CN110965042A - 一种梯度SiC涂层的制备方法 - Google Patents

一种梯度SiC涂层的制备方法 Download PDF

Info

Publication number
CN110965042A
CN110965042A CN201911218192.2A CN201911218192A CN110965042A CN 110965042 A CN110965042 A CN 110965042A CN 201911218192 A CN201911218192 A CN 201911218192A CN 110965042 A CN110965042 A CN 110965042A
Authority
CN
China
Prior art keywords
chemical vapor
vapor deposition
workpiece
deposition chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911218192.2A
Other languages
English (en)
Inventor
张东生
李江涛
吴恒
姚栋嘉
牛利伟
刘喜宗
王征
杨超
董会娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gongyi Van Research Yihui Composite Material Co Ltd
Original Assignee
Gongyi Van Research Yihui Composite Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gongyi Van Research Yihui Composite Material Co Ltd filed Critical Gongyi Van Research Yihui Composite Material Co Ltd
Priority to CN201911218192.2A priority Critical patent/CN110965042A/zh
Publication of CN110965042A publication Critical patent/CN110965042A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明属于涂层领域,公开一种梯度SiC涂层的制备方法。利用化学气相沉积法并且进气口和出气口分别设在化学气相沉积室的下端和上端,进气口的上方位置固设有布气盘;制备步骤如下:采用激光蚀刻技术对工件表面进行预处理,在工件表面形成纵横交错的纹理;然后将激光蚀刻处理过的工件放入在工业乙醇中进行超声清洗,吹干;将预处理工件在沉积温度为1400~1550℃、真空度≤200 Pa下,通入SiCl4气体和H2,控制H2的流量为8~12 L/min,预沉积0.5~1 h;将预沉积工件在温度为500~650℃时梯度控制通入还原H2,温度达到1100~1250℃时,通入载气H2,此时调节硅源阀门,使硅源消耗速率为(360~800)g±20 g/h,沉积3~5 h,制得梯度SiC涂层。本发明制得的SiC涂层几乎为(111)晶型,涂层中硅碳比接近1∶1。

Description

一种梯度SiC涂层的制备方法
技术领域
本发明属于表面涂层技术领域,具体涉及一种梯度SiC涂层的制备方法。
背景技术
高纯度的碳化硅(SiC)材料具有低密度、耐高温、抗氧化、耐冲刷、抗腐蚀等一系列的优异性能,是材料表面保护涂层的理想材料体系,可以用来制作火箭喷管、轮机叶片涂层、气缸内壁涂层、半导体设备用石墨基座表面涂层,是解决工件实际应用中存在高温易氧化问题的最有效手段。碳化硅涂层制备方法主要有等离子喷涂、PVD、CVD等。目前最常用的方法是采用化学气相沉积(CVD)或涂刷的方法在石墨表面直接沉积一层SiC涂层。然而,陶瓷涂层的脆性是其在实际应用中最难突破的瓶颈问题。现有的陶瓷涂层体系失效的主要原因是陶瓷涂层与基体的热膨胀系数不匹配使其存在较大的热应力,导致陶瓷涂层在高低温交变过程中容易开裂致使涂层失效,为了缓解涂层开裂的趋势,梯度涂层、复合涂层以及引入第二相增韧涂层技术引起了极大的关注,然而也并不能解决涂层开裂引起的失效问题。
发明内容
为解决上述问题,本发明的目的在于提供一种梯度SiC涂层的制备方法。
为实现上述目的,本发明采取的技术方案如下:
一种梯度SiC涂层的制备方法,利用化学气相沉积法制备并且进气口设在化学气相沉积室的下端、出气口设在化学气相沉积室的上端,化学气相沉积室内部在进气口的上方位置贴合化学气相沉积室内壁固定设有布气盘,所述布气盘为多层布气盘(至少三层),各层布气盘同直径且同轴设置,每层布气盘上均匀开设有气流孔,并且相邻层布气盘中,上层布气盘厚度≥下层布气盘厚度、上层布气盘上气流孔的直径≤下层布气盘上气流孔的直径(上层布气盘上气流孔与下层布气盘上气流孔之间可以完全错开,也可以完全重叠,也可以部分重叠);制备步骤如下:
(1)、对工件进行预处理:采用激光蚀刻技术对工件表面进行预处理,在工件表面形成纵横交错的纹理,纵向纹理和横向纹理之间的间距均为0.1~0.5 mm,纹理的深度均为0.1~0.2 mm;然后将激光蚀刻处理过的工件放入在工业乙醇中进行超声清洗,吹干;
(2)、预沉积得到第一SiC涂层:将预处理工件悬挂于布气盘上方的化学气相沉积室内,在沉积温度为1400~1550 ℃、真空度≤200 Pa下,按照SiCl4∶H2=1∶(8~30)的体积比通入SiCl4气体和H2,控制H2的流量为8~12 L/min,沉积0.5~1 h;
(3)、继续沉积得到第二SiC涂层:将预沉积工件悬挂于布气盘上方的化学气相沉积室内,在温度为500~650 ℃时通入还原H2,温度达到1100~1250 ℃时,通入载气H2,此时调节硅源阀门,使硅源消耗速率为(360~800)g±20 g/h,沉积3~5 h;沉积结束后,即在工件表面制得梯度SiC涂层;其中,沉积过程中梯度控制还原H2的流量:沉积阶段前1/3时间还原H2流量为8~12 L/min,中间1/3时间还原H2流量为13~17 L/min,最后1/3时间还原H2流量为18~22L/min。
较好地,所述布气盘为三层布气盘,并且每层布气盘的厚度为3~15 mm、气流孔直径为1~5 mm。
较好地,步骤(2)和步骤(3)中,工件位于距离布气盘顶部100~300 mm的位置。
较好地,步骤(3)中,所述硅源为甲基三氯硅烷、三甲基氯硅烷、二甲基二氯硅烷或四氯化硅。
较好地,步骤(3)中,载气H2的流量为1~3 L/min。
较好地,步骤(2)和步骤(3)中,升温速率为2~4 ℃/min。
较好地,步骤(2)和步骤(3)中,在悬挂工件之后、沉积之前,首先进行除杂处理:
(a)、关闭化学气相沉积室下盖,启动真空泵,对化学气相沉积室进行抽真空至1 kPa以下,以便排除化学气相沉积室内部空气及水蒸气,下盖锁紧,继续抽真空至200 Pa以下;
(b)、开启Ar气充气阀门,快速通入Ar气,使化学气相沉积室内压力升至90 KPa以上,关闭充气阀门,停止通入Ar气,开启真空泵,抽真空至200 Pa以下,以便排除化学气相沉积室内杂质、灰分。
有益效果:
1、本发明采用下进气的方式,在气体与工件之间设置多层布气盘,用于调节气体流场,能够使气体通过层层布气盘调整后能够均匀地在工件表面沉积,使制备的涂层更加致密均匀;
2、本发明采用激光蚀刻的方法在工件表面形成纵向和横向交错的纹理面,通过纹理的设置增加工件表面的粗糙度,通过预沉积工艺在工件表面形成第一SiC涂层,提高涂层与工件之间的结合强度,由于后续在第一SiC涂层表面通过化学气相沉积制备的第二SiC涂层为同一种物质,将形成强结合,从而可获得结合强度高的SiC涂层,大大降低SiC在使用过程中的脱落情况;
3、本发明通过改变沉积过程中还原氢气的流量,实现流量的梯度控制,实现梯度涂层的沉积,为保证氢气到达工件表面的氢气流量达到预期的效果,本发明采用至少三层布气盘,下层和中间层布气盘用于保证氢气流量的均匀稳定调控,上层用于在梯度控制阶段氢气流量增加的同时保证流场通道的畅通,使工件表面的碳化硅涂层热膨胀系数呈梯度过渡,从而提高涂层的抗热震性能;
4、本发明采用将氢气同时作为还原气体和载气,避免了使用氩气等其他气体,能够节约成本,使操作更加简便;
5、本发明制备得到的SiC涂层几乎为(111)晶型,涂层中硅碳比接近1∶1,将在航空航天、半导体结构件上得到广泛的应用;
6、本发明制备得到的SiC涂层克服了抗氧化涂层与工件在热应力作用下可能导致涂层发生剥落而失效,抗热震性能差等不足,将会在表面涂层技术领域实现广泛的应用。
附图说明
图1:对照例1~3制备的SiC涂层的XRD分析结果。
具体实施方式
以下结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围。
实施例1
一种梯度SiC涂层的制备方法,利用化学气相沉积法制备并且进气口设在化学气相沉积室的下端、出气口设在化学气相沉积室的上端,化学气相沉积室内部在进气口的上方位置贴合化学气相沉积室内壁固定设有布气盘,所述布气盘为三层布气盘,各层布气盘同直径且同轴设置,每层布气盘上均匀开设有气流孔,并且下层布气盘的厚度为12 mm、气流孔直径为5 mm,中间层布气盘的厚度为10 mm、气流孔直径为4mm,上层布气盘的厚度为8 mm、气流孔直径为3 mm;制备步骤如下:
(1)、对工件(石墨盘)进行预处理:采用激光蚀刻技术对工件表面进行预处理,在工件表面形成纵横交错的纹理,纵向纹理和横向纹理之间的间距均为0.1 mm,纹理的深度均为0.1 mm;然后将激光蚀刻处理过的工件放入在工业乙醇中进行超声清洗,吹干;
(2)、预沉积得到第一SiC涂层:
(2a)、将预处理工件悬挂于化学气相沉积室内布气盘上方并距离布气盘顶部300 mm的位置;
(2b)、关闭化学气相沉积室下盖,启动真空泵,对化学气相沉积室进行抽真空至1 kPa以下,以便排除化学气相沉积室内部空气及水蒸气,下盖锁紧,继续抽真空至200 Pa以下;
(2c)、开启Ar气充气阀门,快速通入Ar气,使化学气相沉积室内压力迅速升至90 KPa以上,关闭充气阀门,停止通入Ar气,开启真空泵,抽真空至200 Pa以下,以便排除化学气相沉积室内杂质、灰分;
(2d)、以2 ℃/min的升温速率升温,在沉积温度为1450 ℃、真空度≤200 Pa下,按照SiCl4∶H2=1∶20的体积比通入SiCl4气体和H2,控制H2的流量为8 L/min,沉积1 h;
(3)、继续沉积得到第二SiC涂层:
(3a)、将预沉积工件悬挂于化学气相沉积室内布气盘上方并距离布气盘顶部300 mm的位置,
(3b)、关闭化学气相沉积室下盖,启动真空泵,对化学气相沉积室进行抽真空至1 kPa以下,以便排除化学气相沉积室内部空气及水蒸气,下盖锁紧,继续抽真空至200 Pa以下;
(3c)、开启Ar气充气阀门,快速通入Ar气,使化学气相沉积室内压力迅速升至90 KPa以上,关闭充气阀门,停止通入Ar气,开启真空泵,抽真空至200 Pa以下,以便排除化学气相沉积室内杂质、灰分;
(3d)、以2℃/min的升温速率升温,在温度为500 ℃时通入还原H2,温度达到1100 ℃时,以1 L/min的流量通入载气H2,此时调节硅源甲基三氯硅烷阀门,使硅源消耗速率为500g±20 g/h,沉积4.5 h;沉积结束后,即在工件表面制得梯度SiC涂层;其中,沉积过程中梯度控制还原H2的流量:沉积阶段前1/3时间还原H2流量为10 L/min,中间1/3时间还原H2流量为15 L/min,最后1/3时间还原H2流量为20 L/min。
对照例1
与实施例1的区别在于:步骤(3d)中,沉积过程中还原H2的流量恒定为10 L/min;其他均同实施例1。
对照例2
与实施例1的区别在于:步骤(3d)中,沉积过程中还原H2的流量恒定为15 L/min;其他均同实施例1。
对照例3
与实施例1的区别在于:步骤(3d)中,沉积过程中还原H2的流量恒定为20 L/min;其他均同实施例1。
图1是对照例1~3制备的碳化硅涂层XRD分析结果。由图1可以看到:随着氢气比例的提高,C峰逐渐变低、碳化硅峰逐渐升高,说明实施例1梯度控制还原H2的流量,从工件表面到涂层表面可以实现含碳量越来越少、碳化硅越来越多,C-SiC呈现梯度变化。
实施例2
一种梯度SiC涂层的制备方法,利用化学气相沉积法制备并且进气口设在化学气相沉积室的下端、出气口设在化学气相沉积室的上端,化学气相沉积室内部在进气口的上方位置贴合化学气相沉积室内壁固定设有布气盘,所述布气盘为三层布气盘,各层布气盘同直径且同轴设置,每层布气盘上均匀开设有气流孔,并且下层布气盘的厚度为10 mm、气流孔直径为4 mm,中间层布气盘的厚度为8 mm、气流孔直径为2 mm,上层布气盘的厚度为8 mm、气流孔直径为1 mm;制备步骤如下:
(1)、对工件(石墨盘)进行预处理:采用激光蚀刻技术对工件表面进行预处理,在工件表面形成纵横交错的纹理,纵向纹理和横向纹理之间的间距均为0.2 mm,纹理的深度均为0.15 mm;然后将激光蚀刻处理过的工件放入在工业乙醇中进行超声清洗,吹干;
(2)、预沉积得到第一SiC涂层:
(2a)、将预处理工件悬挂于化学气相沉积室内布气盘上方并距离布气盘顶部250 mm的位置;
(2b)、关闭化学气相沉积室下盖,启动真空泵,对化学气相沉积室进行抽真空至1 kPa以下,以便排除化学气相沉积室内部空气及水蒸气,下盖锁紧,继续抽真空至200 Pa以下;
(2c)、开启Ar气充气阀门,快速通入Ar气,使化学气相沉积室内压力迅速升至90 KPa以上,关闭充气阀门,停止通入Ar气,开启真空泵,抽真空至200 Pa以下,以便排除化学气相沉积室内杂质、灰分;
(2d)、以3 ℃/min的升温速率升温,在沉积温度为1500 ℃、真空度≤200 Pa下,按照SiCl4∶H2=1∶15的体积比通入SiCl4气体和H2,控制H2的流量为10 L/min,沉积1 h;
(3)、继续沉积得到第二SiC涂层:
(3a)、将预沉积工件悬挂于化学气相沉积室内布气盘上方并距离布气盘顶部250 mm的位置,
(3b)、关闭化学气相沉积室下盖,启动真空泵,对化学气相沉积室进行抽真空至1 kPa以下,以便排除化学气相沉积室内部空气及水蒸气,下盖锁紧,继续抽真空至200 Pa以下;
(3c)、开启Ar气充气阀门,快速通入Ar气,使化学气相沉积室内压力迅速升至90 KPa以上,关闭充气阀门,停止通入Ar气,开启真空泵,抽真空至200 Pa以下,以便排除化学气相沉积室内杂质、灰分;
(3d)、以4 ℃/min的升温速率升温,在温度为550 ℃时通入还原H2,温度达到1200 ℃时,以2 L/min的流量通入载气H2,此时调节硅源三甲基氯硅烷阀门,使硅源消耗速率为600g±20 g/h,沉积4 h;沉积结束后,即在工件表面制得梯度SiC涂层;其中,沉积过程中梯度控制还原H2的流量:沉积阶段前1/3时间还原H2流量为10 L/min,中间1/3时间还原H2流量为16 L/min,最后1/3时间还原H2流量为20 L/min。
实施例3
一种梯度SiC涂层的制备方法,利用化学气相沉积法制备并且进气口设在化学气相沉积室的下端、出气口设在化学气相沉积室的上端,化学气相沉积室内部在进气口的上方位置贴合化学气相沉积室内壁固定设有布气盘,所述布气盘为三层布气盘,各层布气盘同直径且同轴设置,每层布气盘上均匀开设有气流孔,并且下层布气盘的厚度为15 mm、气流孔直径为2 mm,中间层布气盘的厚度为12 mm、气流孔直径为2 mm,上层布气盘的厚度为6 mm、气流孔直径为2 mm;制备步骤如下:
(1)、对工件(石墨盘)进行预处理:采用激光蚀刻技术对工件表面进行预处理,在工件表面形成纵横交错的纹理,纵向纹理和横向纹理之间的间距均为0.3 mm,纹理的深度均为0.2 mm;然后将激光蚀刻处理过的工件放入在工业乙醇中进行超声清洗,吹干;
(2)、预沉积得到第一SiC涂层:
(2a)、将预处理工件悬挂于化学气相沉积室内布气盘上方并距离布气盘顶部150 mm的位置;
(2b)、关闭化学气相沉积室下盖,启动真空泵,对化学气相沉积室进行抽真空至1 kPa以下,以便排除化学气相沉积室内部空气及水蒸气,下盖锁紧,继续抽真空至200 Pa以下;
(2c)、开启Ar气充气阀门,快速通入Ar气,使化学气相沉积室内压力迅速升至90 KPa以上,关闭充气阀门,停止通入Ar气,开启真空泵,抽真空至200 Pa以下,以便排除化学气相沉积室内杂质、灰分;
(2d)、以4 ℃/min的升温速率升温,在沉积温度为1550 ℃、真空度≤200 Pa下,按照SiCl4∶H2=1∶25的体积比通入SiCl4气体和H2,控制H2的流量为8 L/min,沉积1 h;
(3)、继续沉积得到第二SiC涂层:
(3a)、将预沉积工件悬挂于化学气相沉积室内布气盘上方并距离布气盘顶部150 mm的位置,
(3b)、关闭化学气相沉积室下盖,启动真空泵,对化学气相沉积室进行抽真空至1 kPa以下,以便排除化学气相沉积室内部空气及水蒸气,下盖锁紧,继续抽真空至200 Pa以下;
(3c)、开启Ar气充气阀门,快速通入Ar气,使化学气相沉积室内压力迅速升至90 KPa以上,关闭充气阀门,停止通入Ar气,开启真空泵,抽真空至200 Pa以下,以便排除化学气相沉积室内杂质、灰分;
(3d)、以4 ℃/min的升温速率升温,在温度为600 ℃时通入还原H2,温度达到1250 ℃时,以3 L/min的流量通入载气H2,此时调节硅源二甲基二氯硅烷阀门,使硅源消耗速率为780 g±20 g/h,沉积5 h;沉积结束后,即在工件表面制得梯度SiC涂层;其中,沉积过程中梯度控制还原H2的流量:沉积阶段前1/3时间还原H2流量为12 L/min,中间1/3时间还原H2流量为17 L/min,最后1/3时间还原H2流量为22 L/min。

Claims (7)

1.一种梯度SiC涂层的制备方法,其特征在于,利用化学气相沉积法制备并且进气口设在化学气相沉积室的下端、出气口设在化学气相沉积室的上端,化学气相沉积室内部在进气口的上方位置贴合化学气相沉积室内壁固定设有布气盘,所述布气盘为多层布气盘,各层布气盘同直径且同轴设置,每层布气盘上均匀开设有气流孔,并且相邻层布气盘中,上层布气盘厚度≥下层布气盘厚度、上层布气盘上气流孔的直径≤下层布气盘上气流孔的直径;制备步骤如下:
(1)、对工件进行预处理:采用激光蚀刻技术对工件表面进行预处理,在工件表面形成纵横交错的纹理,纵向纹理和横向纹理之间的间距均为0.1~0.5 mm,纹理的深度均为0.1~0.2 mm;然后将激光蚀刻处理过的工件放入在工业乙醇中进行超声清洗,吹干;
(2)、预沉积得到第一SiC涂层:将预处理工件悬挂于布气盘上方的化学气相沉积室内,在沉积温度为1400~1550 ℃、真空度≤200 Pa下,按照SiCl4∶H2=1∶(8~30)的体积比通入SiCl4气体和H2,控制H2的流量为8~12 L/min,沉积0.5~1 h;
(3)、继续沉积得到第二SiC涂层:将预沉积工件悬挂于布气盘上方的化学气相沉积室内,在温度为500~650 ℃时通入还原H2,温度达到1100~1250 ℃时,通入载气H2,此时调节硅源阀门,使硅源消耗速率为(360~800)g±20 g/h,沉积3~5 h;沉积结束后,即在工件表面制得梯度SiC涂层;其中,沉积过程中梯度控制还原H2的流量:沉积阶段前1/3时间还原H2流量为8~12 L/min,中间1/3时间还原H2流量为13~17 L/min,最后1/3时间还原H2流量为18~22L/min。
2.如权利要求1所述的梯度SiC涂层的制备方法,其特征在于:所述布气盘为三层布气盘,并且每层布气盘的厚度为3~15 mm、气流孔直径为1~5 mm。
3.如权利要求1所述的梯度SiC涂层的制备方法,其特征在于:步骤(2)和步骤(3)中,工件位于距离布气盘顶部100~300 mm的位置。
4.如权利要求1所述的梯度SiC涂层的制备方法,其特征在于:步骤(3)中,所述硅源为甲基三氯硅烷、三甲基氯硅烷、二甲基二氯硅烷或四氯化硅。
5.如权利要求1所述的梯度SiC涂层的制备方法,其特征在于:步骤(3)中,载气H2的流量为1~3 L/min。
6.如权利要求1所述的梯度SiC涂层的制备方法,其特征在于:步骤(2)和步骤(3)中,升温速率为2~4 ℃/min。
7.如权利要求1~6任一所述的梯度SiC涂层的制备方法,其特征在于:步骤(2)和步骤(3)中,在悬挂工件之后、沉积之前,首先进行除杂处理:
(a)、关闭化学气相沉积室下盖,启动真空泵,对化学气相沉积室进行抽真空至1 kPa以下,以便排除化学气相沉积室内部空气及水蒸气,下盖锁紧,继续抽真空至200 Pa以下;
(b)、开启Ar气充气阀门,快速通入Ar气,使化学气相沉积室内压力升至90 KPa以上,关闭充气阀门,停止通入Ar气,开启真空泵,抽真空至200 Pa以下,以便排除化学气相沉积室内杂质、灰分。
CN201911218192.2A 2019-12-03 2019-12-03 一种梯度SiC涂层的制备方法 Pending CN110965042A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911218192.2A CN110965042A (zh) 2019-12-03 2019-12-03 一种梯度SiC涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911218192.2A CN110965042A (zh) 2019-12-03 2019-12-03 一种梯度SiC涂层的制备方法

Publications (1)

Publication Number Publication Date
CN110965042A true CN110965042A (zh) 2020-04-07

Family

ID=70032813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911218192.2A Pending CN110965042A (zh) 2019-12-03 2019-12-03 一种梯度SiC涂层的制备方法

Country Status (1)

Country Link
CN (1) CN110965042A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391675A (zh) * 2020-11-16 2021-02-23 南京工业大学 一种具有过渡层结构的半导体石墨基座盘及其制备方法
CN113463197A (zh) * 2021-06-18 2021-10-01 广州爱思威科技股份有限公司 一种碳化硅晶体的制备方法、碳化硅晶片、碳化硅衬底及半导体器件
CN114150292A (zh) * 2021-12-14 2022-03-08 武汉理工大学 一种抗热震碳化硅纳米多孔涂层材料及其制备方法与应用
CN114318290A (zh) * 2022-01-05 2022-04-12 巩义市泛锐熠辉复合材料有限公司 一种半导体设备用聚焦环的制备方法及装置
CN117328036A (zh) * 2023-12-01 2024-01-02 成都超纯应用材料有限责任公司 一种石墨碳化硅复合材料及石墨表面碳化硅的沉积工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171766A (ja) * 2001-12-04 2003-06-20 Nippon Pillar Packing Co Ltd 炭化珪素コーティング部材
CN102424955A (zh) * 2011-11-29 2012-04-25 中国科学院微电子研究所 一种新型匀气结构
CN102659451A (zh) * 2012-04-28 2012-09-12 中南大学 CVD SiC/SiO2梯度抗氧化复合涂层及其制备方法
CN202610323U (zh) * 2011-12-29 2012-12-19 财团法人工业技术研究院 气体喷洒模块
CN106702350A (zh) * 2015-11-13 2017-05-24 北京北方微电子基地设备工艺研究中心有限责任公司 进气组件及反应腔室
CN108911789A (zh) * 2018-07-27 2018-11-30 湖南省长宁炭素股份有限公司 一种C/C复合材料表面SiC涂层的制备方法
CN110144567A (zh) * 2019-06-06 2019-08-20 中国科学院金属研究所 采用化学气相沉积工艺在硅基体上制备超厚碳化硅梯度涂层的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171766A (ja) * 2001-12-04 2003-06-20 Nippon Pillar Packing Co Ltd 炭化珪素コーティング部材
CN102424955A (zh) * 2011-11-29 2012-04-25 中国科学院微电子研究所 一种新型匀气结构
CN202610323U (zh) * 2011-12-29 2012-12-19 财团法人工业技术研究院 气体喷洒模块
CN102659451A (zh) * 2012-04-28 2012-09-12 中南大学 CVD SiC/SiO2梯度抗氧化复合涂层及其制备方法
CN106702350A (zh) * 2015-11-13 2017-05-24 北京北方微电子基地设备工艺研究中心有限责任公司 进气组件及反应腔室
CN108911789A (zh) * 2018-07-27 2018-11-30 湖南省长宁炭素股份有限公司 一种C/C复合材料表面SiC涂层的制备方法
CN110144567A (zh) * 2019-06-06 2019-08-20 中国科学院金属研究所 采用化学气相沉积工艺在硅基体上制备超厚碳化硅梯度涂层的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391675A (zh) * 2020-11-16 2021-02-23 南京工业大学 一种具有过渡层结构的半导体石墨基座盘及其制备方法
CN112391675B (zh) * 2020-11-16 2021-08-31 南京工业大学 一种具有过渡层结构的半导体用石墨基座盘及其制备方法
CN113463197A (zh) * 2021-06-18 2021-10-01 广州爱思威科技股份有限公司 一种碳化硅晶体的制备方法、碳化硅晶片、碳化硅衬底及半导体器件
CN114150292A (zh) * 2021-12-14 2022-03-08 武汉理工大学 一种抗热震碳化硅纳米多孔涂层材料及其制备方法与应用
CN114150292B (zh) * 2021-12-14 2023-03-10 武汉理工大学 一种抗热震碳化硅纳米多孔涂层材料及其制备方法与应用
CN114318290A (zh) * 2022-01-05 2022-04-12 巩义市泛锐熠辉复合材料有限公司 一种半导体设备用聚焦环的制备方法及装置
CN117328036A (zh) * 2023-12-01 2024-01-02 成都超纯应用材料有限责任公司 一种石墨碳化硅复合材料及石墨表面碳化硅的沉积工艺
CN117328036B (zh) * 2023-12-01 2024-04-05 成都超纯应用材料有限责任公司 一种石墨碳化硅复合材料及石墨表面碳化硅的沉积工艺

Similar Documents

Publication Publication Date Title
CN110965042A (zh) 一种梯度SiC涂层的制备方法
CN110965123A (zh) 一种致密单晶型SiC涂层的制备方法
CN110644048A (zh) 一种制备多晶碳化硅的化学气相沉积方法及装置
TW200814157A (en) Overall defect reduction for PECVD films
CN101880866B (zh) 一种在硬质合金上为金刚石涂层制备金刚石-碳化硅-硅化钴复合中间层的方法
CN108911791B (zh) 环境障涂层及其制备方法
CN108975922B (zh) 一种表面具有热解碳涂层的碳/碳复合材料发热体及其制备方法
CN115108852B (zh) 一种石墨复合材料及其制备方法和应用
CN110803941B (zh) 一种碳-碳化硅复合材料表面抗氧化涂层及其制备方法
CN108385085B (zh) 一种低应力cvd金刚石复合涂层及其制备方法
CN114807891B (zh) 一种表面沉积TaC涂层的石墨基耐高温耐腐蚀热场材料的制备方法
CN114956825A (zh) 一种在石墨基材料表面生长TaC涂层的方法
CN103757601B (zh) 金刚石涂层高温高压喷雾喷嘴的制备方法
CN106987800B (zh) 一种周期性多层结构的二硼化钛-二硼化锆涂层及其制备方法和应用
CN111018568A (zh) 一种陶瓷基复合材料表面打底层的制备方法
CN107190243A (zh) 一种TiB2/AlTiN复合涂层及其制备方法与应用
CN108611638B (zh) 高磨耗比、高断裂强度微米金刚石厚膜及其制备方法
CN110029292A (zh) 一种石墨烯层改性c涂层纤维增强钛基复合材料的制备方法
CN111500998A (zh) 一种AlTiN/TiAlSiN梯度纳米复合结构涂层及其一体化制备方法与应用
CN102586754B (zh) 一种易脱模的热解氮化硼坩埚的制备方法
CN115028472A (zh) 一种c/c复合材料表面抗氧化烧蚀涂层的制备方法
CN109735788A (zh) 一种用于碳纤维增强复合材料表面的耐高温复合梯度涂层及制备方法
CN115044889B (zh) 一种石墨基座表面用SiC复合涂层及其制备方法
CN115894085B (zh) 一种复合陶瓷涂层材料及其制备方法和应用
CN112209721B (zh) 一种使用乙醇作为前驱体制备热解碳界面涂层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200407