CN110931783B - 一种硫化锂/纳米金属正极复合材料及其制备方法与应用 - Google Patents

一种硫化锂/纳米金属正极复合材料及其制备方法与应用 Download PDF

Info

Publication number
CN110931783B
CN110931783B CN201911242061.8A CN201911242061A CN110931783B CN 110931783 B CN110931783 B CN 110931783B CN 201911242061 A CN201911242061 A CN 201911242061A CN 110931783 B CN110931783 B CN 110931783B
Authority
CN
China
Prior art keywords
lithium
nano metal
lithium sulfide
metal
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911242061.8A
Other languages
English (en)
Other versions
CN110931783A (zh
Inventor
邢震宇
马雁龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Xuchen Technology Co ltd
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201911242061.8A priority Critical patent/CN110931783B/zh
Publication of CN110931783A publication Critical patent/CN110931783A/zh
Application granted granted Critical
Publication of CN110931783B publication Critical patent/CN110931783B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明属于新能源技术电化学储能材料与器件技术领域,特别涉及一种硫化锂/纳米金属正极复合材料及其制备方法与应用。该硫化锂/纳米金属正极复合材料,包含的化学组成为硫化锂和纳米金属,所述纳米金属为铁、铜、镍、钛、钨和钼等中的至少一种,其中硫化锂和纳米金属的质量比为4~8:2~6。本发明通过硫化锂与纳米金属材料复合,纳米颗粒分布均匀,增大了材料的表面积,从而增强纳米金属材料对硫化锂的吸附,进而提高锂硫电池的稳定性减少穿梭效应。所得复合材料比石墨烯纳米胶囊更高的电子导电性,而且更有效地提高了晶体内锂离子的扩散率。

Description

一种硫化锂/纳米金属正极复合材料及其制备方法与应用
技术领域
本发明属于新能源技术电化学储能材料与器件技术领域,特别涉及一种硫化锂/纳米金属正极复合材料及其制备方法与应用。
背景技术
寻找替代化石燃料的替代能源是绿色现代社会可持续发展的迫切需要。目前,现有的电池设备能量密度较低不能满足电动汽车的行驶里程要求。因此,研究人员开始将注意力转向具有高达2600Wh/kg理论能量密度的锂电池。
现阶段锂离子电池在便携式电子产品中占有主导地位。但是阻碍锂电池进一步商业化的问题主要表现在三个方面。首先,充放电产物硫和放电产物硫化锂的绝缘特性使充放电过程中的过电位升高,导致容量降低,能源效率降低。其次,多硫化物溶解到有机电解质中会产生梭形效应,导致活性物质的损失,进一步降低效率,破坏稳定的循环寿命。最后,使用锂金属作为负极会导致内部短路,在实际应用中引起安全问题。
研究人员已经投入了大量的努力来解决上述问题。为了提高导电性,将硫渗透到多孔骨架中。为了抑制多硫化物的穿梭效应,采用了化学吸附,尤其是基于极性相互作用的化学吸附,将多硫化物保留在电极基体中。其中,杂原子掺杂的多孔碳、金属氧化物、金属氮化物、金属硫化物、金属碳化物等在化学吸附多硫化物方面具有很大的潜力。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种硫化锂/纳米金属正极复合材料。
本发明另一目的在于提供一种制备上述硫化锂/纳米金属正极复合材料的方法。
本发明再一目的在于提供上述硫化锂/纳米金属正极复合材料在锂硫电池中的应用。
本发明的目的通过下述方案实现:
一种硫化锂/纳米金属正极复合材料,该材料中包含的化学组成为硫化锂和纳米金属,其中硫化锂和纳米金属的质量比为4~8:2~6。
所述纳米金属为铁、铜、镍、锌、钛、钨、锰、钴、钒、铬和钼等中的至少一种;所述纳米金属的晶粒尺寸为5~100nm;
一种制备上述硫化锂/纳米金属正极复合材料的方法,具体如下所示:
将金属锂和硫化金属混合后,进行热处理即得到硫化锂/纳米金属正极复合材料。
所述硫化金属为TiS2、VS2、Cr2S3、MnS、FeS、COS2、Ni2S3、CuS、ZnS、WS2、MoS2中的至少一种。
所述金属锂和硫化金属的的摩尔比为2~10:1;优选为4~8:1。
所述热处理的温度为350~900℃,时间为8~20h;优选地,所述热处理的温度为700℃,时间为15h。
所述硫化锂/纳米金属正极复合材料在锂硫电池中的应用。
本发明涉及涉及硫化锂与多种金属硫化物制备复合材料做锂硫电池正极材料的制备方法,是一种新的合成方法。将锂与金属硫化物前驱体TiS2、VS2、Cr2S3、MnS、FeS、COS2、Ni2S3、CuS、ZnS、WS2、MoS2反应合成Li2S/金属复合材料。同时这些复合材料具有不同的性质,可以归纳为三类。第一种,铁、镍和铜在相应的硫化锂/金属复合材料中团聚为大块颗粒。第二种,Li2S/Mn、Li2S/Co和Li2S/Zn形成了纳米复合材料,但是在电池测试中,首圈存在过充的情况,而且接下来的放电过程没有容量。第三种,Li2S/Ti、Li2S/V、Li2S/Cr、Li2S/Mo、Li2S/W也形成了纳米复合材料,表现出规律性的Li-S电池性能,尽管首圈充电过程的过电位、容量、速率性能和循环寿命受到不同金属的影响。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)本发明是通过硫化锂与纳米金属材料复合,纳米颗粒分布均匀,增大了材料的表面积,从而增强纳米金属材料对硫化锂的吸附。
(2)材料中的纳米金属材料有利于增强多硫化物的吸附性能,进而提高锂硫电池的稳定性减少穿梭效应。
(3)材料中的硫化锂与纳米金属材料(钼和钨)复合材料具有比石墨烯纳米胶囊更高的电子导电性,而且更有效地提高了晶体内锂离子的扩散率。
(4)材料中的金属硫化物可以达到碳硫化物一样好的循环。
附图说明
图1分别为实施例1所得Li2S/Cu、Li2S/Fe和Li2S/Ni复合材料中金属颗粒团聚成金属块的数字图像。
图2为实施例1所得硫化锂/金属纳米复合材料的XRD图谱;(a)Li2S/Mn(b)Li2S/Co(c)Li2S/Zn(d)Li2S/Ti(e)Li2S/Mo(f)Li2S/W。
图3为0.1C电流密度下实施例1所得Li2S/Ti、Li2S/W、Li2S/Mo和Li2S的静电流电荷图。
图4为实施例1所得三种材料以及硫化锂分别组装成的锂硫电池分别在0.1C,0.2C,0.5C,1C,2C,和5C时的倍率性能。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例中所用试剂如无特殊说明均可从市场常规购得。
实施例1
硫化锂与纳米金属复合材料的制备:将2.8g锂和硫化金属在充满氩气的手套箱内密封在不锈钢管中。在氩气保护下将不锈钢管在管式炉中于700℃加热15h。
表1实施例1所用硫化金属的种类及用量
Figure BDA0002306521700000041
图1分别为实施例1所得Li2S/Cu、Li2S/Fe和Li2S/Ni复合材料中金属颗粒团聚成金属块的数字图像。由图可知,这几种金属发生了团聚现象,这是由于这三种金属的磁性或它们之间的结合能太强所导致。
按照上述所得Li2S/Mn,Li2S/Co,Li2S/Zn,Li2S/Ti,Li2S/Mo,Li2S/W复合材料通过x射线衍射(1.5418的铜Kα辐射)。图2为实施例1所得硫化锂/金属纳米复合材料的XRD图谱;(a)Li2S/Mn(b)Li2S/Co(c)Li2S/Zn(d)Li2S/Ti(e)Li2S/Mo(f)Li2S/W。同时根据最强峰值计算硫化锂晶体大小及相应的金属颗粒结果如表1所示。发现Li2S形成的微晶大小与钼或钨是16nm左右,远小于钛、锌、锰和钴。同样,钼或钨微晶大小大约是7nm,也小于钛、锌、锰和钴。只有钼和钨受空间组Cubic,Im3m(229)的约束,而其他金属不受空间组的约束。
表2根据最强峰值计算的硫化锂晶体大小及相应的金属颗粒
Figure BDA0002306521700000042
Figure BDA0002306521700000051
实施例2
将含有80wt%的Li2S/纳米金属、10wt%的炭黑和10wt%的聚乙烯醇(PVP)浆料,用刀片涂在铝箔上,在充氩气的手套箱内80℃干燥5小时,将所得材料作为电池正极材料。将1M双(三氟甲磺酰)亚胺锂和0.2M硝酸锂溶解在乙醚和1,3-二氧五环组成的电解液,与正极材料、锂金属、Celegard 2500隔膜组装成锂硫电池进行测试,所有测试的活性质量载量为1.5~2.0mg/cm2。将市售的硫化锂作为对照组的正极材料。
图3为0.1C电流密度下实施例1所得Li2S/Ti、Li2S/W、Li2S/Mo的静电流电荷图。由图可知,对于Li2S/Mo纳米复合材料,在第一次充电过程中其制得的锂硫电池电位极限为3.5V(相对于Li+/Li),在第一次放电和后续循环中电位极限为1.8V(相对于Li+/Li)至2.6V(相对于Li+/Li)。在第一个周期,由Li2S/Mo纳米复合材料组成的锂硫电池提供了一个容量为1217mAh/g和892mAh/g的放电容量,库仑效率73.29%。在第二个周期,由Li2S/Mo纳米复合材料组成的锂硫电池提供了一个容量为755mAh/g和696mAh/g的放电容量;第三周期的充电/放电容量分别为697和669mAh/g,库仑效率达到96.12%。Ti/Li2S和W/Li2S在前三个循环中表现出与Mo/Li2S相似的性能。第一个周期的放电过程和第二个周期的充电/放电过程,Ti/Li2S的曲线,Li2S/W和Li2S/Mo几乎是相同的。Mo和W不仅具有比石墨烯纳米胶囊更高的电子导电性,而且更有效地提高了晶体内Li离子的扩散率。
图4为四种材料组装成的锂硫电池分别在0.1C、0.2C、0.5C、1C、2C、和5C时的倍率性能,可以看出在0.2C时电流密度在2000mAh/g左右,而在5C时仍可达到550mAh/g左右。从图3和4可以看出Li2S/W、Li2S/Mo和Li2S/Ti的性能相近且相对于Li2S性能有明显提高。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种硫化锂/纳米金属正极复合材料,其特征在于该材料中包含的化学组成为硫化锂和纳米金属:所述硫化锂和纳米金属的质量比为4~8:2~6;
所述硫化锂/纳米金属正极复合材料的方法,具体如下所示:将金属锂和硫化金属混合后,进行热处理即得到硫化锂/纳米金属正极复合材料;
所述热处理的温度为350~900℃,时间为8~20h。
2.根据权利要求1所述的硫化锂/纳米金属正极复合材料,其特征在于:
所述纳米金属为铁、铜、镍、锌、钛、钨、锰、钴、钒、铬和钼中的至少一种;
所述纳米金属的晶粒尺寸为5~100 nm。
3.根据权利要求1所述硫化锂/纳米金属正极复合材料,其特征在于:所述硫化金属为TiS2、VS2、Cr2S3、MnS、FeS、Co S2、Ni2S3、CuS、ZnS、WS2和MoS2中的至少一种。
4.根据权利要求1所述硫化锂/纳米金属正极复合材料,其特征在于:所述金属锂和硫化金属的摩尔比为2~10:1。
5.根据权利要求1所述硫化锂/纳米金属正极复合材料,其特征在于:所述金属锂和硫化金属的摩尔比为4~8:1;所述热处理的温度为700℃,时间为15h。
6.一种根据权利要求1或2所述硫化锂/纳米金属正极复合材料在锂硫电池中的应用。
CN201911242061.8A 2019-12-06 2019-12-06 一种硫化锂/纳米金属正极复合材料及其制备方法与应用 Active CN110931783B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911242061.8A CN110931783B (zh) 2019-12-06 2019-12-06 一种硫化锂/纳米金属正极复合材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911242061.8A CN110931783B (zh) 2019-12-06 2019-12-06 一种硫化锂/纳米金属正极复合材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN110931783A CN110931783A (zh) 2020-03-27
CN110931783B true CN110931783B (zh) 2021-05-28

Family

ID=69857343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911242061.8A Active CN110931783B (zh) 2019-12-06 2019-12-06 一种硫化锂/纳米金属正极复合材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110931783B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151770B (zh) * 2020-09-16 2022-02-15 天目湖先进储能技术研究院有限公司 一种预嵌锂的二硫化铁正极材料的制备方法及锂二次电池
CN114361403B (zh) * 2021-11-26 2023-12-01 杭州电子科技大学 一种基于电化学手段制备硫化锂电极的方法
CN114267824B (zh) * 2021-12-22 2023-11-14 杭州电子科技大学 一种纳米硫化锂-铜复合电极及其制备方法
CN117566692A (zh) * 2023-12-06 2024-02-20 华南师范大学 一种硫化锂纳米颗粒的制备方法、硫化锂纳米颗粒及其应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070686B2 (ja) * 2005-08-08 2012-11-14 日産自動車株式会社 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
GB2464455B (en) * 2008-10-14 2010-09-15 Iti Scotland Ltd Lithium-containing transition metal sulfide compounds
US20130295464A1 (en) * 2011-01-27 2013-11-07 Idemitsu Kosan Co., Ltd. Composite material of alkaline metal sulfide and conducting agent
JP2013222501A (ja) * 2012-04-12 2013-10-28 Osaka Prefecture Univ 全固体リチウム二次電池用正極及びその製造方法
EP3046169B1 (en) * 2013-09-13 2018-08-29 National Institute of Advanced Industrial Science and Technology Lithium sulfide-iron-carbon composite body
CN108140817B (zh) * 2015-10-05 2021-10-29 新罗纳米技术有限公司 电池、含复合材料颗粒的电池电极成分及其制造方法
US10770727B2 (en) * 2016-11-28 2020-09-08 Lg Chem, Ltd. Cathode active material for lithium-sulfur battery, comprising metal sulfide nanoparticles, and method for producing same
US11495792B2 (en) * 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
US10971722B2 (en) * 2018-03-02 2021-04-06 Global Graphene Group, Inc. Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
CN108711618A (zh) * 2018-08-23 2018-10-26 成都新柯力化工科技有限公司 一种提高锂硫电池正极材料循环稳定性的方法
CN109671929A (zh) * 2018-12-12 2019-04-23 福建翔丰华新能源材料有限公司 硫化物电解质包覆的锂硅合金复合负极材料及其制备方法

Also Published As

Publication number Publication date
CN110931783A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
CN110931783B (zh) 一种硫化锂/纳米金属正极复合材料及其制备方法与应用
CN111725576B (zh) 一种碳包覆富锂氧化物复合材料及其制备方法
Bie et al. Li 2 O 2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries
Nguyen et al. Co-free high entropy spinel oxide anode with controlled morphology and crystallinity for outstanding charge/discharge performance in Lithium-ion batteries
Wu et al. Synthesis and characterization of Fe@ Fe2O3 core-shell nanoparticles/graphene anode material for lithium-ion batteries
CN110247047B (zh) 一种锂硫电池正极材料及其制备方法
KR20190066596A (ko) 비수전해질 이차전지용 음극활물질 및 이의 제조 방법
CN108232115B (zh) 锂硫电池正极材料及其制备方法和锂硫电池
JP2004119367A (ja) リチウム−硫黄電池用正極活物質,リチウム−硫黄電池,および電子製品
JP2016500895A (ja) 高分散性グラフェン組成物およびその製造方法、ならびに高分散性グラフェン組成物を含むリチウムイオン二次電池用電極
JP2010153369A (ja) 亜鉛アンチモナイド−炭素複合体の製造方法及びその複合体を含む二次電池用の負極材料
CN106450193B (zh) 一种硫化镍/石墨烯复合材料及其制备方法和应用
CN111403731B (zh) 一种3d轨道合金硫化物材料及其制备方法与应用
CN114094068B (zh) 钴包覆的正极材料及其制备方法、正极片和锂离子电池
Lee et al. Carbon-and binder-free NiCo 2 O 4 nanoneedle array electrode for sodium-ion batteries: electrochemical performance and insight into sodium storage reaction
KR20090020882A (ko) 표면이 피복된 리튬티탄산화물 분말, 이를 구비한 전극, 및이차전지
CN112038591A (zh) 镁硫电池及过渡金属硫化物/硫复合正极材料和复合方法
Narsimulu et al. Enhanced energy storage performance of nanocrystalline Sm-doped CoFe 2 O 4 as an effective anode material for Li-ion battery applications
JP5516463B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
CN112635726B (zh) 一种膨润土基复合材料及其制备方法和应用
JP4163410B2 (ja) 非水電解液二次電池用正極およびそれを用いた非水電解液二次電池
KR101345625B1 (ko) 이산화규소 및 이산화규소를 함유한 광물을 이용한 리튬 이차전지용 음극활물질 및 그 제조방법
TWI782192B (zh) 鋰離子二次電池用正極活性物質、鋰離子二次電池用正極材料和鋰離子二次電池
CN116646492A (zh) 正极材料及其制备方法、正极极片及电池
KR100969236B1 (ko) 휴믹산 첨가에 의한 나노 탄소 코팅된 리튬이차전지용양극활물질 전극재료의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Xing Zhenyu

Inventor after: Ma Yanlong

Inventor before: Xing Zhenyu

Inventor before: Ma Yanlong

Inventor before: Feng Xianglong

Inventor before: Li Aiju

Inventor before: Zhong Huaxia

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230901

Address after: 036002 20 # -101 Gubei Street, Shuocheng District, Shuozhou City, Shanxi Province

Patentee after: Shuozhou Yunling Trading Co.,Ltd.

Address before: 510006 School of chemistry, South China Normal University, 378 Waihuan West Road, Panyu District, Guangzhou City, Guangdong Province

Patentee before: SOUTH CHINA NORMAL University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240206

Address after: 519000, 5th floor, 5-569 (centralized office area), Yunxi Valley Digital Industrial Park, No. 168 Tourist Road, Xiangzhou District, Zhuhai City, Guangdong Province (Building B, Meixi Commercial Plaza)

Patentee after: Zhuhai Xuchen Technology Co.,Ltd.

Country or region after: China

Address before: 036002 20 # -101 Gubei Street, Shuocheng District, Shuozhou City, Shanxi Province

Patentee before: Shuozhou Yunling Trading Co.,Ltd.

Country or region before: China