CN111027110B - 一种连续体结构拓扑与形状尺寸综合优化方法 - Google Patents

一种连续体结构拓扑与形状尺寸综合优化方法 Download PDF

Info

Publication number
CN111027110B
CN111027110B CN201911178563.9A CN201911178563A CN111027110B CN 111027110 B CN111027110 B CN 111027110B CN 201911178563 A CN201911178563 A CN 201911178563A CN 111027110 B CN111027110 B CN 111027110B
Authority
CN
China
Prior art keywords
optimization
topology
relative density
units
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911178563.9A
Other languages
English (en)
Other versions
CN111027110A (zh
Inventor
张军峰
刘恩海
廖靖宇
朱自发
杨金利
雷华舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Optics and Electronics of CAS
Original Assignee
Institute of Optics and Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Optics and Electronics of CAS filed Critical Institute of Optics and Electronics of CAS
Priority to CN201911178563.9A priority Critical patent/CN111027110B/zh
Publication of CN111027110A publication Critical patent/CN111027110A/zh
Application granted granted Critical
Publication of CN111027110B publication Critical patent/CN111027110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

本发明涉及一种连续体结构拓扑与形状尺寸综合优化方法。利用有限元思想对设计域进行网格划分并提取单元的节点信息;创建优化目标函数、添加约束和荷载,通过计算目标函数灵敏度并完成灵敏度过滤,来迭代更新设计域单元相对密度值;判断达到收敛条件时,输出具有灰度单元的拓扑构型;然后将灰度单元数值置为1,同时将结构内部细小孔洞填满,形成离散0‑1矩阵形式的初始拓扑构型;引入边界函数对初始拓扑构型进行形状尺寸优化,最终获得满足约束条件的最优设计结构。本发明解决了传统拓扑优化中灰度单元对结构可制造性的影响,同时引入边界函数对初始拓扑构型进行形状尺寸优化以消除嵌入结构内部的细小孔洞,减小了连续体结构在制造过程中的复杂度。

Description

一种连续体结构拓扑与形状尺寸综合优化方法
技术领域
本发明涉及结构优化设计的相关技术领域,具体涉及一种连续体结构拓扑与形状尺寸综合优化方法。
背景技术
在对连续体结构进行拓扑优化设计中,常用的方法有基于有限元思想的密度法和基于边界传播思想的水平集法。
依据密度法进行拓扑优化,是将连续体结构设计域划分成有限个单元,并对每个单元赋以相对密度值作为优化设计的变量。如果将单元相对密度值离散成0-1的阶跃函数描述,并按一定进化比来删除或生成单元,得到的优化结果将总是依赖于划分网格的疏密程度,并在很大程度上无法获得最优解。如果将单元相对密度值用[0,1]范围内的连续函数描述,得到的优化结果将出现大量灰度单元。而实际工程结构在制造中往往都是使用单一材料进行加工制作,因此灰度单元的存在将影响连续体结构的真实形状尺寸。
依据水平集法进行拓扑优化,将连续体结构设计域的边界轮廓用高维标量函数描述,并对其求取时间梯度以获得边界演化的速度方程来反映结构的变化情况。但水平集法是对连续体结构的边界轮廓进行演化,无法有利描述结构内部的演化过程,需要对初始设计域创建许多内部孔洞来协助完成优化工作,因此连续体结构设计域的初始构型将在很大程度上影响最终的优化结果。
发明内容
本发明针对现连续体结构拓扑优化设计中的上述缺点与不足,提供了一种连续体结构拓扑与形状尺寸综合优化方法,通过密度法获得拓扑构型,然后对其结果中的所有灰度单元数值均置为1,同时填补结构内部的细小孔洞,得到单元相对密度值为离散0-1形式且无细小孔洞的拓扑构型,再通过构造边界函数进行二次拓扑,以完成连续体结构设计域的形状尺寸优化,最终得到具有可制造性的最优结构。
本发明的上述目的是通过以下技术方案得以实施的:一种连续体结构拓扑与形状尺寸综合优化方法,包括:
S1、为连续体结构创建设计域,进行结构离散化和有限元网格划分,得到节点与单元的编号信息;
S2、通过有限元分析,得到单元的节点位移与节点力信息;
S3、创建需要优化的目标函数,并添加实际工况下的约束条件和荷载信息;
S4、计算单元目标函数的灵敏度,并完成灵敏度过滤,根据新的灵敏度数值来更新设计域的单元相对密度;
S5、迭代收敛判断,当优化的目标达到收敛标准时,优化迭代结束,执行步骤S6,否则重复步骤S2至步骤S5;
S6、提取设计域单元相对密度值,将所有灰度单元的相对密度值和嵌入结构内部的细小孔洞单元相对密度值均置为1,以形成离散0-1矩阵形式;
S7、根据获得的拓扑构型创建边界函数;
S8、通过有限元分析,得到单元的节点位移与节点力信息;
S9、计算当前结构的形状灵敏度和拓扑灵敏度;
S10、迭代收敛判断,当优化的目标达到收敛标准时,优化迭代结束,执行步骤S12,否则执行步骤S11;
S11、根据新的灵敏度数值来更新设计域的单元相对密度,并重复执行步骤S7至步骤S10;
S12、输出优化结果,得到具有可制造性的最优连续体结构。
作为进一步优选地,所述步骤S1中,在对设计域进行网格划分时,应留意增加网格带来的经济性,根据实际应用比较前后两次网格划分的计算结果,如果两次计算结果相差较大,应当继续增加网格并重新进行拓扑优化的计算,相反则满足要求停止计算。
作为进一步优选地,所述步骤S2和步骤S8中,获得的节点位移信息包括但不限于节点编号及坐标、单元的节点位移分量大小及方向信息。
作为进一步优选地,所述步骤S2和步骤S8中,获得的节点力信息包括但不限于单元边界上的表面力、单元上的体积力和集中力信息通过等效方式移植到节点上去,利用等效节点力来替代所有作用在单元上的力。
作为进一步优选地,所述步骤S3中,目标函数的优化目标包括但不限于结构刚度特性优化、结构固有频率性能优化、结构动态特性优化。
作为进一步优选地,所述步骤S3中,实际工况的约束条件包括但不限于结构位移约束条件、结构材料属性约束条件、结构制造加工精度约束条件。
作为进一步优选地,所述步骤S4中,在单元相对密度值中引入惩罚因子p和最小过滤半径rmin,采用下式计算目标函数灵敏度:
Figure BDA0002290664400000031
同时,通过下式完成目标函数灵敏度过滤:
Figure BDA0002290664400000032
式中,F为目标函数,x为单元相对密度,[U]为单元节点位移矩阵,[K]为单元刚度矩阵,dist(e,f)为两节点之间的最短距离,e、f为单元节点编号,N为连续体结构进行有限元划分所得到的总单元数目,Hf为卷积算子。
作为进一步优选地,所述步骤S4和步骤S11中,对结构优化的数学模型构造成下式的拉格朗日函数形式,采用标准KKT(Karush-Kuhn-Tucker)最优化条件完成迭代优化,来更新设计域的单元相对密度数值:
Figure BDA0002290664400000033
式中,λi为常系数,hi(x)为结构优化中添加的约束条件。
作为进一步优选地,所述步骤S5和步骤S10中,通过下式对前后两次优化中的设计域体积改变量进行计算,当改变量小于设定标准值时达到收敛标准,从而跳出迭代循环:
|Vnew-Vreq|≤ε
式中,Vnew为当前结构优化得到的拓扑构型体积量,Vreq为上一次结构优化得到的拓扑构型体积量,ε为设定的前后两次优化结果体积改变量的标准值。
