸收层包括具有所述X、M1、M2及其组合的化合物,其中,所述M1包括:铜、银、碱金属;所述M2包括以下至少之一:铟、镓、铝、锌、锗、锡或其组合;所述镓的原子量与所述M2中至少两个元素的原子量总和之比大于或等于0.5,所述至少两个元素的原子量之和为所述镓与所述M2中除所述镓之外的任意元素的原子量之和;所述M1中所述铜和所述银的原子量总和与所述M2的原子量总和之比为0.60~0.95。
2.根据权利要求1所述的制备方法,其中,
所述银源的蒸发温度为980~1200℃,所述碱源的蒸发温度为680~780℃,所述X源的蒸发温度为300~360℃;
所述银碱共掺化合物的沉积速率为15~30nm/min;
所述银碱共掺化合物预置层的厚度为10~100nm。
3.根据权利要求1所述的制备方法,其中,所述碱金属化合物钝化层通过调节碱金属氟化物蒸发源的温度和蒸发时间形成的;
所述碱金属氟化物蒸发源的温度为330~420℃;
所述碱金属氟化物的蒸发时间为5~15min。
4. 根据权利要求1所述的制备方法,其中,所述缓冲层的材料以下至少之一:CdS、ZnS、(Cd,Zn)S、Zn (O,S)、In2S3 、(Zn,Mg)O;
所述窗口层包括依次层叠的本征氧化锌层和掺杂氧化锌层,所述本征氧化锌层形成于所述缓冲层上,所述掺杂氧化锌层形成于所述本征氧化锌层上。
5. 根据权利要求4所述的制备方法,其中,所述光吸收层的厚度为1.5~3.5μm;所述碱金属化合物钝化层的厚度为10~40 nm;所述缓冲层的厚度为30~100nm;所述本征氧化锌层的厚度为30~150nm,所述掺杂氧化锌层的厚度为300~1500nm。
6.根据权利要求1所述的制备方法,其中,所述衬底包括:钠钙玻璃、无钠玻璃、不锈钢或聚酰亚胺。
7.一种如权利要求1~6任一项所述的制备方法制备的铜基薄膜太阳电池,包括:衬底,金属电极层,光吸收层,碱金属化合物钝化层,缓冲层,窗口层,顶电极层;
所述光吸收层包括银碱硒化合物预置层和铜基化合物半导体层。
CN202111225067.1A 2021-10-20 2021-10-20 铜基薄膜太阳电池及其制备方法 Active CN113972301B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111225067.1A CN113972301B (zh) 2021-10-20 2021-10-20 铜基薄膜太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111225067.1A CN113972301B (zh) 2021-10-20 2021-10-20 铜基薄膜太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN113972301A CN113972301A (zh) 2022-01-25
CN113972301B true CN113972301B (zh) 2024-04-30

Family

ID=79587906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111225067.1A Active CN113972301B (zh) 2021-10-20 2021-10-20 铜基薄膜太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN113972301B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190031029A (ko) * 2017-09-15 2019-03-25 한국과학기술연구원 Cigs 박막의 제조방법, 이에 의해 제조된 cigs 박막 및 이를 포함하는 태양전지
CN110061088A (zh) * 2019-04-26 2019-07-26 潮州市亿加光电科技有限公司 一种柔性基底的cigs太阳能薄膜电池及其制备方法
CN111092130A (zh) * 2019-12-27 2020-05-01 云南师范大学 一种银掺杂铜锌锡硫薄膜太阳电池及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190031029A (ko) * 2017-09-15 2019-03-25 한국과학기술연구원 Cigs 박막의 제조방법, 이에 의해 제조된 cigs 박막 및 이를 포함하는 태양전지
CN110061088A (zh) * 2019-04-26 2019-07-26 潮州市亿加光电科技有限公司 一种柔性基底的cigs太阳能薄膜电池及其制备方法
CN111092130A (zh) * 2019-12-27 2020-05-01 云南师范大学 一种银掺杂铜锌锡硫薄膜太阳电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hisham Aboulfadl等."Alkali Dispersion in (Ag,Cu)(In,Ga)Se2 Thin Film Solar Cells—Insight from Theory and Experiment".《ACS Applied Materials & Interfaces》.2021,第13卷(第6期),第7188-7199页. *
Zhaojing Hu等."Incorporation of Ag into Cu(In,Ga)Se2 films in low-temperature process".《Chinese Optics Letters》.2021,第19卷(第11期),第114001-1—114001-6页. *

Also Published As

Publication number Publication date
CN113972301A (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
Olaleru et al. Perovskite solar cells: The new epoch in photovoltaics
US8889468B2 (en) Method and structure for thin film tandem photovoltaic cell
US20090194165A1 (en) Ultra-high current density cadmium telluride photovoltaic modules
KR101893411B1 (ko) 황화아연 버퍼층을 적용한 czts계 박막 태양전지 제조방법
KR101908475B1 (ko) 산화막 버퍼층을 포함하는 czts계 박막 태양전지 및 이의 제조방법
TW201108425A (en) Solar cell and fabrication method thereof
JP4394366B2 (ja) 両面受光太陽電池
US20170243999A1 (en) Solar cell
US20120180858A1 (en) Method for making semiconducting film and photovoltaic device
Brémaud Investigation and development of CIGS solar cells on flexible substrates and with alternative electrical back contacts
JP2017059828A (ja) 光電変換素子および太陽電池
CN113972301B (zh) 铜基薄膜太阳电池及其制备方法
JP2017059656A (ja) 光電変換素子および太陽電池
OMID et al. State of the art review on the Cu (In, Ga) Se2 thinfilm solar cells
JP2000012883A (ja) 太陽電池の製造方法
TWI430466B (zh) 高效率碲化鎘薄膜太陽能電池之元件結構
KR102284740B1 (ko) CZTSSe계 광흡수층의 제조방법 및 이를 포함하는 태양전지의 제조방법
KR20090065894A (ko) 탠덤 구조 cigs 태양전지 및 그 제조방법
KR20170036606A (ko) 이중 광흡수층을 포함하는 czts계 박막 태양전지
CN112259639A (zh) 一种应用于玻璃衬底cigs薄膜太阳电池的低成本制备方法
US20200091365A1 (en) Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
WO2019180892A1 (ja) 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JPH11224953A (ja) 光起電力装置及びその製造方法
CN110061075A (zh) 一种金属Na掺杂的CIGS太阳能电池及其制备方法
US20180240918A1 (en) Photovoltaic devices including a chalcogenide-containing photovoltaic light-absorber, and related methods of making

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant