CN111009589A - 氮化铜薄膜太阳能电池及其制备方法 - Google Patents

氮化铜薄膜太阳能电池及其制备方法 Download PDF

Info

Publication number
CN111009589A
CN111009589A CN201911106109.2A CN201911106109A CN111009589A CN 111009589 A CN111009589 A CN 111009589A CN 201911106109 A CN201911106109 A CN 201911106109A CN 111009589 A CN111009589 A CN 111009589A
Authority
CN
China
Prior art keywords
copper nitride
film
nitride film
nitrogen
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911106109.2A
Other languages
English (en)
Inventor
黄仕华
康桥
李林华
李兴达
陈达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN201911106109.2A priority Critical patent/CN111009589A/zh
Publication of CN111009589A publication Critical patent/CN111009589A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种氮化铜薄膜太阳能电池及其制备方法,电池自下而上包括如下结构:ITO玻璃\镁掺杂氮化铜薄膜\组分渐变氮化铜薄膜\硒掺杂氮化铜薄膜\ITO薄膜\银电极,其中组分渐变氮化铜薄膜中,氮的含量自下而上逐渐变大。本发明的氮化铜薄膜利用反应磁控溅射方法制备,通过调节反应气体(氮气)的流量,获得禁带宽度逐渐变化的氮化铜薄膜,拓宽了薄膜对太阳光吸收的光谱范围。

Description

氮化铜薄膜太阳能电池及其制备方法
技术领域
本发明属于薄膜太阳能电池技术领域,具体涉及一种氮化铜薄膜太阳能电池及其制备方法。
背景技术
尽管目前晶体硅太阳能电池占据了光伏市场的90%以上的份额,但是薄膜太阳能电池在建筑幕墙玻璃、汽车玻璃等方面应用具有明显的优势。目前薄膜太阳能电池主要有非晶硅薄膜电池、铜铟镓硒薄膜电池、碲化镉薄膜电池、钙钛矿薄膜电池等。但是目前这些薄膜电池在成本、环保、元素储量、稳定性等方面存在一定的局限性,因此,绿色环保、储量丰富、成本低廉的新型薄膜太阳能电池逐渐成为人们关注的热点,也是未来薄膜太阳能电池发展的主流方向。新型太阳能电池材料的一般要满足以下要求:(1)光吸收系数高;(2)带隙宽度为1.1~1.8eV;(3)对环境友好、地球上储量丰富、成本低;(4)制备工艺简单,能大规模、大面积生产;(4)长期稳定性号,没有明显的衰减。
近年来,无毒、廉价、储量丰富的氮化铜(Cu3N)新型光伏材料受到人们的青睐,对其光电特性已经展开了广泛的研究,但是作为薄膜太阳能电池还未见报道。氮化铜是由氮原子和铜原子以离子键与共价键共同存在的形式相结合的,具有较高的光学吸收系数,通过改变氮原子和铜原子比例来调节禁带宽度(1.2~1.8eV),非常适合作为薄膜太阳能电池材料。同时,氮化铜为简单二元化合物,可以在低温和简单工艺条件下实现高质量、大面积的薄膜生长。利用钛、锰、铁、钴、镍、锌等过渡金属掺杂,氮化铜的光电特性可以发生很大的改变,为氮化铜应用于光电器件打下来基础。
发明内容
本发明的目的是提供一种禁带宽度渐变的氮化铜薄膜太阳能电池及其制备方法。
为实现第一个发明目的,所采用的技术方案是这样的:
氮化铜薄膜太阳能电池,其特征在于:自下而上包括如下结构:ITO玻璃\镁掺杂氮化铜薄膜\组分渐变氮化铜薄膜\硒掺杂氮化铜薄膜\ITO薄膜\银电极,其中组分渐变氮化铜薄膜中,氮的含量自下而上逐渐变大。
所述的组分渐变氮化铜薄膜的厚度为500nm,分为10层,每层50nm,氮的含量自下而上逐渐变大。
为实现第二个发明目的,所采用的技术方案是这样的:
氮化铜薄膜太阳能电池的制备方法,其特征在于:包括以下步骤:
1)ITO玻璃衬底清洗吹干后放入溅射腔室内,玻璃基片的温度为80~110℃,通入氮气,氮气与氩气的流量比为1:1,氩气流速控制为10sccm,溅射腔压强为0.8Pa;铜靶的溅射功率固定为250W,镁靶的溅射功率为10~15W;至薄膜厚度为30~50nm;
2)待玻璃基片的温度降低到50~60℃以后,开始生长组分渐变氮化铜薄膜;溅射腔压强恒定为0.8Pa,铜靶的溅射功率维持在60W;氩气流速恒定为10sccm,氮气与氩气的流量比开始为1,每沉积50nm薄膜后改变一次氮气与氩气流量比,从1.2、1.5、1.9、2.5、3.3、4.2、5.2、6.3依次变化到7.5,以获得组分渐变的氮化铜薄膜;
3)玻璃基片温度上升至150~180℃,然后开始生长硒掺杂氮化铜薄膜;氮气与氩气的流量比为1:1,氩气流速控制为10sccm,溅射腔压强为0.8Pa;铜靶的溅射功率固定为250W,硒靶的溅射功率为10~15W,至薄膜厚度为20~30nm;
4)硒掺杂氮化铜薄膜生长结束以后,生长ITO薄膜;玻璃基片的温度为200℃,溅射工作气体为氩气,流量为30sccm,溅射腔压强为0.8Pa;ITO靶的溅射功率为80W,ITO薄膜的生长厚度为80nm;
5)ITO生长结束后,从溅射腔取出样品,在表面放置掩膜板,利用真空蒸镀仪蒸镀500nm的叉指状银电极。
本发明的氮化铜薄膜利用反应磁控溅射方法制备,通过调节反应气体(氮气)的流量,获得禁带宽度逐渐变化的氮化铜薄膜,拓宽了薄膜对太阳光吸收的光谱范围。与单一禁带宽度的氮化铜薄膜电池相比,禁带宽度渐变的氮化铜薄膜电池减少了由于入射光子能量比光吸收层材料禁带宽度大而引起的晶格热损失,因此可以大幅提高电池的效率。禁带宽度渐变的氮化铜薄膜电池结构示意图如图1所示,电池的光吸收层为掺杂的组分渐变的氮化铜为光吸收层,从上至下薄膜中氮的组分逐渐减少,即薄膜的禁带宽度逐渐减少。硒掺杂氮化铜为空穴传输层,镁掺杂氮化铜为电子传输层。
附图说明
以下结合附图和本发明的实施方式来作进一步详细说明
图1为禁带宽度渐变的氮化铜薄膜电池结构示意图;
图2为禁带宽度渐变的氮化铜薄膜电池的电流-电压特性图。
具体实施方式
本实施例的氮化铜薄膜太阳能电池,自下而上包括如下结构:ITO玻璃1、镁掺杂氮化铜薄膜2、组分渐变氮化铜薄膜3、硒掺杂氮化铜薄膜4、ITO薄膜5、银电极6,其中组分渐变氮化铜薄膜3中,氮的含量沿→自下而上逐渐变大。所述的组分渐变氮化铜薄膜3的厚度为500nm,分为10层,每层50nm,氮的含量自下而上逐渐变大。太阳光从银电极6上方照射。
制备时:
1)主要原材料及设备
铜、硒、镁、ITO(氧化铟锡)等靶材:纯度99.99%,直径60mm,厚度5mm。
ITO导电玻璃:面积~25×25mm2,方块电阻~15Ω/□,光透过率≥90%。
氮气、氩气:纯度99.999%
双靶共溅射磁控溅射仪:极限真空优于5×10-5Pa,镀膜均匀性优于±2%。
2)镁掺杂氮化铜薄膜制备
首先将ITO玻璃衬底放入丙酮溶液中超声清洗5min,然后放入乙醇溶液中超声清洗5min,再用去离子水反复冲洗,重复上述步骤3次,最后用氮气吹干后放入溅射腔室内。
溅射腔室的本底真空达到极限真空度以后,通入氩气,首先对玻璃基片进行反溅射去除基片表面吸附的水汽和氧气等,然后对靶材表面进行预溅射以去除表面的残留的杂质。
玻璃基片的温度为80~110℃,通入氮气,氮气与氩气的流量比为1:1,氩气流速控制为10sccm,溅射腔压强为0.8Pa。铜靶的溅射功率固定为250W,镁掺杂浓度通过改变镁靶的溅射功率来调节,镁靶的溅射功率为10~15W。薄膜厚度利用膜厚监控仪监测,典型的薄膜厚度为30~50nm。通过X射线衍射图谱分析,镁原子已掺入氮化铜晶格中。利用X射线光电子谱分析,镁在氮化铜的掺杂浓度为0.35~0.45%。通过霍尔效应测量,镁掺杂的氮化铜薄膜呈n型半导体特性,载流子浓度为1017~1018cm-3
3)组分渐变氮化铜薄膜制备
镁掺杂氮化铜薄膜生长结束以后,待玻璃基片的温度降低到50~60℃以后,开始生长组分渐变氮化铜薄膜。通过改变氮气与氩气的流量比来调节氮化铜薄膜中氮的组分,从而达到调控电池的光吸收层—氮化铜薄膜的禁带宽度,实现拓宽电池的光谱吸收范围。组分渐变氮化铜薄膜的总厚度设定为500nm,共分为10层,开始生长时氮化铜薄膜中氮的组分最小,然后依次增大。溅射腔压强恒定为0.8Pa,铜靶的溅射功率维持在60W。氩气流速恒定为10sccm,氮气与氩气的流量比开始为1,每沉积50nm薄膜(厚度由膜厚监控仪监测)后改变一次氮气与氩气流量比,从1.2、1.5、1.9、2.5、3.3、4.2、5.2、6.3依次变化到7.5,以获得禁带宽度逐渐增加的氮化铜薄膜。利用光吸收谱测量,薄膜的禁带宽度从1.32eV增加到1.84eV。
4)硒掺杂氮化铜薄膜制备
组分渐变的氮化铜薄膜生长结束以后,玻璃基片温度上升至150~180℃,然后开始生长硒掺杂氮化铜薄膜。氮气与氩气的流量比为1:1,氩气流速控制为10sccm,溅射腔压强为0.8Pa。铜靶的溅射功率固定为250W,硒掺杂浓度通过改变硒靶的溅射功率来调节,硒靶的溅射功率为10~15W。薄膜厚度利用膜厚监控仪监测,典型的薄膜厚度为20~30nm。通过X射线衍射图谱分析,硒原子已掺入氮化铜晶格中。利用X射线光电子谱分析,硒的掺杂浓度为0.62%~0.68%。通过霍尔效应测量,硒掺杂的氮化铜薄膜呈p型半导体电学特性,载流子浓度为1017~1018cm-3
5)ITO薄膜制备
硒掺杂氮化铜薄膜生长结束以后,依次生长ITO薄膜和银电极。玻璃基片的温度为200℃,溅射工作气体为氩气,流量为30sccm,溅射腔压强为0.8Pa。ITO靶的溅射功率为80W,ITO薄膜的生长厚度为80nm。
6)银电极制备
ITO生长结束后,从溅射腔取出样品,在表面放置掩膜板,利用真空蒸镀仪蒸镀500nm厚的叉指状银电极。至此,组分渐变氮化铜薄膜太阳能电池的制备工序全部结束。
7)电池性能测试
标准测试条件(AM1.5,100mW/cm2,25℃)下,电池的电流-电压特性如图2所示,电池的开路电压(VOC)为1.16V,短路电流(ISC)为5.24mA/cm2,填充因子(FF)为0.62,光电转换效率为3.78%。在光照下持续超过200小时之后,没有发现电池存在光衰减。

Claims (3)

1.氮化铜薄膜太阳能电池,其特征在于:自下而上包括如下结构:ITO玻璃\镁掺杂氮化铜薄膜\组分渐变氮化铜薄膜\硒掺杂氮化铜薄膜\ITO薄膜\银电极,其中组分渐变氮化铜薄膜中,氮的含量自下而上逐渐变大。
2.如权利要求1所述的氮化铜薄膜太阳能电池,其特征在于:所述的组分渐变氮化铜薄膜的厚度为500nm,分为10层,每层50nm,氮的含量自下而上逐渐变大。
3.权利要求1所述的氮化铜薄膜太阳能电池的制备方法,其特征在于:包括以下步骤:
1)ITO玻璃衬底清洗吹干后放入溅射腔室内,玻璃基片的温度为80~110℃,通入氮气,氮气与氩气的流量比为1:1,氩气流速控制为10sccm,溅射腔压强为0.8Pa;铜靶的溅射功率固定为250W,镁靶的溅射功率为10~15W;至薄膜厚度为30~50nm;
2)待玻璃基片的温度降低到50~60℃以后,开始生长组分渐变氮化铜薄膜;溅射腔压强恒定为0.8Pa,铜靶的溅射功率维持在60W;氩气流速恒定为10sccm,氮气与氩气的流量比开始为1,每沉积50nm薄膜后改变一次氮气与氩气流量比,从1.2、1.5、1.9、2.5、3.3、4.2、5.2、6.3依次变化到7.5,以获得组分渐变的氮化铜薄膜;
3)玻璃基片温度上升至150~180℃,然后开始生长硒掺杂氮化铜薄膜;氮气与氩气的流量比为1:1,氩气流速控制为10sccm,溅射腔压强为0.8Pa;铜靶的溅射功率固定为250W,硒靶的溅射功率为10~15W,至薄膜厚度为20~30nm;
4)硒掺杂氮化铜薄膜生长结束以后,生长ITO薄膜;玻璃基片的温度为200℃,溅射工作气体为氩气,流量为30sccm,溅射腔压强为0.8Pa;ITO靶的溅射功率为80W,ITO薄膜的生长厚度为80nm;
5)ITO生长结束后,从溅射腔取出样品,在表面放置掩膜板,利用真空蒸镀仪蒸镀500nm的叉指状银电极。
CN201911106109.2A 2019-11-13 2019-11-13 氮化铜薄膜太阳能电池及其制备方法 Pending CN111009589A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911106109.2A CN111009589A (zh) 2019-11-13 2019-11-13 氮化铜薄膜太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911106109.2A CN111009589A (zh) 2019-11-13 2019-11-13 氮化铜薄膜太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN111009589A true CN111009589A (zh) 2020-04-14

Family

ID=70113080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911106109.2A Pending CN111009589A (zh) 2019-11-13 2019-11-13 氮化铜薄膜太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN111009589A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212760A (zh) * 2021-12-06 2022-03-22 电子科技大学长三角研究院(湖州) 一种超细氮化铜粉体的制备方法
CN114242834A (zh) * 2021-11-18 2022-03-25 国家电投集团科学技术研究院有限公司 一种铜栅线异质结太阳电池的生产集成设备及方法
CN114275745A (zh) * 2021-12-06 2022-04-05 电子科技大学长三角研究院(湖州) 氮化铜粉体制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140179049A1 (en) * 2012-12-20 2014-06-26 Nanogram Corporation Silicon/germanium-based nanoparticle pastes with ultra low metal contamination
CN106206829A (zh) * 2016-07-29 2016-12-07 南京邮电大学 一种基于锰掺杂氮化铜薄膜的可见光探测器
CN106711288A (zh) * 2017-01-05 2017-05-24 浙江师范大学 一种纳米晶硅薄膜太阳能电池的制备方法
JP2018148031A (ja) * 2017-03-06 2018-09-20 国立大学法人東京工業大学 窒化銅半導体およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140179049A1 (en) * 2012-12-20 2014-06-26 Nanogram Corporation Silicon/germanium-based nanoparticle pastes with ultra low metal contamination
CN106206829A (zh) * 2016-07-29 2016-12-07 南京邮电大学 一种基于锰掺杂氮化铜薄膜的可见光探测器
CN106711288A (zh) * 2017-01-05 2017-05-24 浙江师范大学 一种纳米晶硅薄膜太阳能电池的制备方法
JP2018148031A (ja) * 2017-03-06 2018-09-20 国立大学法人東京工業大学 窒化銅半導体およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
X.Y. FAN等: "Fabrication of well-ordered CuO nanowire arrays by direct oxidation of sputter-deposited Cu3N film", 《MATERIALS LETTERS》 *
赵杨华: "磁控溅射制备3d过渡金属掺杂氮化铜薄膜及其应用研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242834A (zh) * 2021-11-18 2022-03-25 国家电投集团科学技术研究院有限公司 一种铜栅线异质结太阳电池的生产集成设备及方法
CN114212760A (zh) * 2021-12-06 2022-03-22 电子科技大学长三角研究院(湖州) 一种超细氮化铜粉体的制备方法
CN114275745A (zh) * 2021-12-06 2022-04-05 电子科技大学长三角研究院(湖州) 氮化铜粉体制备方法

Similar Documents

Publication Publication Date Title
CN1314134C (zh) 硅薄膜异质结太阳电池的制备方法
JP4814307B2 (ja) 薄膜シリコンに基づいた光電池の製造方法
Katagiri et al. Solar cell without environmental pollution by using CZTS thin film
CN111009589A (zh) 氮化铜薄膜太阳能电池及其制备方法
KR101628312B1 (ko) CZTSSe계 박막 태양전지의 제조방법 및 이에 의해 제조된 CZTSSe계 박막 태양전지
TWI437721B (zh) 矽薄膜太陽能電池之製備方法
CN107946393B (zh) 基于SnTe作为背电极缓冲层的CdTe薄膜太阳能电池及其制备方法
KR101747395B1 (ko) Cigs 광전변환 소자의 몰리브데넘 기판
CN113314672A (zh) 一种钙钛矿太阳能电池及其制备方法
KR20150051148A (ko) Czts계 태양전지용 박막의 제조방법
US20140291147A1 (en) Target materials for fabricating solar cells
KR101582200B1 (ko) Czts계 태양전지용 박막의 제조방법 및 이를 통해 제조된 박막을 포함하는 czts계 태양전지
CN106711288B (zh) 一种纳米晶硅薄膜太阳能电池的制备方法
Sun et al. Solar cell structures based on ZnO/CdS core-shell nanowire arrays embedded in Cu 2 ZnSnS 4 light absorber
He et al. Composition engineering of perovskite absorber assisted efficient textured monolithic perovskite/silicon heterojunction tandem solar cells
Romeo et al. The role of CdS preparation method in the performance of CdTe/CdS thin film solar cell
CN109841697B (zh) 一种基于CuO/Se复合材料薄膜的太阳能电池
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
CN101414650B (zh) 一种纳米晶/非晶硅两相薄膜太阳电池的制备方法
CN114203842A (zh) 宽禁带铜镓硒光吸收层及其制备方法、太阳能电池
CN109801980B (zh) 一种碲化镉薄膜太阳能电池及其制备方法
CN109920862B (zh) 能抑制铜锌锡硫薄膜中MoS2层的预制层结构及制备方法
KR102015985B1 (ko) 태양전지용 cigs 박막의 제조방법
CN113078224A (zh) 透明导电玻璃铜铟硒薄膜太阳能电池器件及其制备方法与应用
KR102071481B1 (ko) 산화은 투명 전극을 사용하여 개선된 투과성을 갖는 양면 수광형 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200414