作为进一步优选地,所述步骤S6中,借助但不限于编程的方式,实现将所有非空洞区域的单元相对密度值和嵌入结构内部的细小孔洞单元相对密度值均置为1,将大孔洞区域的单元相对密度数值均置为0,形成0-1离散形式的单元相对密度矩阵。
作为进一步优选地,所述步骤S7中,通过下式提取初始拓扑构型中的边界轮廓,完成边界函数的创建:
Figure BDA0002290664400000034
式中,
Figure BDA0002290664400000041
为高维标量函数ψ对时间t进行求导以反映结构的边界演化情况,v为单元的相应敏感度。
作为进一步优选地,所述步骤S9中,通过下式计算形状灵敏度和拓扑灵敏度:
Figure BDA0002290664400000042
Figure BDA0002290664400000043
式中,Ω为结构设计域,λ和μ为固体材料的拉梅常数。
与现有技术相比,本发明的优点是解决了密度法带来的灰度单元影响和水平集方法创建新孔困难的缺点,通过密度法获得初始拓扑构型,并将灰度单元转换成0-1离散数值矩阵,同时填补结构内部的细小孔洞,通过边界函数完成对初始拓扑构型的形状尺寸优化,从而确保得到的优化结果具有工程可制造性。
附图说明
图1为本发明一种连续体结构拓扑与形状尺寸综合优化方法的流程图;
图2为本发明实施例1,二维矩形初始设计域的示意图;
图3为本发明实施例1的迭代过程中,设计域具有灰度单元和细小孔洞的拓扑构型图;
图4为本发明实施例1的迭代过程中,设计域转为0-1离散形式的拓扑构型图;
图5为本发明实施例1的迭代终止时,完成结构拓扑与形状尺寸优化的最优结果图;
图6为本发明实施例2,二维矩形初始设计域的示意图;
图7为本发明实施例2的迭代过程中,设计域具有灰度单元的拓扑构型图;
图8为本发明实施例2的迭代过程中,设计域为0-1离散形式的拓扑构型图;
图9为本发明实施例2的迭代终止时,完成结构拓扑与形状尺寸优化的最优结果图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1
本实施例中,以二维矩形设计域为对象进行优化设计过程的描述。设定但不限于材料的杨氏模量E等于1MPa,泊松比μ等于0.3,设计域尺寸长为60mm,高为30mm。
本实施例中,如图2所示,依据步骤S1至步骤S3,对矩形设计域进行有限元网格划分获取单元节点信息,并将矩形设计域的左侧固定连接以限制所有方向的自由度,在矩形设计域的右下角限制Y方向的移动,在矩形设计域的左上角施加沿Y负方向的载荷约束F等于1kN。
本实施例中,依据步骤S2至步骤S5,对设计域进行结构拓扑优化得到具有灰度单元和结构内部嵌有较小孔洞的拓扑构型,如图3所示。灰度单元的存在使得结构在制造中必须使用复合材料进行加工,同时内部嵌有的较小孔洞也影响了结构在加工过程中的难易程度。
本实施例中,依据步骤S6,重新提取设计域中灰度单元坐标将其单元相对密度数值置为1,同时填补嵌入在结构内部的较小孔洞,创建形成0-1离散形式的数值矩阵,得到如图4所示的初始拓扑构型。
本实施例中,依据步骤S7至步骤S12,对初始拓扑构型提取边界轮廓,利用高维标量函数进行形状尺寸优化,得到满足约束和荷载信息的最终优化设计结果,如图5所示,其优化结果中没有灰度单元和内部微小孔洞存在,在一定程度上减小了结构在制造过程中的复杂度。
实施例2
本实施例中,以实施例1的初始设计条件作为优化对象,但更改在设计域上施加的约束和荷载的位置与形式,如图6所示。依据步骤S1至步骤S3,对矩形设计域进行有限元网格划分获取单元节点信息,并将矩形设计域的左下角进行固定连接以限制所有方向的自由度,将矩形设计域的右下角进行滑动连接以限制Y方向的自由度,在矩形设计域底边的中间位置施加沿Y负方向的载荷约束F等于1kN。
本实施例中,依据步骤S2至步骤S5,对设计域进行结构拓扑优化得到具有灰度单元和内部孔洞的拓扑构型,如图7所示。但是,此时获得的拓扑构型中,所有形成的内部孔洞相对整体设计域而言并不小,均可以作为主要孔洞来进一步完成拓扑优化工作。
本实施例中,依据步骤S6,重新提取设计域中灰度单元坐标将其单元相对密度数值置为1,同时完成判断是否消除不必要的孔洞(即细小孔洞),以创建形成0-1离散形式的数值矩阵,得到如图8所示的初始拓扑构型。
本实施例中,依据步骤S7至步骤S12,对初始拓扑构型提取边界轮廓,利用高维标量函数进行形状尺寸优化,得到满足约束和荷载信息的最终优化设计结果,如图9所示。同样的,在最终的优化结果中没有灰度单元和内部微小孔洞出现,使其在一定程度上减小了结构在制造过程中的复杂度。
上述两个实施例为本发明较佳的实施方式,通过添加不同位置的约束和荷载,均可以得到理想的优化结果。同时,比较实施例1与实施例2,本发明在迭代过程中可以有效判断并融合相对较小的孔洞(如实施例1的图4所示),而对结构主要孔洞在迭代过程中不会刻意融合(如实施例2的图8所示)。本发明的实施方式并不受限于上述的实施例情况,其他的任何未背离本发明的精神实质与原理下所作的改动、组合、替换等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种连续体结构拓扑与形状尺寸综合优化方法,其特征在于,包括如下步骤:
S1、为连续体结构创建设计域,进行结构离散化和有限元网格划分,得到节点与单元的编号信息;
S2、通过有限元分析,得到单元的节点位移与节点力信息;
S3、创建需要优化的目标函数,并添加实际工况下的约束条件和荷载信息;
S4、计算单元目标函数的灵敏度,并完成灵敏度过滤,根据新的灵敏度数值来更新设计域的单元相对密度;
S5、迭代收敛判断,当优化的目标达到收敛标准时,优化迭代结束,执行步骤S6,否则重复步骤S2至步骤S5;
S6、提取设计域单元相对密度值,将所有灰度单元的相对密度值和嵌入结构内部的细小孔洞单元相对密度值均置为1,以形成离散0-1矩阵形式;
在步骤S6中,借助编程的方式,实现将所有非孔洞区域的单元相对密度值和嵌入结构内部的细小孔洞单元相对密度值均置为1,将大孔洞区域的单元相对密度数值均置为0,形成0-1离散形式的单元相对密度矩阵;
S7、根据获得的拓扑构型创建边界函数;
在步骤S7中,通过下式提取初始拓扑构型中的边界轮廓,完成边界函数的创建:
Figure FDA0004163602870000011
式中,
Figure FDA0004163602870000012
为高维标量函数ψ对时间t进行求导以反映结构的边界演化情况,v为单元的相应敏感度;
S8、通过有限元分析,得到单元的节点位移与节点力信息;
S9、计算当前结构的形状灵敏度和拓扑灵敏度;
在步骤S9中,通过下式计算形状灵敏度和拓扑灵敏度:
Figure FDA0004163602870000013
Figure FDA0004163602870000014
式中,F为目标函数,[U]为单元节点位移矩阵,[K]为单元刚度矩阵,e为单元节点编号,Ω为结构设计域,λ和μ为固体材料的拉梅常数;
S10、迭代收敛判断,当优化的目标达到收敛标准时,优化迭代结束,执行步骤S12,否则执行步骤S11;
S11、根据新的灵敏度数值来更新设计域的单元相对密度,并重复执行步骤S7至步骤S10;
S12、输出优化结果,得到具有可制造性的最优连续体结构。
2.如权利要求1所述的连续体结构拓扑与形状尺寸综合优化方法,其特征在于,在步骤S1中,在对设计域进行网格划分时,应留意增加网格带来的经济性,根据实际应用比较前后两次网格划分的计算结果,如果两次计算结果相差较大,应当继续增加网格并重新进行拓扑优化的计算,相反则满足要求停止计算。
3.如权利要求1所述的连续体结构拓扑与形状尺寸综合优化方法,其特征在于,在步骤S2和步骤S8中,获得的节点位移信息包括节点编号及坐标、单元的节点位移分量大小及方向信息。
4.如权利要求1所述的连续体结构拓扑与形状尺寸综合优化方法,其特征在于,在步骤S2和步骤S8中,获得的节点力信息包括单元边界上的表面力、单元上的体积力和集中力信息通过等效方式移植到节点上去,利用等效节点力来替代所有作用在单元上的力。
5.如权利要求1所述的连续体结构拓扑与形状尺寸综合优化方法,其特征在于,在步骤S3中,目标函数的优化目标包括结构刚度特性优化、结构固有频率性能优化、结构动态特性优化。
6.如权利要求1所述的连续体结构拓扑与形状尺寸综合优化方法,其特征在于,在步骤S3中,实际工况的约束条件包括结构位移约束条件、结构材料属性约束条件、结构制造加工精度约束条件。
7.如权利要求1所述的连续体结构拓扑与形状尺寸综合优化方法,其特征在于,在步骤S4中,在单元相对密度值中引入惩罚因子p和最小过滤半径rmin,采用下式计算目标函数灵敏度:
Figure FDA0004163602870000021
同时,通过下式完成目标函数灵敏度过滤:
Figure FDA0004163602870000022
Hf=rmin-dist(e,f)
式中,x为单元相对密度,dist(e,f)为两节点之间的最短距离,e、f为单元节点编号,N为连续体结构进行有限元划分所得到的总单元数目,Hf为卷积算子。
8.如权利要求7所述的连续体结构拓扑与形状尺寸综合优化方法,其特征在于,在步骤S4和步骤S11中,对结构优化的数学模型构造成下式的拉格朗日函数形式,采用标准KKT(Karush-Kuhn-Tucker)最优化条件完成迭代优化,来更新设计域的单元相对密度数值:
Figure FDA0004163602870000031
式中,λi为常系数,hi(x)为结构优化中添加的约束条件。
9.如权利要求1所述的连续体结构拓扑与形状尺寸综合优化方法,其特征在于,在步骤S5和步骤S10中,通过下式对前后两次优化中的设计域体积改变量进行计算,当改变量小于设定标准值时达到收敛标准,从而跳出迭代循环:
|Vnew-Vreq|≤ε
式中,Vnew为当前结构优化得到的拓扑构型体积量,Vreq为上一次结构优化得到的拓扑构型体积量,ε为设定的前后两次优化结果体积改变量的标准值。
CN201911178563.9A 2019-11-27 2019-11-27 一种连续体结构拓扑与形状尺寸综合优化方法 Active CN111027110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911178563.9A CN111027110B (zh) 2019-11-27 2019-11-27 一种连续体结构拓扑与形状尺寸综合优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911178563.9A CN111027110B (zh) 2019-11-27 2019-11-27 一种连续体结构拓扑与形状尺寸综合优化方法

Publications (2)

Publication Number Publication Date
CN111027110A CN111027110A (zh) 2020-04-17
CN111027110B true CN111027110B (zh) 2023-06-30

Family

ID=70207159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911178563.9A Active CN111027110B (zh) 2019-11-27 2019-11-27 一种连续体结构拓扑与形状尺寸综合优化方法

Country Status (1)

Country Link
CN (1) CN111027110B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111737839B (zh) * 2020-05-19 2023-03-31 广州大学 基于动态进化率和自适应网格的beso拓扑优化方法及其应用
CN111523270B (zh) * 2020-06-09 2023-08-04 四川大学 一种改进的连续体结构拓扑优化后处理方法
CN111832206B (zh) * 2020-07-02 2022-12-09 西安交通大学 一种超高热流射频微系统的近结冷却结构设计方法
CN112100877B (zh) * 2020-08-10 2022-05-24 华南理工大学 一种结构刚度高效拓扑优化方法及系统
CN112287480B (zh) * 2020-10-27 2023-02-03 北京理工大学 一种基于多种群遗传算法的机械结构拓扑优化方法
CN112307563B (zh) * 2020-10-30 2022-06-07 湖南大学 一种制动器支撑结构的优化设计方法
CN112966337B (zh) * 2021-03-12 2023-06-30 中国科学院光电技术研究所 基于相似理论的航天支架缩比模型轻量化设计与微变形测量方法
CN113094943B (zh) * 2021-03-15 2022-08-09 华中科技大学 一种水平集拓扑优化方法、系统、设备及介质
CN112989661B (zh) * 2021-03-16 2022-06-14 武汉大学 一种联合拓扑优化与形状优化的水下结构设计方法
CN112966420B (zh) * 2021-03-16 2022-06-14 武汉大学 一种联合拓扑优化与形状优化的热沉结构设计方法
CN114200768B (zh) 2021-12-23 2023-05-26 中国科学院光电技术研究所 基于水平集算法的超分辨光刻逆向光学邻近效应修正方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106529044A (zh) * 2016-11-14 2017-03-22 华南理工大学 一种柔顺机构0‑1变构型拓扑图提取方法
CN109472056A (zh) * 2018-10-15 2019-03-15 上海交通大学 任意泊松比超材料的拓扑优化形成方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ198899A0 (en) * 1999-08-03 1999-08-26 University Of Queensland, The A method of magnet design and magnet configuration
US6700468B2 (en) * 2000-12-01 2004-03-02 Nmr Holdings No. 2 Pty Limited Asymmetric magnets for magnetic resonance imaging
EP1221674A3 (en) * 2001-01-05 2003-09-24 Interuniversitair Microelektronica Centrum Vzw System and method to obtain surface structures of multidimensional objects, and to represent those surface structures for animation, transmission and display
US20080300831A1 (en) * 2006-12-19 2008-12-04 Board Of Governors For Higher Education, State Of Rhode Island And Providence System and method for finite element based on topology optimization
WO2007076357A2 (en) * 2005-12-19 2007-07-05 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations System and method for finite element based topology optimization
US9477798B1 (en) * 2012-06-20 2016-10-25 Synopsys, Inc. Moving mesh system and method for finite element/finite volume simulations
CN103854290A (zh) * 2014-03-25 2014-06-11 中国科学院光电技术研究所 一种结合骨架特征点和分布场描述子的扩展目标跟踪方法
CN105512385B (zh) * 2015-12-04 2018-11-30 吉林大学 采用序列幂函数插值方法实现结构多材料拓扑优化的方法
CN106096158B (zh) * 2016-06-16 2019-04-09 华南理工大学 一种柔性铰链的拓扑优化设计方法
CN106650147B (zh) * 2016-12-30 2018-07-13 北京航空航天大学 一种基于有界不确定性的连续体结构非概率拓扑优化方法
WO2018126465A1 (zh) * 2017-01-09 2018-07-12 大连理工大学 一种用于消除薄膜结构拉伸褶皱的优化设计方法
US10102671B2 (en) * 2017-02-09 2018-10-16 Wisconsin Alumni Research Foundation Systems for generalizing non-uniform rational B-spline and application of systems
CN107887669B (zh) * 2017-11-07 2019-08-13 大连理工大学 一种金属散热动力电池包结构设计方法及电池包
CN108009381B (zh) * 2017-12-25 2021-05-25 北京航空航天大学 一种位移和全局应力混合约束下的连续体结构可靠性拓扑优化方法
CN109063283B (zh) * 2018-07-17 2021-02-02 北京航空航天大学 一种刚-强度融合约束下的连续体结构可靠性拓扑优化方法
CN109190233B (zh) * 2018-08-24 2020-11-24 华南理工大学 一种结构拓扑优化方法
CN109840348B (zh) * 2018-12-15 2023-06-20 华南理工大学 一种三重加速的拓扑优化方法
CN110008512B (zh) * 2019-03-04 2022-11-18 三峡大学 一种考虑承载特性的负泊松比点阵结构拓扑优化方法
CN110110413B (zh) * 2019-04-26 2022-11-18 大连理工大学 一种基于材料场缩减级数展开的结构拓扑优化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106529044A (zh) * 2016-11-14 2017-03-22 华南理工大学 一种柔顺机构0‑1变构型拓扑图提取方法
CN109472056A (zh) * 2018-10-15 2019-03-15 上海交通大学 任意泊松比超材料的拓扑优化形成方法

Also Published As

Publication number Publication date
CN111027110A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
CN111027110B (zh) 一种连续体结构拓扑与形状尺寸综合优化方法
AU2019442319B2 (en) Structural topology optimization method based on material-field reduction series expansion
CN110795873B (zh) 一种考虑尺寸控制的跨尺度拓扑优化方法
CN109344524B (zh) 一种薄板结构加强筋分布优化方法
WO2020097216A1 (en) Macrostructure topology generation with physical simulation for computer aided design and manufacturing
CN112836411B (zh) 加筋板壳结构的优化方法、装置、计算机设备和存储介质
CN112182929A (zh) 一种考虑尺寸控制的多孔材料跨尺度可靠性拓扑优化方法
CN109408939B (zh) 一种兼顾应力和位移约束的薄板结构加强筋分布优化的改进方法
CN113326582B (zh) 一种基于应力分布的变密度点阵结构及其设计方法
JP6537216B2 (ja) 異なる厚さの構造セグメントについて短縮された長さの境界を使用する形態最適化
CN102332049B (zh) 钣金件工艺耳片快速设计方法
CN105678015B (zh) 一种高超声速三维机翼的非概率可靠性气动结构耦合优化设计方法
CN113887095B (zh) 一种基于等几何分析的渐进式结构拓扑优化方法
CN111324980A (zh) 一种汽车结构轻量化分级优化设计方法
CN111523270A (zh) 一种改进的连续体结构拓扑优化后处理方法
CN110852000B (zh) 一种车身结构优化方法
CN113239584B (zh) 一种优化增材制造方法及系统
CN113221278A (zh) 一种车载光电平台照准架轻量化方法
CN111597724B (zh) 考虑频带约束的结构动力学拓扑优化方法、系统
CN105243240A (zh) 高刚轻质机床大件结构优化设计方法
CN116842633A (zh) 基于扩展多尺度有限元法的高速飞行器翼舵类结构优化设计方法
CN102637223B (zh) 基于伪密度排序并考虑拔模制造约束的拓扑优化设计方法
CN116451537A (zh) 一种功能梯度材料构件等几何稳健拓扑优化方法
CN115795678A (zh) 一种用于车身结构概念设计的参数优化方法和存储介质
CN114722664A (zh) 一种多材料结构动刚度拓扑优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant