CN115044889B - 一种石墨基座表面用SiC复合涂层及其制备方法 - Google Patents
一种石墨基座表面用SiC复合涂层及其制备方法 Download PDFInfo
- Publication number
- CN115044889B CN115044889B CN202210737533.2A CN202210737533A CN115044889B CN 115044889 B CN115044889 B CN 115044889B CN 202210737533 A CN202210737533 A CN 202210737533A CN 115044889 B CN115044889 B CN 115044889B
- Authority
- CN
- China
- Prior art keywords
- sic
- coating
- graphite base
- furnace
- deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4581—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
- C23C16/325—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4404—Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/14—Feed and outlet means for the gases; Modifying the flow of the reactive gases
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/183—Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/186—Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Ceramic Products (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本发明公开了一种石墨基座表面用SiC复合涂层及其制备方法,石墨基座表面用SiC复合涂层由PyC/SiC过渡层和SiC外涂层组成;所述PyC/SiC过渡层的厚度为5~15μm;所述SiC外涂层的厚度为75~100μm。所制备的复合涂层与基体结合强度高,抗热疲劳性能好,同时本发明方法还具有设备工艺简单、制造成本较低、涂层无明显分层、涂层高纯、涂层厚度可控、SiC外涂层致密且呈单晶型等优点。
Description
技术领域
本发明属于半导体技术领域,具体涉及一种石墨基座表面用SiC复合涂层及其制备方法。
背景技术
石墨基座是MOCVD设备中的核心零部件之一,是衬底基片的承载体和发热体,直接决定薄膜材料的均匀性和纯度。然而,在实际生产过程中会有腐蚀性气体的产生和金属有机物的残留,这会使石墨基座产生腐蚀掉粉现象,大大降低石墨基座的使用寿命,同时掉落的石墨粉体也会对芯片造成污染,成为限制MOCVD设备应用范围和阻碍半导体行业发展的首要问题之一。
表面涂层技术是解决上述问题的有效手段之一。SiC因其高的热力学稳定性、优异的导热性、高的电子迁移率、抗氧化、耐冲刷等一系列优异性能,结合CVD法良好的覆盖性和可控性,CVD-SiC涂层成为石墨基座表面用防护涂层的理想选择。然而,SiC涂层和石墨基体之间较大的热膨胀系数差异导致涂层在热循环过程中易产生裂纹甚至脱落,从而失去对基体的保护作用。
为了解决这一问题,梯度涂层、复合涂层以及引入第二相增韧涂层等技术被大量研究,然而这些技术仍存在制造成本过高、工艺复杂、涂层与基体之间热膨胀系数失配缓解不明显、涂层厚度不足、涂层表面粗糙度过大等缺点,无法满足石墨基座的应用需求以及工业化生产。
发明内容
针对现在技术中存在的不足之处,本发明的目的在于提供一种石墨基座表面用SiC复合涂层及其制备方法,所制备的复合涂层与基体结合强度高,抗热疲劳性能好,同时本发明方法还具有设备工艺简单、制造成本较低、涂层无明显分层、涂层高纯、涂层厚度可控、SiC外涂层致密且呈单晶型等优点。
为实现上述发明目的,本发明采用的技术方案是,一种石墨基座表面用SiC复合涂层,由PyC/SiC过渡层和SiC外涂层组成;所述PyC/SiC过渡层的厚度为5~15 μm;所述SiC外涂层的厚度为75~100 μm。
优选的,所述SiC外涂层的表面粗糙度低于2.5 μm。
本发明还提供了一种石墨基座表面用SiC复合涂层的制备方法,利用化学气相沉积法制备并且进气口和出气口分别位于沉积室的下端和上端;布气盘贴合沉积室内壁放置于进气口上方150 mm处;制备步骤如下:
A.对石墨基座进行预处理,然后放入沉积室中,并记录其位置;
B.合炉后进行除杂处理;
C.PyC/SiC过渡层的制备:将炉温升至1350~1500 ℃,然后通入CH4和N2,保持炉内压力为4~10 kPa,沉积时间为20~60 h,在石墨基座表面制备疏松热解碳,其中,N2的流量为3~10 L/min,CH4的流量为3~10 L/min;随后在沉积温度为1400~1550 ℃,沉积压力为0.5~5kPa条件下,按照H2/SiCl4体积比为5~30通入H2和SiCl4气体,沉积0.2~1 h,对疏松热解碳进行封孔处理,同时在其表面生成一层SiC涂层,其中,H2的流量为8~12 L/min;
D.SiC外涂层的制备:将炉温降至1100-1250 ℃,然后通入MTS-H2前驱体体系,H2/MTS摩尔比为10~20,沉积压力为0.5~10 kPa,沉积时间为3~7 h,在步骤C制备的PyC/SiC过渡层表面沉积形成SiC外涂层,其中,MTS的流量为400~480 g/h;
E.沉积结束后,再次升/降温至1200~1400 ℃,保温1~2 h,以缓慢释放复合涂层中的热应力和界面应力;
F.随炉冷却至室温,取出石墨基座。
较好地,所述PyC/SiC过渡层的厚度为5~15 μm;所述SiC外涂层的厚度为70~100 μm。
较好地,所述SiC外涂层的表面粗糙度低于2.5 μm。
较好地,沉积过程中,石墨基座位于化学气相沉积室的恒温区中,距布气盘的高度为250~650 mm。
较好地,步骤C和E中,升温速率为3~6 ℃/min。
较好地,步骤C和D中,SiCl4和MTS需处于一个恒温环境,所以将其放置在恒温水浴挥发容器中,设置温度恒定为40 ℃;通过鼓泡H2的方式将SiCl4和MTS分别带入沉积室中,同时H2还作为反应过程中的稀释气体。
较好地,步骤A中,对所述石墨基座进行预处理的步骤为:将所述石墨基座先在酒精中进行超声波处理10 min,然后用去离子水冲洗10 min,最后放入烘箱在110 ℃恒温条件下烘干30 min。
较好地,步骤B中,所述除杂处理的步骤为:装炉完毕后关闭炉门,开启真空泵使炉内压力抽至200 Pa以下后关闭真空泵,随后往沉积炉内快速通入N2气,当炉内压力达到90kPa以上后停止充N2气,再次开启真空泵抽真空至200 Pa以下。
相较于现有技术,本发明的优点和有益效果如下:本发明方法采用下进气和在进气口上方设置布气盘的方式,使气体在沉积室中均匀分布,从而制备出厚度均匀的涂层;过渡层中的热解碳与石墨基座的热膨胀系数相近,两者之间具有良好的结合强度;同时过渡层中含有热解碳和残余孔隙可有效减小涂层制备过程中产生的界面应力及热应力;过渡层中的SiC与PyC形成钉扎状界面结合以及牢固的化学结合;同时以过渡层表面的SiC为基底同质外延生长CVD-SiC外涂层,大大提高了SiC外涂层与石墨基座的结合能力;本发明方法制备的SiC外涂层高纯,致密无分层,几乎为(111)晶型,表面粗糙度低于2.5 μm等;本发明方法使用设备工艺简单、制造成本较低,具有广阔的工业化应用前景。
附图说明
图1为本发明中具有SiC复合涂层的石墨基座的结构示意图;附图标记为:1、石墨基座;2、PyC/SiC过渡层;3、SiC外涂层;
图2为实施例1中经化学气相沉积后制备的SiC外涂层表面形貌SEM图;
图3为实施例1中经化学气相沉积后制备的SiC外涂层的XRD衍射图谱。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围。
实施例1
如图1所示,本发明提供一种石墨基座表面用SiC复合涂层,包括石墨基座1,PyC/SiC过渡层2和SiC外涂层3;利用化学气相沉积法制备并且进气口和出气口分别位于沉积室的下端和上端,布气盘贴合沉积室内壁放置于进气口上方150 mm处;制备步骤如下:
A.将石墨基座先在酒精中进行超声波处理10 min,然后用去离子水冲洗10 min,最后放入烘箱在110 ℃恒温条件下烘干30 min,之后放入沉积室的恒温区中,距布气盘的高度为450 mm;
B.装炉完毕后关闭炉门,开启真空泵使炉内压力抽至200 Pa以下后关闭真空泵,随后往沉积炉内快速通入N2气,当炉内压力达到90 kPa以上后停止充N2气,再次开启真空泵抽真空至200 Pa以下;
C.以4 ℃/min的升温速率将炉温升至1450 ℃,然后通入CH4和N2,N2的流量为6 L/min,CH4的流量为4 L/min,保持炉内压力为6 kPa,沉积时间为25 h,在石墨基座表面制备疏松热解碳;随后在沉积温度为1450 ℃,沉积压力为0.5 kPa,按照H2/SiCl4体积比为20通入H2和SiCl4气体,H2的流量为8 L/min,沉积时间为0.3 h,对疏松热解碳进行封孔处理,同时在其表面生成一层SiC涂层,本实施例制备的PyC/SiC过渡层的厚度为6.2 μm;
D.将炉温降至1150 ℃,然后通入MTS-H2前驱体体系,H2/MTS摩尔比为15,沉积压力为2 kPa,沉积时间为4 h,在步骤C制备的PyC/SiC过渡层表面沉积形成SiC外涂层,其中,MTS的流量为440 g/h,本实施例制备的SiC外涂层的厚度为82.37 μm;
E.沉积结束后,使炉温升至1200 ℃,保温1 h,以缓慢释放复合涂层中的热应力和界面应力;
F.随炉冷却至室温,取出石墨基座。
图2为本实施例中经化学气相沉积后制备的SiC外涂层表面形貌SEM图,从图中可以看出,SiC外涂层表面由大小均匀的砂砾状晶粒组成,涂层表面致密,Ra为1.52 μm。
图3为本实施例中经化学气相沉积后制备的SiC外涂层的XRD衍射图谱,从图中可以观察到,涂层仅出现β-SiC的衍射峰,几乎呈单晶型,无其它杂质峰的存在。
为验证涂层试样的抗热疲劳性能,进行了真空热循环实验:将涂层试样放入高温电阻炉之中,抽真空,加热至1000 ℃,保温20 min后随炉冷却至室温。发现SiC复合涂层试样在经历331周期的热循环后表面出现涂层脱落现象,而单一SiC涂层试样在经历84周期的热循环后表面出现涂层脱落现象。
实施例2
本发明提供一种石墨基座表面用SiC复合涂层,包括石墨基座1,PyC/SiC过渡层2和SiC外涂层3;利用化学气相沉积法制备并且进气口和出气口分别位于沉积室的下端和上端,布气盘贴合沉积室内壁放置于进气口上方150 mm处;制备步骤如下:
A.将石墨基座先在酒精中进行超声波处理10 min,然后用去离子水冲洗10 min,最后放入烘箱在110 ℃恒温条件下烘干30 min,之后放入沉积室的恒温区中,距布气盘的高度为450 mm;
B.装炉完毕后关闭炉门,开启真空泵使炉内压力抽至200 Pa以下后关闭真空泵,随后往沉积炉内快速通入N2气,当炉内压力达到90 kPa以上后停止充N2气,再次开启真空泵抽真空至200 Pa以下;
C.以5 ℃/min的升温速率将炉温升至1400 ℃,然后通入CH4和N2,N2的流量为6 L/min,CH4的流量为6 L/min,保持炉内压力为6 kPa,沉积时间为30 h,在石墨基座表面制备疏松热解碳;随后将炉温升至1450 ℃,按照H2/SiCl4体积比为20通入H2和SiCl4气体,H2的流量为10 L/min,控制沉积压力为3 kPa,沉积时间为0.5 h,对疏松热解碳进行封孔处理,同时在其表面生成一层SiC涂层,本实施例制备的PyC/SiC过渡层的厚度为6.86 μm;
D.将炉温降至1150 ℃,然后通入MTS-H2前驱体体系,H2/MTS摩尔比为10,沉积压力为2 kPa,沉积时间为3 h,在步骤C制备的PyC/SiC过渡层表面沉积形成SiC外涂层,其中,MTS的流量为440 g/h,本实施例制备的SiC外涂层的厚度为72.27 μm;
E.沉积结束后,使炉温升至1250 ℃,保温2 h,以缓慢释放复合涂层中的热应力和界面应力;
F.随炉冷却至室温,取出石墨基座。
对涂层试样进行EDS分析,发现制备的SiC外涂层富碳,将导致涂层的抗氧化和抗腐蚀性能下降。
对涂层试样进行真空热循环实验,发现SiC复合涂层试样在经历287周期的热循环后表面出现涂层脱落现象。
实施例3
制备过程与实施例1基本相同,不同之处在于:步骤A中,石墨基座距布气盘的高度为650 mm;步骤C中,CH4的流量为3 L/min,H2/SiCl4体积比为25。本实施例制备的PyC/SiC过渡层的厚度为5.65 μm,SiC外涂层的厚度为74.23 μm。
对涂层试样进行真空热循环实验,发现SiC复合涂层试样在经历309周期的热循环后表面出现涂层脱落现象。
对比例1
对比例1的制备过程与实施例1不同之处在于:省略了步骤D中SiC外涂层的制备,产品中只含有PyC/SiC过渡层。
由于涂层中有PyC的存在,单一PyC/SiC涂层的抗氧化和抗腐蚀性能较差。
对涂层试样进行真空热循环实验,发现SiC复合涂层试样在经历147周期的热循环后表面出现涂层脱落现象。
Claims (8)
1.一种石墨基座表面用SiC复合涂层的制备方法,所述石墨基座表面用SiC复合涂层由PyC/SiC过渡层和SiC外涂层组成;所述PyC/SiC过渡层的厚度为5~15μm;所述SiC外涂层的厚度为70~100μm;
利用化学气相沉积法制备并且进气口和出气口分别位于沉积室的下端和上端;
其特征在于包括以下步骤:
A.对石墨基座进行预处理,然后放入沉积室中,并记录其位置;
B.合炉后进行除杂处理;
C.PyC/SiC过渡层的制备:将炉温升至1350~1500℃,然后通入CH4和N2,保持炉内压力为4~10kPa,沉积时间为20~60h,在石墨基座表面制备疏松热解碳,其中,N2的流量为3~10L/min,CH4的流量为3~10L/min;随后在沉积温度为1400~1550℃,沉积压力为0.5~5kPa条件下,按照H 2/SiCl 4体积比为5~30通入H2和SiCl4气体,沉积0.2~1h,对疏松热解碳进行封孔处理,同时在其表面生成一层SiC涂层,其中,H2的流量为8~12L/min;
D.SiC外涂层的制备:将炉温降至1100-1250℃,然后通入MTS-H2,H2/MTS摩尔比为10~20,沉积压力为0.5~10kPa,沉积时间为3~7h,在步骤C制备的PyC/SiC过渡层表面沉积形成SiC外涂层,其中,MTS的流量为400~480g/h;
E.沉积结束后,再次升/降温至1200~1400℃,保温1~2h,以缓慢释放复合涂层中的热应力和界面应力;
F.随炉冷却至室温,取出石墨基座。
2.如权利要求1所述石墨基座表面用SiC复合涂层的制备方法,其特征在于,所述SiC外涂层的表面粗糙度低于2.5μm。
3.如权利要求1所述石墨基座表面用SiC复合涂层的制备方法,其特征在于:布气盘贴合沉积室内壁放置于进气口上方150mm处。
4.如权利要求1所述石墨基座表面用SiC复合涂层的制备方法,其特征在于:沉积过程中,石墨基座位于化学气相沉积室的恒温区中,距布气盘的高度为250~650mm。
5.如权利要求1所述石墨基座表面用SiC复合涂层的制备方法,其特征在于:步骤C和E中,升温速率为3~6℃/min。
6.如权利要求1所述石墨基座表面用SiC复合涂层的制备方法,其特征在于:步骤C和D中,SiCl4和MTS需处于一个恒温环境,所以将其放置在恒温水浴挥发容器中,设置温度恒定为40℃;通过鼓泡H2的方式将SiCl4和MTS分别带入沉积室中,同时H2还作为反应过程中的稀释气体。
7.如权利要求1所述石墨基座表面用SiC复合涂层的制备方法,其特征在于步骤A中,对所述石墨基座进行预处理的步骤为:将所述石墨基座先在酒精中进行超声波处理10min,然后用去离子水冲洗10min,最后放入烘箱在110℃恒温条件下烘干30min。
8.如权利要求1所述石墨基座表面用SiC复合涂层的制备方法,其特征在于:步骤B中,所述除杂处理的步骤为:装炉完毕后关闭炉门,开启真空泵使炉内压力抽至200Pa以下后关闭真空泵,随后往沉积炉内快速通入N2气,当炉内压力达到90kPa以上后停止充N2气,再次开启真空泵抽真空至200Pa以下。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210737533.2A CN115044889B (zh) | 2022-06-28 | 2022-06-28 | 一种石墨基座表面用SiC复合涂层及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210737533.2A CN115044889B (zh) | 2022-06-28 | 2022-06-28 | 一种石墨基座表面用SiC复合涂层及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115044889A CN115044889A (zh) | 2022-09-13 |
CN115044889B true CN115044889B (zh) | 2023-09-05 |
Family
ID=83163817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210737533.2A Active CN115044889B (zh) | 2022-06-28 | 2022-06-28 | 一种石墨基座表面用SiC复合涂层及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115044889B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115786871B (zh) * | 2022-12-21 | 2024-10-08 | 湖南顶立科技股份有限公司 | 一种碳化硅涂层石墨基座及其制备方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53149194A (en) * | 1977-05-31 | 1978-12-26 | Sharp Corp | Coating method for graphite substrate with silicon carbide |
EP0121797A2 (en) * | 1983-03-15 | 1984-10-17 | Refractory Composites Inc. | Carbon composite article and method of making same |
CA2198134A1 (en) * | 1994-09-08 | 1996-03-14 | John L. Ely | Process for depositing pyrocarbon coatings in a fluidized bed |
US6221478B1 (en) * | 1997-07-24 | 2001-04-24 | James Kammeyer | Surface converted graphite components and methods of making same |
RU2165999C2 (ru) * | 1991-01-30 | 2001-04-27 | Научно-исследовательский институт молекулярной электроники | Способ формирования защитных покрытий графитовых подложкодержателей и устройство для его осуществления |
WO2009058185A2 (en) * | 2007-10-04 | 2009-05-07 | Lawrence Livermore National Security, Llc | Control of a laser inertial confinement fusion-fission power plant |
CN102964145A (zh) * | 2012-12-04 | 2013-03-13 | 西北工业大学 | 一种涂层增强C/SiC复合材料的制备方法 |
WO2015093550A1 (ja) * | 2013-12-19 | 2015-06-25 | イビデン株式会社 | SiCウェハの製造方法、SiC半導体の製造方法及び黒鉛炭化珪素複合基板 |
WO2017082147A1 (ja) * | 2015-11-11 | 2017-05-18 | 日本カーボン株式会社 | 黒鉛基材上に形成された被膜及びその製造方法 |
CN112391675A (zh) * | 2020-11-16 | 2021-02-23 | 南京工业大学 | 一种具有过渡层结构的半导体石墨基座盘及其制备方法 |
CN112410762A (zh) * | 2020-12-07 | 2021-02-26 | 湖南德智新材料有限公司 | 一种用于mocvd设备的硅基托盘及制备方法 |
CN112501584A (zh) * | 2020-11-13 | 2021-03-16 | 南昌大学 | 一种基于石墨基底的复合涂层及其制备方法 |
-
2022
- 2022-06-28 CN CN202210737533.2A patent/CN115044889B/zh active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53149194A (en) * | 1977-05-31 | 1978-12-26 | Sharp Corp | Coating method for graphite substrate with silicon carbide |
EP0121797A2 (en) * | 1983-03-15 | 1984-10-17 | Refractory Composites Inc. | Carbon composite article and method of making same |
RU2165999C2 (ru) * | 1991-01-30 | 2001-04-27 | Научно-исследовательский институт молекулярной электроники | Способ формирования защитных покрытий графитовых подложкодержателей и устройство для его осуществления |
CA2198134A1 (en) * | 1994-09-08 | 1996-03-14 | John L. Ely | Process for depositing pyrocarbon coatings in a fluidized bed |
US6221478B1 (en) * | 1997-07-24 | 2001-04-24 | James Kammeyer | Surface converted graphite components and methods of making same |
WO2009058185A2 (en) * | 2007-10-04 | 2009-05-07 | Lawrence Livermore National Security, Llc | Control of a laser inertial confinement fusion-fission power plant |
CN102964145A (zh) * | 2012-12-04 | 2013-03-13 | 西北工业大学 | 一种涂层增强C/SiC复合材料的制备方法 |
WO2015093550A1 (ja) * | 2013-12-19 | 2015-06-25 | イビデン株式会社 | SiCウェハの製造方法、SiC半導体の製造方法及び黒鉛炭化珪素複合基板 |
WO2017082147A1 (ja) * | 2015-11-11 | 2017-05-18 | 日本カーボン株式会社 | 黒鉛基材上に形成された被膜及びその製造方法 |
CN112501584A (zh) * | 2020-11-13 | 2021-03-16 | 南昌大学 | 一种基于石墨基底的复合涂层及其制备方法 |
CN112391675A (zh) * | 2020-11-16 | 2021-02-23 | 南京工业大学 | 一种具有过渡层结构的半导体石墨基座盘及其制备方法 |
CN112410762A (zh) * | 2020-12-07 | 2021-02-26 | 湖南德智新材料有限公司 | 一种用于mocvd设备的硅基托盘及制备方法 |
Non-Patent Citations (1)
Title |
---|
石墨表面化学气相沉积SiC及C涂层的制备;王春雨等;《金属热处理》;第36卷(第7期);第79页第1段、"2.3复合涂层" * |
Also Published As
Publication number | Publication date |
---|---|
CN115044889A (zh) | 2022-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110644048A (zh) | 一种制备多晶碳化硅的化学气相沉积方法及装置 | |
CN112501584A (zh) | 一种基于石墨基底的复合涂层及其制备方法 | |
CN112374911B (zh) | 一种石墨基底的表面处理方法及TaC涂层的制备方法 | |
CN115044889B (zh) | 一种石墨基座表面用SiC复合涂层及其制备方法 | |
CN109020625A (zh) | 一种抗氧化涂层的制备方法 | |
CN115108852B (zh) | 一种石墨复合材料及其制备方法和应用 | |
CN105503266A (zh) | 一种石墨热场表面制备SiC涂层的方法 | |
CN114807891B (zh) | 一种表面沉积TaC涂层的石墨基耐高温耐腐蚀热场材料的制备方法 | |
CN114956825A (zh) | 一种在石墨基材料表面生长TaC涂层的方法 | |
CN110965123A (zh) | 一种致密单晶型SiC涂层的制备方法 | |
CN112851387B (zh) | 一种在炭炭复合材料表面制备碳化硅涂层的方法 | |
CN102586754B (zh) | 一种易脱模的热解氮化硼坩埚的制备方法 | |
TW202114968A (zh) | 一種石墨基材上之碳化鉭塗層製備方法及其製備物 | |
CN110965042A (zh) | 一种梯度SiC涂层的制备方法 | |
CN115637419A (zh) | 一种钽-碳化钽复合涂层的制备方法及其制品 | |
CN115584486A (zh) | 一种碳化钽涂层制品及制备方法 | |
CN115028472A (zh) | 一种c/c复合材料表面抗氧化烧蚀涂层的制备方法 | |
CN105483642A (zh) | 一种长寿命热解氮化硼坩埚模具的制备方法 | |
CN115948721B (zh) | 一种cvd法制备碳化钽涂层的方法 | |
CN115894085B (zh) | 一种复合陶瓷涂层材料及其制备方法和应用 | |
CN218175088U (zh) | 一种在石墨结构件表面镀碳化物保护层的装置 | |
WO2024138594A1 (zh) | 一种镍基高温合金表面化学气相沉积AlCr涂层方法 | |
CN114525495B (zh) | 一种表面SiC涂层石墨托盘的制备方法及应用 | |
RU2165999C2 (ru) | Способ формирования защитных покрытий графитовых подложкодержателей и устройство для его осуществления | |
CN111410560A (zh) | 一种高致密SiC涂层的硅化石墨制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 2398 Muye Avenue, high tech Zone, Xinxiang City, Henan Province Applicant after: North Henan Steering System (Xinxiang) Co.,Ltd. Address before: 2398 Muye Avenue, high tech Zone, Xinxiang City, Henan Province Applicant before: YUBEI STEERING SYSTEM (XINXIANG) CO.,LTD. |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |