CN110892258A - 具有集成的血浆收集设备的数字微流控系统和方法 - Google Patents
具有集成的血浆收集设备的数字微流控系统和方法 Download PDFInfo
- Publication number
- CN110892258A CN110892258A CN201880045563.9A CN201880045563A CN110892258A CN 110892258 A CN110892258 A CN 110892258A CN 201880045563 A CN201880045563 A CN 201880045563A CN 110892258 A CN110892258 A CN 110892258A
- Authority
- CN
- China
- Prior art keywords
- plasma
- sample
- dmf
- reaction
- separation membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502769—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
- B01L3/502784—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
- B01L3/502792—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0673—Handling of plugs of fluid surrounded by immiscible fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/16—Surface properties and coatings
- B01L2300/161—Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
- B01L2300/165—Specific details about hydrophobic, oleophobic surfaces
- B01L2300/166—Suprahydrophobic; Ultraphobic; Lotus-effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0415—Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
- B01L2400/0427—Electrowetting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
数字微流控(DMF)设备可用于从全血中提取血浆并操纵提取的血浆。该设备可以具有设置在样本入口和样本出口之间的血浆分离膜,样本出口通向DMF设备。一旦血浆接触DMF设备的致动电极,就可以通过致动所述致动电极来拉动血浆穿过血浆分离膜,从而主动地从全血样本中提取血浆。
Description
相关申请的交叉引用
本申请要求2017年7月24日提交的标题为“DIGITAL MICROFLUIDICS SYSTEMS ANDMETHODS WITH INTEGRATED PLASMA COLLECTION DEVICE”的美国临时专利申请号62/536,419的优先权,该申请通过引用以其整体并入本文用于所有目的。
本专利申请可要求于2016年6月6日提交的标题为“AIR-MATRIX DIGITALMICROFLUIDICS APPARATUSES AND METHODS FOR LIMITING EVAPORATION AND SURFACEFOULING”的国际申请号PCT/US2016/036015的优先权。
通过引用并入
在本说明书中提到的所有出版物和专利申请都通过引用并入本文,其通过引用并入本文的程度犹如每个单独出版物或专利申请被具体地和单独地指明通过引用并入的相同程度。
领域
本文描述了用于操纵和处理被包覆的(encapsulated)液滴的空气基质数字微流控(DMF)装置和方法。
背景
基于微流控的技术已被证明在广泛的应用中是有用的。虽然微流控操纵通常是使用微通道来进行,但最近出现了一种替代范例,称为数字微流控(DMF)。在DMF中,通过向电极垫(pad)阵列施加一系列电势,在平的疏水表面上操纵离散的纳升(nL)至微升(μL)大小的液滴。DMF在化学、生物和医疗应用中迅速流行,因为它允许直接控制多种试剂,易于处理固体和液体,并且因为疏水表面通常是化学惰性的而与甚至很麻烦的试剂(例如,有机溶剂、腐蚀性化学品等)兼容。
虽然DMF设备可以处理不同类型的液体,但操纵全血可能会造成各种困难,如干扰比色测定和造成结垢。此外,许多微流控和纳米流控测定无法直接处理作为测定的输入所需要的通常必需的较大体积的血液。因此,希望提供一种能够从全血样本提取血浆的DMF设备。
公开概述
本文描述了用于操纵和处理血液的空气基质数字微流控(DMF)方法,以及适于处理血液的装置。
我们最近开发了一个模块,用于将大体积(毫升级)样本提取并浓缩到DMF设备上使用的微升体积中,利用预制盒和蠕动泵将样本与磁性捕获珠粒(capture bead)有效混合。到目前为止,我们已经证明了从高达100μL的血浆中提取microRNA形成2μL的液滴,其性能(回收率、质量)可与基于小规模珠粒的microRNA提取相媲美。然而,DMF的一个持续挑战是从全血中提取血浆,以获得完整的样本-进入-答案-出来解决方案。为了应对这一挑战,我们开发了第一设备架构,将全血样本的血浆分离膜与DMF的下游处理相结合(见图1)。对于许多液体活组织检查应用,获取无细胞血浆对于确保检测循环DNA或RNA的无细胞部分非常重要。该模块不仅用于分离血浆,还用于确保在分离过程中甚至没有血小板或白细胞被携带或溶解。
例如,本文描述的是空气基质数字微流控(DMF)装置,其被配置成处理全血并操纵从全血中提取的血浆。这些装置可以包括:具有第一疏水层的第一板;具有涂有第二疏水层的第一侧面的第二板,该第二板具有样本出口;形成在第一疏水层与第二疏水层之间的气隙;与第一疏水层相邻的多个致动电极;被定位在样本出口上方的样本入口,该样本入口被配置成接收全血样本;被定位在样本入口和样本出口之间的血浆分离膜,该血浆分离膜被配置成从样本入口中的全血提取血浆到样本出口;以及被编程为致动多个致动电极的子集的控制器,当从全血提取的血浆接触第一板时,该多个致动电极的子集被激活,以便牵引血浆穿过血浆分离膜。
样本入口可以具有疏水的或超疏水的表面。第二板可以具有第二侧面,该第二侧面具有超疏水表面,其中,血浆分离膜被定位在第二板的超疏水表面和样本入口的超疏水表面之间。例如,样本入口可以包括带有孔的盖板(cover plate)。样本入口可以被定位在样本出口上方,使得当全血样本被放置在样本入口中时,重力牵引血浆穿过血浆分离膜。
可以使用任何适当的血浆分离膜。例如,血浆分离膜可以是多孔隙的,并且具有朝向样本入口定位的较大孔隙和朝向样本出口定位的较小孔隙。血浆分离膜可以是具有不同孔隙尺寸的多个膜的组件。
第一板可以是可重复使用设备的一部分,第二板是一次性盒的一部分。致动电极可以设置在可移除的薄膜上。
样本出口可以大于样本入口。
本文还描述了在空气基质数字微流控(DMF)装置中从全血提取血浆的方法,该方法包括:将全血样本引入空气基质DMF装置的样本入口;从样本入口中的全血样本提取血浆穿过血浆分离膜并进入空气基质DMF装置的样本出口;将提取的血浆从样本出口输送到空气基质DMF装置的多个致动电极中的一个或更多个致动电极;以及致动空气基质DMF装置的所述一个或更多个致动电极,以从全血样本中主动提取血浆。
该方法还可以包括在将全血样本引入样本入口之前预润湿血浆分离膜。
如所提及的,样本入口可以被定位在样本出口上方,使得当全血样本被引入样本入口时,重力牵引血浆穿过血浆分离膜。血浆分离膜可以被夹在一对超疏水表面之间。
提取的血浆可以至少部分地通过重力从样本出口被输送到一个或更多个致动电极。
该方法还可以包括检测提取的血浆何时接触一个或更多个致动电极。该方法还可以包括在提取的血浆接触一个或更多个致动电极之后致动该一个或更多个致动电极。
该方法还可以包括在提取的血浆接触一个或更多个致动电极之前致动该一个或更多个致动电极。
附图简述
本发明的新颖特征在随附的权利要求中被特别地阐述。通过参考以下详细描述将获得对本发明的特征和优点的更好理解,以下详细描述阐述了利用本发明的原理的说明性实施例和附图,在附图中:
图1是空气基质DMF装置的一部分的示例的顶视图,其示出了(由下面的致动电极限定的)多个单位单元和反应室开口(进入孔)。
图2A示出了图1的顶视图,图2B-2D示出了可以在空气基质DMF装置中使用的反应室井(reaction chamber well)的变型的侧视图。在图2B中,反应室井包括离心管;在图2C中,反应室井包括井板(well plate)(其可以是多井板(multi-well plate)的一部分);以及在图2D中,反应室井形成为空气基质DMF装置的板的一部分。
图3A-3E示出了如本文中所描述的(例如,由空气基质DMF装置的控制器控制的)进入反应室且然后离开反应室的移动。在这个示例中,在空气基质DMF装置的侧视图中示出了反应室井,并且反应室被一体地形成在空气基质DMF装置的其中包括致动电极(反应井致动电极)的板(例如,第一板或下板)中。
图4A示出了包括熔化的并且覆盖反应液滴的蜡(在这个示例中为石蜡)主体(body)的空气基质DMF装置的时间序列照片。
图4B是在不使用蜡主体覆盖反应液滴的情况下,示出明显的蒸发的类似于图4A(3)和4A(4)中所示的时间序列的示例。
图5是比较在具有和没有如本文中所描述的使反应液滴免于蒸发的蜡覆盖物的情况下的LAMP的扩增反应的图表。
图6A示出了使用石蜡介导的方法的LAMP的图形化结果;这可以与图6B所示出的使用常规方法的LAMP的图形化结果的图表进行定量比较。
图7A和图7B示出了液滴被包裹在热区中的蜡内以及随后液滴与液态蜡的分离。
图8A-8C示出了带有珠粒的载体液滴与来自图7A和图7B的液滴的合并以及随后珠粒的分离和再悬浮。
图9A-9E示出了具有集成的血浆分离设备的DMF装置。
图10是描绘具有电极和/或预加载有试剂的可移除的薄膜或片材(sheet)的示意图,该可移除的薄膜或片材可以附接到两个板之一上。
图11是具有电极的可移除的薄膜,该可移除的薄膜可以附接到两个板之一上。
详细描述
本文描述了空气基质数字微流控(DMF)方法和装置,其可用于新鲜或储存(例如,冷冻)的血液样本,包括直接取自患者的血液样本。本文所述的空气基质DMF装置对于作为DMF过程的一部分立即处理血液样本可能特别有用。
具体地,本文描述了空气基质DMF装置,其包括作为该装置的一部分(包括作为可应用于DMF驱动装置的盒(cartridge)的一部分)的血浆分离膜。血浆分离膜可以形成为DMF装置的顶部(例如,顶表面或顶板)的一部分。装置可以被配置成增强毛细管力(capillaryforce),该毛细管力牵引血浆穿过血浆分离膜并进入DMF装置的气隙。在没有本文描述的增强的情况下,血浆穿过典型膜(例如,过滤器、分离膜等)的流速将受到速率限制并且是缓慢的,并且将进一步限制装置在不需要分离或其他预处理而直接处理血液方面的有用性。
例如,在本文描述的任何装置中,血浆分离膜可以被包括在数字微流控(DMF)装置的顶板上。装置可以被配置成预润湿分离膜和/或使用该装置的方法可以包括预润湿分离膜,以增强毛细管力并实现穿过膜的更快的流动。装置可以被配置成使得当血浆与DMF表面接触时,电极(多个电极)被致动以使用电润湿力将血浆拉到DMF设备。例如,装置可以被配置成,例如,通过电检测(例如,电极的电气属性的变化)、光学检测(例如,针对在血浆加载区域处或附近的气隙区域的光学传感器)等来检测在气隙的血浆加载区域内接触一个或更多个电极的血浆。一旦在该区域内检测到流体(例如,血浆),DMF装置就可以电气地修改电润湿力并移动液滴。通过调节电润湿力将液滴拉走可以增加血浆穿过膜并进入气隙的流量。
在本文所述的任何装置和方法中,血浆分离膜可以被夹在超疏水表面之间。在装置的面向外的侧面上的加载区域可以是超疏水表面(例如,包括超疏水涂层)。围绕膜的超疏水环境可以防止血液样本溢出分离膜的边缘,并且可以帮助实现穿过膜的最大体积流量。
本文描述的任何方法(包括用户界面)可以被实现为软件、硬件或固件,并且可以被描述为存储能够由处理器执行的一组指令的非暂时性计算机可读存储介质(例如,计算机、平板电脑、智能电话等),该一组指令当由处理器执行时使处理器执行下列步骤中的任一个,包括但不限于:显示、与用户进行通信、分析、修改参数(包括定时、频率、强度等)、确定、报警等。
一般而言,如本文中所公开的空气基质DMF装置可具有任何适当的形状或尺寸。本文中所描述的空气基质DMF装置大体上包括至少一个疏水表面和与该表面相邻的多个致动电极,或者疏水表面也可以是电介质材料,或者额外的电介质材料/层可以被定位在致动电极与疏水表面之间。例如,在一些变型中,空气基质DMF包括在形成第一板或底板的印刷电路板(PCB)上的一系列的层。这个板的外(顶)表面是疏水层。在这个层上方的是气隙(气隙区域),可以沿该气隙操控反应液滴。在一些变型中,第二板可以被定位成与第一板相对,从而在两个板之间形成气隙区域。第二板还可以包括疏水涂层,并且在一些变型中,第二板还可以包括与致动电极相对的一个接地电极或多个接地电极。致动电极可以被配置用于在DMF设备内使液滴从一个区域移动到另一个区域,并且可以被电耦合到用于施加驱动液滴在气隙中移动的能量的控制器(例如,控制电路)。如所提及的,这个板还可以包括用于增大反应液滴与致动电极之间的电容的电介质层。反应起始材料和试剂以及额外的添加试剂可以处于可被分配到气隙中的贮存器中,在反应过程中反应混合物通常被保持在气隙中。在一些情况下,在后续步骤中所需的起始材料、试剂和组分可以存储在气隙层的独立区域中,使得它们彼此靠近而防止它们过早地彼此混合。在其它情况下,气隙层可以包括能够分隔不同反应混合物的特征,使得它们可以彼此靠近但是被物理屏障隔开。一般而言,气隙的底面(floor)位于第一板中,并且与一连串的致动电极电接触。
在一些实施例中,第一板和第二板之一可以集成到读取器设备中,另外一个板可以集成到可移除的一次性盒中,该盒在附接到读取器时,形成类似于本文所描述的双板数字微流控系统。读取器设备可以是永久的、可重复使用的设备,其包含用于控制DMF系统的全部或大部分的电子器件,并且还可以可选地包含用于分析设备中液滴的传感器(即,用于测量颜色和/或光、温度或pH的传感器)。此外,致动电极可以设置在薄膜上,该薄膜也可以由电介质材料制成。薄膜可以可移除地附接到其中一个板上,例如读取器上的板或盒上的板,而另外一个板可以具有接地电极。例如,美国专利号8,187,864;8,470,153;8,821,705;8,993,348;和9,377,439描述了基于盒的DMF系统,这些专利在此通过引用以其整体并入。
图10是描绘具有电极和/或预加载有试剂的可移除的薄膜或片材的示意图,该可移除的薄膜或片材可以可移除地附接到两个板之一上。薄膜10可以可选地具有至少一个预加载的试剂库12,该试剂库12安装(即,被点在(spotted)并干燥/冷冻)在薄膜10的疏水正表面上。该一次性基板10可以是任何薄的电介质片材或薄膜,只要它对预先加载在其上的试剂是化学稳定的。例如,可以使用任何基于聚合物的塑料,诸如例如保鲜膜(saranwrap)。除塑料食品膜外,其他基板(包括普通/文书胶带和拉伸的石蜡片)也被评估用做可替换的DMF基板。
如所示,一次性片材10可以附着到DMF设备14的电极阵列16,片材10的背表面粘附或者吸附到电极阵列16,其中沉积在片材10的表面(试剂液滴在该表面上平移)上的试剂库12与电极阵列16中的预选单个电极18对齐,如图10的步骤(1)和(2)所示。一个或更多个试剂液滴20和22可以在测定之前或在测定期间被沉积在设备上。从图10的步骤3可以看出,在测定期间,试剂液滴20和22可以在薄膜10的顶部之上被致动,以促进测定试剂液滴20和22与电极18上方的期望试剂库12的混合和合并。
反应完成后,然后可以如步骤(4)所示剥离一次性薄膜10,并且如果需要,如步骤(5)所示分析所得反应产物26。然后,新的一次性薄膜10可以附接到DMF设备14,用于下一轮分析。产物26也可以在可移除的基板仍然附接到DMF设备14时进行分析。可以通过使用额外的预加载基板来重复进行该过程。此外,含有反应产物的液滴可以被分裂开,与额外的液滴混合,如果它们含有细胞,则孵育它们进行细胞培养。
在如图11所示的一些实施例中,薄膜10还可以具有附接到和/或嵌入薄膜10内的多个电极23。薄膜10可以具有电触点(contact)和/或结(junction),其将薄膜10和电极23电耦合到DMF设备的顶板或底板上的互补电触点和结。在该实施例中,薄膜10所附接到的板可以不具有任何电极,而是可以仅具有用于与薄膜10电耦合的电触点和/或结。
本文中所描述的气隙DMF装置还可以包括用于提供所需反应条件的其他元件。例如,气隙DMF装置可以包括用于加热和冷却气隙的全部区域或一个区域(热区)的一个或更多个热调节器(例如,诸如热电模块的加热或冷却元件)。在其他情况下,可以通过控制吸热或放热反应以调节温度来提供加热或冷却。气隙DMF装置还可以包括用于在反应运行期间监测温度的温度检测器(例如,电阻式温度检测器)。此外,DMF装置还可以包括一个或更多个磁体,该一个或更多个磁体可以用于以按需方式操纵磁性珠粒。例如,磁体可以是由控制器控制来产生能够搅动或固定磁性珠粒的磁场的电磁体。
因此,本文中所描述的气隙DMF装置可以包括一个或更多个热区。热区是气隙DMF装置上的可以被加热或冷却的区域(例如,气隙),其中热区可以通过与该区中的气隙区域相接触的一个或更多个表面(例如,第一板)将加热或冷却传递到热区内的液滴。可以通过诸如热电模块的热调节器或其他类型的温度调节部件进行加热和冷却。可以通过温度检测器或传感器来监测一个或多个热区的温度,其中温度信息可以被传送到计算机或其他电信设备。如当这些装置被配置为执行一个或更多个反应(例如但不限于:核酸扩增、类似LAMP、PCR、分子测定、cDNA合成、有机合成等)时,通常在4℃与100℃之间调节温度。
气隙DMF装置还可以包括一个或更多个热空隙(thermal void)。热空隙可以被布置为与不同的热区相邻。热空隙通常是其中热传导受到限制的区域,例如,通过去除板(例如,第一板)的一部分(形成“空隙”)。可以策略性地放置这些空隙以使一个热区与另一个热区隔离,这允许在每个热区内保持正确的温度。
一般而言,本文中所描述的任何空气基质DMF装置可以包括与装置的气隙分离的或可分离的但可以通过气隙区域进入的单独的反应室。反应室通常包括与气隙的下表面(例如,第一板)衔接的(continuous)反应室开口和形成杯状区域的反应室井,液滴可以由装置可控地放置(并且在一些变型中移除)在该杯状区域中以在液滴被覆盖时执行反应。覆盖物可以是机械覆盖物(例如,密封或部分密封反应室开口的覆盖物),或者是包覆、包裹或以其他方式包围反应液滴的覆盖物,诸如在反应室中使两者结合时与反应液滴混合(然后分离并且包围反应液滴)的油或蜡材料。
一般而言,反应室开口可以是任何形状或尺寸(例如,圆形、正方形、矩形、六边形、八边形等)并且可以穿过第一(例如,下)板并且进入反应室井。在一些变型中,反应室开口穿过一个或更多个致动电极;特别地,反应室开口可以完全地或部分地被致动电极包围。
图1示出了示例性空气基质DMF装置101的顶视图。如所示出的,DMF设备可以包括由致动电极限定的一系列路径。致动电极103在图1中被示出为一系列方格(square),每个方格限定一个单位单元。这些致动电极可以具有任何适当的形状和尺寸并且不限于方格。例如,由第一层中的致动电极形成的单位单元可以是圆形的、六边形的、三角形的、矩形的、八边形的、平行四边形的等。在图1的示例中,表示单位单元的方格可以指示致动电极在DMF设备中的物理位置或者可以指示致动电极起作用的区域(例如,使得当液滴位于所示区域之上时,对应的致动电极可以影响液滴的移动或其他物理属性的有效区域)。致动电极103可以以任何图案放置。在一些示例中,致动电极可以横跨DMF装置的气隙的整个对应的底部表面或顶部表面。致动电极可以与起始样本室(未示出)以及试剂室(未示出)电接触以用于将不同液滴移动到气隙内的不同区域以与试剂液滴混合或加热。
在本文中所描述的空气基质装置中,第一(下)板还可以包括一个或更多个反应室开口(进入孔)105、105'。进入到反应室井可以允许在最开始引入反应液滴或允许稍后添加试剂液滴。特别地,一个或更多个反应液滴可以在气隙中被操纵(移动、混合、加热等)并且暂时或永久地移出气隙并通过反应室开口进入反应室井。如所示出的,一些反应室开口105'穿过致动电极。如将在本文中更详细地示出的,反应室本身可以包括可用于将反应室液滴移入/移出反应室井的额外的致动电极。在一些变型中,一个或更多个致动电极可以继续(离开气隙的平面)进入反应室井。
一般而言,可以随后或手动地或通过自动装置将一种或更多种附加试剂引入至气隙中。在一些实例中,进入孔可以是实际的进入端口,其可以通过用于在稍后的时间引入额外的反应组分或试剂的管子件(tubing)而耦接至试剂或反应组分的外部贮存器。如所提及的,进入孔(包括反应室开口)可以被定位为紧邻于一个或更多个DMF致动电极。进入孔还可以被设置在DMF装置的侧部或底部。一般而言,该装置可以包括用于控制致动电极的操作(包括将液滴移入和/或移出反应室)的控制器110。控制器可以与电极电连通并且它可以以受控的方式施加电力以协调液滴在气隙内的移动以及移入/移出反应室。控制器还可以电连接到一个或更多个温度调节器(热调节器120)以调节热区115中的温度。还可以包括一个或更多个传感器(例如,视频传感器、电传感器、温度传感器等)(未示出)并且该一个或更多个传感器可以向控制器提供输入,控制器可以使用来自这一个或更多个传感器的输入来控制运动和温度。
如上面所指出的,表面结垢是困扰微流控(包括DMF设备)的问题。当反应混合物的某些成分不可逆地吸附到反应混合物所接触的表面上时发生表面结垢。在包含蛋白质和其他生物分子的样本中,表面结垢也似乎更普遍。温度升高也可能导致表面结垢。本文中所描述的DMF装置和方法旨在使表面结垢的效应最小化。一种这样的方式是在与气隙层流体连通的反应室中执行大部分反应步骤。反应室可以是如图2B和图2C中所示出的能装进DMF设备的孔中的插入物。图2B示出了耦接到离心(例如,艾本德(Eppendorf))管205的气隙区域的底板(例如,第一板)而图2C将(例如,单井板或多井板的)井板207嵌入到气隙区域的底板中。如图2D中所示,内置井209也可以具体制造成被包含在空气基质DMF装置中。当使用单独的或可分离的管或板时,可以使用任何合适的耦接或粘合手段(例如,卡扣配合、摩擦配合、螺纹连接(threading)、诸如胶水、树脂等的粘合剂等等)将管耦接至DMF设备。
一般而言,在DMF设备内具有专用的反应室使得表面结垢最小化,尤其是当反应被加热时。因此,尽管在反应室内仍可能发生表面结垢,但表面结垢可以主要被限制在反应室内。这允许大部分的气隙区域底板保持被表面结垢最小程度的污染,并且如果需要的话,可以干净地用于后续转移试剂或额外的反应物质,从而允许执行多步骤或更复杂的反应。当反应步骤完成时,或在某些实例中整个反应完成时,含有产物的液滴可以被移出反应室以进行分析。在一些示例中,可以直接在反应室内分析产物液滴。
为了将包含起始材料的一个或更多个液滴和试剂液滴带入反应室中,可以使用额外的致动电极,这些额外的致动电极也可以用电介质层和疏水层(或组合的疏水/电介质层)来被覆盖/涂覆。图3A-3E示出了描绘液滴301移动进入和移出集成的井305的一系列图。如这一系列图所示,除了沿气隙层的底板排列成行之外,额外的致动电极307还排列在井的侧部和底部。在一些变型中,气隙中的相同的致动电极可以延伸到反应室开口中。致动电极307(例如,反应室致动电极)可以嵌入井中或者存在于井的侧部和底部上,用于驱动液滴移动进入/移出反应室井。致动电极还可以覆盖反应室的开口。在图3A中,可以(使用DMF)将气隙层中的液滴301(例如,反应液滴)移动至反应室开口。(在图3B和图3C中所示)沿着井的边缘和井的侧部的致动电极307在液滴沿着井壁向下移动到井的底部时与液滴保持接触。一旦处于反应室井中,(如下面更详细描述的,通过在反应室开口上放置覆盖物(例如,盖(lid),盖帽(cap)等)和/或(例如,当液滴含水时)通过将液滴与诸如油或蜡的覆盖(例如,包覆)材料相混合)液滴可以被覆盖。一般而言,可以允许液滴在井内进一步地反应,并且可以进行温度调节(例如,加热、冷却等),可以添加额外的材料(未示出)和/或它可以被观测(以检测反应产物)。可选择地或另外地,可以使用致动电极将液滴移出井;如果使用了机械覆盖物(例如,盖),则可以首先将它移除。如果使用了包覆材料,则可以将它留下。
在一些变型中,触点可以穿透反应室的表面。例如,可以有至少十个电插入点,以便在致动电极与反应室的内部之间提供充分的电接触。在其它示例中,可能需要至少20、30或甚至40个电插入点来为反应室的所有内表面提供充分的接触。反应室的内部可以是疏水的或亲水的(例如,以帮助接受液滴)。如所提及的,电极(致动电极)可以施加电势以将液滴移入和/或移出井。
一般而言,致动电极可以以受控的方式将液滴带入井中,该受控的方式在液滴移动到井中时使液滴的分散最小化,并且因此将样本液滴保持为尽可能的凝聚。图3D和图3E示出了液滴沿井壁向上移动并且然后移出反应室。这对于执行额外的后续步骤或检测或分析液滴内感兴趣的产物会是有用的,尽管这些步骤还可以或者可选择地在井内执行。致动电极可以位于与气隙层相接触的井的底表面、侧部和边沿(lip)上;一些致动电极还可以或可选择地存在于上(顶)层上。
在如图2A和图2B中所示的反应隔室是与DMF设备集成在一起的独立结构的实例中,基板(例如,PCB)的厚度可以类似于在DMF制造中常用的厚度。当反应隔室是如图2D中所示的在DMF设备的底板中制造的集成井结构时,基板的厚度可以等于井的深度。
在另一个实施例中,嵌在反应隔室中的电极可以包括用于电检测反应输出的电极。电检测方法包括但不限于电化学。在一些情况下,当电极接触反应液滴、试剂液滴或额外的反应组分时,使用电极的电特性的变化(例如,与液滴的位置相关的电阻的变化)来获得关于反应的信息。
本文中所描述的装置还可以防止蒸发。蒸发会导致反应混合物浓缩,这会是有害的,因为反应混合物中的试剂的损失会改变反应混合物的浓度并且会导致在中间反应液滴与随后加入的给定浓度的其它反应材料之间的浓度失配。在一些变型中,诸如酶促反应,酶对反应环境的变化高度敏感并且试剂的损失会改变某些酶的有效性。当反应混合物不得不长时间地被加热到环境温度以上时,蒸发问题尤为严重。在许多情况下,微流控和DMF设备利用油基质在微流控和DMF设备中执行生物化学类型反应来解决不希望的蒸发。在DMF反应中使用油基质的一个主要缺点是增加了纳入附加结构以包含油的复杂性。
本文描述的方法和装置通过使用蜡(例如,石蜡)来使反应过程中的蒸发最小化,可以防止或限制蒸发。蜡物质可以包括由长烷基链组成的物质。蜡在环境温度通常是固体,并且基于烃链内的取代量而具有约46℃至约68℃的熔点。然而,低熔点石蜡可以具有低至大约37℃的熔点,一些高熔点的蜡可以具有大约70-80℃的熔点。在一些实例中,较高熔点的蜡可以是纯化的粗蜡混合物。
如所提及的,蜡是(例如,在与气隙的平面分离的反应室内)可以用作覆盖物的一种类型的密封材料。在一些变型中,可以在气隙内使用蜡。特别地,蜡可以有利地保持固态,直到期望将它与反应液滴混合使得它可以涂覆并保护反应液滴。典型地,蜡材料(或其他涂覆材料)可以与反应液滴混合并且包裹(例如,包覆、包围等)含水反应液滴。
当反应液滴被保持在石蜡涂覆层内时,不仅蒸发最小化,而且石蜡还可以将反应液滴与其它潜在的反应干扰因素隔离。在一些实例中,一块固态石蜡或其他的蜡物质可以被放置在DMF设备的气隙层的热区内。例如,在反应期间,致动电极可以将反应液滴移动到蜡(例如,石蜡)主体。当加热到熔化温度时,蜡主体会熔化并且覆盖反应液滴。在防止蒸发损失的同时,然后反应可以持续较长的时间(包括在升高的温度)而不需要补充反应溶剂。例如被蜡包覆的液滴可以被保持和/或移动到热区以控制温度。可以降低或升高温度(也允许控制蜡的相(phase),因为蜡在反应液滴中进行的反应中通常是惰性的)。该特定热区处的温度可以被进一步提升以熔化石蜡并且释放反应液滴。当反应液滴被液态蜡或固态蜡包覆时,可以针对期望的产物来分析反应液滴,或者在将反应液滴从蜡覆盖物移除后,它可以被移动到DMF设备的另一个区域用于另外的反应步骤。可以使用具有期望性质(例如,熔点在反应温度之上)的石蜡或其它蜡材料。例如,石蜡通常具有在50摄氏度与70摄氏度之间的熔点,但是它们的熔点可以随着更长和更重的烷烃的增加而升高。
图4A示出了从如上面所论述的在空气基质内使用蜡主体的示例获得的时间序列图像(标号为1-4),示出了与没有蜡的控制(图4B中示出的图像1-2)相比蒸发的显著下降。在图4A中,右上方的第一图像示出了已通过空气基质装置中的DMF移动到包含固态蜡主体(例如,石蜡壁601)的热区(“加热区”)的8μL的反应液滴603。一旦就位,如图4A的图像2中所示,反应液滴可以与(例如,热印刷到DMF上的)固态石蜡壁合并,或者蜡材料可以首先被熔化(未示出)。在图4A的图像3中,热区被加热(63℃)至蜡材料的熔点或熔点以上,从而熔化反应液滴周围的石蜡,并且如图4A的图像3和图像4中所示,反应液滴被蜡材料包围/包覆,从而防止液滴蒸发。使用这种方法,在图4A的图像4中所示出的示例中,反应液滴的体积在63℃在约2小时(120分钟)长的孵育时间保持大致恒定。执行没有石蜡壁的等效实验,并且在图4B中示出。图4B中的左侧图片(图像1)示出了在63℃在零时的反应液滴603’并且图4B的右侧图片示出了在63℃在60分钟后的反应液滴。如所示出的,反应液滴在63℃在约1小时的时间内几乎被完全蒸发。
通过将液滴包裹在液态蜡的壳中的这种方法,在不使用油、加湿室、片外加热或液滴补充方法的情况下,反应体积和温度保持恒定。只要蜡的熔化温度高于环境温度,但是低于或等于反应温度,就可以使用石蜡以外的蜡来防止液滴蒸发。这种蜡的示例包括石蜡、蜂蜡和棕榈蜡。可以通过丝网印刷、二维印刷或三维印刷将蜡状固体热印刷在DMF设备表面上。这种蜡介导的蒸发防止解决方案是开发用于各种新型高冲击应用的空气基质DMF设备的重要进步。
如所提及的,所描述的基于蜡的蒸发方法可以与具有反应室特征的DMF设备结合使用,或者他们可以在没有单独的反应室的情况下使用。当在反应室内使用时,蜡可以存在于反应室中并且反应液滴可以被移动到包含蜡的反应室中用于执行需要加热的反应步骤。一旦加热步骤完成,可将反应液滴从反应室移出,用于进行检测或在DMF设备的气隙层内执行后续反应步骤。
在其他实施例中,蜡在室温可以是液态的,或者可以使用油代替蜡,或者可以加热固态蜡直到它是液态的。液态蜡或油可以与试剂混合,之后混合物被引入DMF设备,以防止试剂蒸发,而不是蜡与反应区一起被加热。然后试剂液滴将具有围绕试剂的液态蜡或油壳,这可以如上所述进行操纵。在一些实施例中,液态蜡/油可以由用户手动添加到试剂。在其他实施例中,液态蜡/油和试剂可以从贮存器分配,混合在一起,并由DMF设备使用泵而被引入DMF设备中。
本文中所描述的方法和装置可以用于防止空气基质DMF设备中的蒸发并且能够方便且可靠地在DMF上执行具有温度高于环境温度要求的任何化学方案。这样的方案包括但不限于,在温度范围(37-100℃)和孵育时间范围(≥2小时)上的DNA/RNA消化/片段化、cDNA合成、PCR、RT-PCR、等温反应(LAMP、滚环扩增-RCA、链置换扩增-SDA、解旋酶依赖性扩增-HDA、切口酶扩增反应(Nicking Enzyme Amplification reaction)-NEAR、基于核酸序列的扩增-NASBA、单引物等温扩增-SPIA、交叉引物扩增-CPA、聚合酶螺旋反应-PSR、滚环复制-RCR)以及基于连接的检测和扩增技术(连接酶链式反应-LCR、连接组合反转录聚合酶链式反应-RT PCR(ligation combined with reverse transcription polymerase chainreaction-RT PCR)、连接介导的聚合酶链式反应-LMPCR、聚合酶链式反应/连接检测反应-PCR/LDR、连接依赖性聚合酶链式反应-LD-PCR、寡核苷酸连接测定-OLA、扩增期间连接-LDA、连锁探针、开环探针和其他可环化探针的连接以及迭代空位连接(iterative gapligation)-IGL、连接酶链式反应-LCR)。可以使用本文描述的系统和方法执行的额外的方案包括杂交程序,如用于新一代测序的文库制备的杂交捕获和靶富集应用。对于这些类型的应用,杂交可以持续长达约3天(72h)。其他方案包括末端修复,例如,可以用以下酶中的一些或组合来完成:DNA聚合酶I,大(Klenow)片段(在25℃活化15分钟)、T4 DNA聚合酶(在15℃活化12分钟)和T4多核苷酸激酶(在37℃活化30分钟)。另一种方案包括A加尾(A-Tailing),这可以用下列酶中的一些或组合来完成:Taq聚合酶(在72℃活化20分钟)和Klenow片段(3'→5’exo-)(在37℃活化30分钟)。还有另一种方案是通过DNA或RNA连接酶进行连接。
被包覆的液滴的操纵和处理
尽管当在高温执行化学方案时将液滴包覆在蜡中可以防止或减少蒸发,但是在方案完成后,已经发现当液滴从蜡中移除并与之分离(例如通过使用DMF装置的电极驱动液滴)时,即使在含水液滴被从蜡移开时,少量液态蜡仍作为涂覆层与液滴在一起,并且该蜡涂覆层可能防止或干扰反应液滴的后续处理和分析,特别是在液滴被移出加热区之后液滴冷却并且蜡在液滴周围固化时。因此,在一些实施例中,使用本文所描述的系统和方法,可以穿过蜡涂覆层进入被蜡包覆的反应液滴,这使得能够容易且可靠地执行下游的生化过程。
为了在反应液滴已经在加热区与大块液态蜡分离之后穿过蜡涂覆层进入反应液滴,可以向反应液滴添加额外的疏水(例如,油)材料,以帮助溶解包覆反应液滴的固化蜡。例如,载体液滴(即,被包裹在薄层油中的含水液滴)可以与被包覆的反应液滴合并。载体液滴通过使来自载体液滴的油溶解包覆反应液滴的薄蜡层和/或与包覆反应液滴的薄蜡层合并而进入反应液滴。载体液滴可以使用除油之外的其他材料来突破包覆反应液滴的蜡层。例如,可以使用与含水反应液滴不混溶并且能够溶解蜡的材料,如四氯化碳(carbontetrachloride)、氯仿(chloroform)、环己烷(cyclohexane)、1,2-二氯乙烷(1,2-dichloroethane)、二氯甲烷(dichloromethane)、二乙基醚(diethyl ether)、二甲基甲酰胺(dimethyl formamide)、乙酸乙酯(ethyl acetate)、庚烷(heptane)、己烷(hexane)、甲基叔丁基醚(methyl-tert-butyl ether)、戊烷(pentane)、甲苯(toluene)、2,2,4-三甲基戊烷(2,2,4-trimethylpentane)和其他有机溶剂。可用于突破蜡层的其他材料包括离子型洗涤剂,如十六烷基三甲基溴化铵(cetyltrimethylammonium bromide)、脱氧胆酸钠(Sodium deoxycholate)、正十二烷酰肌氨酸钠盐(n-lauroylsarcosine sodium salt)、正十二烷基硫酸钠(sodium n-dodecyl Sulfate)、牛磺鹅去氧胆酸钠(sodiumtaurochenodeoxycholic);和非离子型洗涤剂,如二甲基癸基氧化膦(dimethyldodecylphosphine oxide)(APO-10)、二甲基十二烷基氧化膦(dimethyldodecylphosphine oxide)(APO-12)、正十二烷基-β-麦芽糖苷(n-Dodecyl-β-D-maltoside)蔗糖正十二烷酸酯(n-dodecanoylsucrose)、ELUGENTTM洗涤剂、C-100、正庚基β-吡喃葡萄糖苷(n-Heptylβ-D-glucopyranoside)、正己基-b-D-吡喃葡萄糖苷(n-Hexyl-b-D-glucopyranoside)、正壬基-b-D-吡喃葡萄糖苷(n-Nonyl-b-D-glucopyranoside)、NP-40替代物、蔗糖正辛酸酯(n-Octanoylsucrose)、正辛基-b-D-吡喃葡萄糖苷(n-Octyl-b-D-glucopyranoside)、正辛基-b-D-硫代吡喃葡萄糖苷(n-Octyl-b-D-thioglucopyranoside)、F-127、皂苷(Saponin)、X-100、X-114、20、80、Tetronic90R4。在蜡保持液态的温度,用蜡包覆的载体液滴也可用于突破包覆反应液滴的蜡。然而,对于蜡固化的较低温度,通常不能使用涂有蜡的载体液滴,因为固态蜡会阻止液滴移动。
例如,图7A示出了与图4A所示相似或相同的设置。该设置包括与放置在底部DMF基板之下或内部的加热元件相接的DMF设备,从而在底部DMF基板上生成离散的加热区900。替代地,加热元件可以放置在顶部基板之上或内部,以在顶部基板上形成加热区。然而,在底部基板上形成加热区允许视觉上看得到。在底部基板上,亲水区域902被印刷或以其他方式形成或设置在电极阵列904中的在加热区900中的致动电极周围。在室温可以是固态的一个或更多个蜡壁906或蜡结构可以通过例如热印刷来组装在顶部基板上,以在组装DMF设备时覆盖与底板上加热区900中的电极相邻的亲水区域902的一部分。替代地,蜡壁906或蜡结构可以在加热区900中的电极周围直接形成在底板上。在又一实施例中,蜡壁906可以放置在可移除的片材上,该片材可以可移除地附接到顶板或底板。可移除的片材可以在一侧面具有用于与液滴相互作用的疏水表面,在另外一侧面具有用于粘附到顶板或底板的粘合剂。试剂和其他材料也可以放置在可移除的片材上,以与液滴相互作用。在一些实施例中,顶板或底板可以是可移除的盒的一部分,其与另外一个板和电子器件组合以形成工作的DMF设备。如本文所描述的,反应液滴908可以沿着致动电极的路径被输送到加热区900,该路径可以是由到达加热区900的单条线的致动电极形成的相对窄的路径。然后加热区900被加热,并且围绕加热区900和反应液滴908的蜡壁906熔化,以将反应液滴908包覆在液态蜡910中,如图7B所示(框架i),从而防止或减少在反应方案期间反应液滴908的蒸发。围绕加热区900的亲水区域902用于将液态蜡910原位固定或定位在加热区900中,并允许反应液滴908脱离,如以下所描述的。
如图7B所示(框架ⅱ-ⅳ),通过致动加热区和路径中的致动电极来驱动含水反应液滴908远离加热区900和液态蜡910,可以完成从液态蜡910中剥离或分离被包覆的反应液滴908的过程。随着含水反应液滴908被致动远离加热区900,当反应液滴908从加热区900移走时,围绕液态蜡910的亲水区域902有助于将液态蜡910保持在原位,这导致包封液滴908的液态蜡910开始颈缩(neck)并最终从液滴908脱离,从而留下微量(trace)或少量的液态蜡910围绕分离的反应液滴908。一般来说,加热区900仅仅是单次使用的,以避免交叉污染。然而,在交叉污染不是问题的情况下,加热区900可以通过加热和熔化加热区内的蜡,然后将下一个液滴移动到被再加热的液态蜡910中来再次使用。
因为反应液滴在从加热区900分离后可能被薄层的液态蜡910围住,所以可能难以将反应液滴908与另一个含水液滴合并,因为液态蜡910涂覆层可能充当屏障。此外,当液滴冷却时,液态蜡910可能固化而形成阻碍与另一个液滴合并的物理屏障。因此,为了便于被液态蜡910涂覆的反应液滴908或带有固态蜡涂覆层的冷却的反应液滴908与另一液滴合并,载体液滴912可用于与反应液滴908合并,如图7B所示(框架v)。如上所述,载体液滴912可以是涂有薄层油或另一种有机溶剂的含水液滴。载体液滴912的含水部分可以包括额外的试剂、涂有(或未涂有)用于进行分离的DNA/RNA探针或抗体或抗原的珠粒、未被涂覆的珠粒、磁性珠粒、涂有结合部分(binding moiety)的珠粒、固相可逆固定(SPRI)珠粒、用于稀释反应液滴的水、酶或其他蛋白质、纳米孔、洗涤缓冲液、乙醇或其他醇、甲酰胺、洗涤剂和/或用于促进反应液滴908的进一步处理的其他部分。如图8A所示(框架i-iv),当载体液滴912和反应液滴908被致动电极移动到同一位置时,围绕载体液滴912的薄层油可以与围绕反应液滴908的薄层液态蜡合并,从而促进两个液滴908、912的含水部分合并以形成组合液滴914。
在载体液滴912已经与反应液滴908合并之后,可以进行组合液滴914的进一步处理,例如从组合液滴914中提取分析物和/或执行其他步骤,如杂交捕获探针、使用酶消化反应产物、用一组引物(primer)扩增反应产物等。例如,载体液滴912可以是用于提取分析物(例如,DNA或RNA或蛋白质)的承载珠粒。当液滴合并时,珠粒(可以是磁性的)可用于通过施加磁场来混合组合的液滴914。目标分析物结合到珠粒,珠粒可以通过磁场而相对于基板被固定以形成珠粒团(bead pellet)916,如图8B所示(框架i)。接下来,如图8B所示(框架ii-iii),组合的液滴914可以远离固定的珠粒团916移动,留下具有结合的分析物的珠粒团916在基底上。通过致动(actuating)电极,组合的液滴914可以远离固定的珠粒团916移动。替代地,当珠粒团916远离组合的液滴914移动时,组合的液滴914可以保持在原位。珠粒团916可以通过例如移动接合珠粒团916的磁场使其远离组合的液滴914(例如,通过移动产生磁场的磁体)而远离组合的液滴914移动,并与组合的液滴914分离。在一些实施例中,组合的液滴914可以通过与液滴接触和/或围绕液滴的电极的致动而被主动固定。替代地或另外,液滴914可以通过液滴与该液滴接触的基板之间的自然粘合力以及物理结构而被动地固定,物理结构诸如部分围绕组合的液滴914同时具有用于使珠粒团916通过的开口的挡壁(retaining wall)。如图8C所示(框架i和ii),含水液滴918可以在珠粒团916之上移动,以使具有结合的分析物的珠粒再悬浮。参见下面描述的示例3,了解用于miRNA纯化的该程序的实施例。
血浆提取
图9A-9E示出了DMF设备1000,其具有用于接收样本(如全血)的样本入口1002和样本出口1004,样本出口1004将样本液滴沉积到顶板1006和底板1008之间的气隙中,用于通过致动电极1010进行操纵。分离膜1012(如用于从全血中分离血浆的血浆分离膜)可以被定位在样本入口1002和样本出口1004之间,用于过滤样本。
为了形成样本入口1002,盖板1014可以放置在顶板1006中可用作样本出口1004的孔或端口上方,盖板1014具有可用作样本入口1002的孔或端口。盖板1014可以由疏水或超疏水材料制成,或者可以涂有疏水或超疏水层1016,如图9B所示。超疏水表面上的水滴具有大于150度的接触角,而疏水表面上的水滴具有大于90度但小于150度的接触角。此外,顶板1006的顶表面也可以涂有疏水或超疏水材料。分离膜1012可以被夹在盖板1014的疏水表面和顶板1006的顶表面之间。使这些表面疏水防止或大大减少了血液从样本入口1002扩散出来并到盖板1014上。此外,当血液样本饱和并穿过分离膜1012时,疏水表面防止或大大减少了血液扩散出膜并进入盖板1014和顶板1006之间的间隙。分离膜1012可以由多孔隙的亲水材料制成,孔隙(pore)尺寸沿着膜厚度而减小,使得较大的孔隙位于样本入口1002侧,较小的孔隙位于样本出口1004侧。在一些实施例中,垫圈可以放置在盖板1014和顶板1006之间以及分离膜1012周围,以防止血液在盖板1014和顶板1006之间扩散。样本出口1004(其可以形成为顶板1006中的孔)可以可选地具有亲水表面,如由亲水涂层或层形成的,或者通过由亲水材料构造顶板1006来形成的。亲水涂层或层可有助于将血浆牵引穿过分离膜1012并进入样本出口1004。
例如,在一个实施例中,具有大约1mm至10mm ID的孔(例如,4mm ID孔)的盖板1014可以在两侧面上喷涂超疏水层(例如,约500nm的层),然后在烘箱中进行后烘焙(post-baking)(100℃,10分钟)。DMF设备1000的顶板1006可以具有大约1mm至20mm ID的孔(例如,10mm ID的孔),该孔与盖板1014中的孔对齐。顶板1006中的孔可以大于盖板1014中的孔。例如,顶板1006中的孔可以比盖板1014中的孔大大约3mm至10mm。面向盖板1014的顶板1006的顶表面也可以(如上的)涂有超疏水层,并且顶板1006的具有接地电极的另外一侧面可以旋涂疏水层(例如,50nm的Teflon-AF1600层),然后如上进行后烘焙。DMF设备1000的底板1008可以由承载镀镍(例如,185μm厚的层)和镀金(例如,3.6μm厚的层)的铜电极(例如,43μm厚的层)的六层PCB基板制造,该PCB基板可以通过常规光刻和蚀刻技术形成,并覆盖有电介质带(例如,25μm厚的层)或涂层。该PCB基板可以具有电极阵列,如120个致动电极(例如,每个3.5mm×3.5mm),这些电极间的间隙大约为10μm至100μm(例如40μm)。盖板1014和顶板100可以使用螺钉、螺栓、卡扣、粘合剂和/或其他紧固件组装,分离膜(例如,PALL血浆分离膜、Ann Arbor、MI)夹在它们之间。底板1008和顶板1006可以用设置在两个板之间的一个或更多个间隔件组装,间隔件将两个板隔开大约100μm至1000μm(例如大约300μm)。例如,间隔件可以由一层或更多层双面胶带(例如,总厚度约为300μm的三片双面胶带)形成。双面胶带可以提供将顶板与底板间隔开和将顶板紧固到底板的双重功能。
如上所述,在一些实施例中,顶板和底板之一可以集成到读取器设备中,另外一个板可以集成到可移除的盒中,该可移除的盒在附接到读取器时,形成类似于本文所描述的双板数字微流控系统。此外,致动电极可以设置在也可以由电介质材料制成的薄膜上。薄膜可以可移除地附接到这两个板之一,如读取器上的板或盒上的板,而另外一个板可以具有接地电极。例如,薄膜可以附接到底板的PCB基板上。
图9A-9E描绘了从全血样本中提取血浆进入DMF设备并到电极上的过程。如所示,全血样本(例如,300μL)可以直接点在预润湿(例如,用三羟甲氨基甲烷(tris)缓冲液)的分离膜1012上——作为由于预润湿而增强的毛细管力的结果,实现了穿过分离膜1012的更快的流动。样本可以具有小于100μL到5000μL、或者在100到500μL之间的体积。样本可以被孵育少于大约1至10分钟(例如,1、2、3、4或5分钟)或孵育1至10分钟,在此期间,血浆通过重力和进行接收的DMF设备表面的毛细管力从分离膜1012的底部转移到具有致动电极的进行接收的DMF表面(例如,底板的表面)。在一些实施例中,负压和/或正压可用于驱动流体穿过膜。例如,可以使用泵(如往复泵)在流体出口处的板之间产生负压,和/或可以使用泵在流体入口处产生正压。压力和增强的流速可以保持在期望的阈值以下,以减少或防止溶血,溶血会干扰某些类型的核酸测定。在一些实施例中,使用直径为2cm且没有压力增强的膜的基础流速为每分钟约在50至200微升之间(即,每分钟50、60、70、80、90、100、110或120微升)。流速可以取决于膜的尺寸和特性(即,孔隙尺寸和孔隙分布)以及施加的正压和/或负压的大小。在一些实施例中,压力增强下穿过膜的增强的流速可以比没有压力增强下穿过膜的基础流速大到小于10、20、30、40、50、60、70、80、90或100%。可以设置或调节用于增强流速的正压和/或负压,以实现上面的流速。
一旦血浆接触具有致动电极1010的DMF表面,接触血浆的致动电极和接触点周围的致动电极被激活,从而利用电润湿力将血浆拉向DMF表面,然后所提取血浆的10-250μL(例如,约70μL)之间的体积被DMF设备1000的致动电极致动,用于进一步处理。在一些实施例中,通过检测血浆何时接触底板,传感器可用于反馈控制,并且当传感器检测到板上的血浆时,致动电极可被激活。例如,致动电极和/或单独的传感器电极可以用于测量电容,当液体覆盖电极时电容会发生变化。在一些实施例中,样本出口1004下方的致动电极1012可以在提取的血浆接触致动电极之前被激活,并且可以持续激活直到已经提取了足够体积的血浆,或者可以持续激活一组或预定量的时间,如大约1、2、3、4或5分钟。如上所提及,组装的架构的关键特征之一是围绕分离膜1012的超疏水环境,其防止或减少血液样本从分离膜边缘溢出并进入盖板和顶板之间的间隙中的可能性,这允许DMF设备获得穿过分离膜的最大或增加的血浆流量。与台式横向流动方法相比,本文所描述的系统和方法导致从给定样本体积中提取的血浆提取产量高达两倍。此外,就RBC溶血的程度而言,使用该DMF设备收集的血浆质量与通过离心和横向流动方法制备的血浆惊人地相似。该系统被设计用于方便的重新配置和重新编程,以适应大范围的血液体积和血浆输出。
示例1:设备制造和组装
通过将5.5mm直径的孔钻入3mm厚的PCB基板中构造包括嵌入式离心管和/或井板式井(例如,图2B、图2C)的DMF装置,该PCB基板承载用于电极和导电迹线的镀有镍(185μm)和金(3.6μm)的铜(43μm厚)。然后将管和井插入孔中。具有嵌入式井(例如,图2D)的DMF设备被制造具有在15mm厚的PCB基板中钻出的孔(5mm的直径,10mm的深度)。通过传统的光刻和蚀刻形成致动电极(每个电极为10mm×10mm),并且用阻焊剂(约15μm)作为电介质来涂覆致动电极。如图3A-3E中所示,一些电极形成在被用作至反应隔室的进入点的孔周围和附近。用聚酰亚胺带(DuPont;Hayward,CA)掩蔽电接触垫,并且用50nm的Teflon-AF层(Fluorinert Fc-40中1%wt/wt,1500rpm,30秒)旋涂基板,并且然后在100℃烘烤3小时。如上所述,用50nm的Teflon-AF旋涂DMF设备的顶板,该顶板由具有5.5mm直径的PDMS插塞的未图案化的氧化铟锡(ITO)(Delta Technologies Ltd;Stillwater,MN)均匀涂覆的玻璃基板组成。
如上所述制造的原型设备执行得更好或者与没有反应室的气隙DMF装置一样好。
示例2:量化使用蜡的蒸发预防
为了在我们的测定中定量评估蜡主体对防止蒸发的影响,使用实时PCR仪器在被覆盖在工作台上的试管中的液态石蜡中的同时,执行环介导的扩增(LAMP)反应。如在图5中所示,LAMP测定扩增了miR-451并且具有和不具有石蜡的Ct值(约13个周期)是可比较的,这表明对测定没有显著影响。对于DMF上的LAMP,将反应液滴(8μL)驱动至加热区(如图4A中所示)。在那里,液滴润湿固态石蜡壁,该固态石蜡壁在63℃的条件加热下将熔化成液态蜡以环绕反应体积并在63℃的整个孵育时间使该反应体积保持完好无损。图6A示出了使用石蜡介导的方法的LAMP测定,而图6B示出了使用常规方法的LAMP测定。在图6A中,两条上部的轨迹线是针对溶血样本的,而两条下部的轨迹线是针对非溶血样本的。每一部分的两条轨迹线显示使用蜡介导的空气基质DMF的运行的可重复性。在图6B中,针对溶血样本的常规LAMP测定以上部的两条轨迹线示出,而非溶血的LAMP运行以下部的两条轨迹线示出。再次,两条上部和两条下部的轨迹线均示出结果的可重复性。如图6A和图6B中所示,DMF上的蜡介导的方法产生的结果在Ct值上可堪比在管中由传统LAMP产生的结果。
示例3:miRNA纯化
来自miRNA ABC Purification Kit(Thermo Fisher Scientific)的Human Panel A珠粒。miRNA试样(4μL)或“反应液滴”被加载到DMF平台上,并置于覆盖加热区的电极阵列,使得液滴与石蜡壁接触。然后加热加热区(65℃,2分钟)以熔化液滴周围的石蜡。一旦石蜡熔化,反应液滴被驱离加热区,并与在2μL的矿物油中的miRNA结合珠粒(4×106珠粒;图3A)(即,载体液滴)合并。混合后,液滴被孵育(30℃,30分钟),以允许miRNA结合到miRNA结合珠粒。珠粒通过接合被定位在底板下的外部磁体而被捕获。一旦形成粒团,通过沿底板横向移动磁体,同时致动被定位在反应液滴下的电极,从溶液中回收珠粒(图3B)。然后使用DMF平台将miRNA结合珠粒重新悬浮在水(4μL)中,并转移至离心管中进行miRNA洗脱(70℃,3分钟;图3C)。相对于从没有石蜡但仅在油中的miRNA液滴中回收miRNA,对从被石蜡包封的miRNA液滴中回收miRNA的效率进行了评估。对由系统从具有和没有石蜡包封的样本中制备的miRNA的RT-qPCR分析产生了可比较的Ct值。
示例4:血浆分离设备
带有4mm ID的孔的盖板在两侧面上喷涂超疏水层(约500nm,),然后在烘箱中进行后烘培(100℃,10分钟)。具有10mm ID的孔的设备顶板在一侧面上涂有超疏水层(如上),并在包括接地电极的侧面上旋涂有疏水层(50nm,Teflon-AF1600),然后如上进行后烘培。DMF设备的底板是在CAD系统中设计的,Gerber文件被外包给第三方公司进行制造。简而言之,通过常规光刻和蚀刻15形成承载铜电极(43μm厚)的六层PCB基板,并用电介质带(25μm)覆盖,铜电极镀有镍(185μm)和金(3.6μm)。基板的特征在于120个致动电极(每个电极3.5×3.5mm)的阵列,电极间的间隙为40μm。盖板和顶板通过螺钉组装,血浆分离膜(PALL,Ann Arbor,MI)夹在他们之间。底板和顶板用由三片双面胶带(总厚度约300μm)构成的间隔件组装。
全血样本(300μL)直接点在(用三羟甲氨基甲烷缓冲液)预湿润的分离膜上。样本被孵育3分钟,在此期间,通过进行接收的DMF表面的毛细管力将血浆从分离膜的底部转移到进行接收的DMF设备表面。一旦血浆接触到DMF表面,致动电极被激活,从而利用电润湿力将血浆拉向DMF表面。一旦收集到足够体积的血浆(约70μL),由DMF设备致动致动电极,用于收集到的血浆液滴的进一步处理。
当特征或元件在本文被称为在另一特征或元件“上”时,它可直接在其他特征或元件上,或也可能存在中间的特征或元件。相反,当特征或元件被描述为“直接在”另一特征或元件“上”时,没有中间的特征或元件存在。还将理解,当特征或元件被称为“连接”、“附接”或“耦合”到另一特征或元件时,它可直接连接、附接或耦合到其他特征或元件,或可存在中间的特征或元件。相反,当特征或元件被称为“直接连接”、“直接附接”或“直接耦合”到另一特征或元件时,没有中间的特征或元件存在。虽然相对于一个实施例进行了描述或示出,但是这样描述或示出的特征和元件可以应用于其他实施例。本领域技术人员还将认识到,参考“邻近”另一特征设置的结构或特征可具有与相邻特征重叠或在相邻特征下方的部分。
本文使用的术语仅用于描述特定实施例的目的,并且不旨在限制本发明。例如,除非上下文另有明确说明,如本文所用的,单数形式“a(一)”、“an(一)”和“the(所述)”旨在同样包括复数形式。应当进一步理解,当术语“包括(comprises)”和/或“包括(comprising)”在本说明书中使用时,指定所陈述的特征、步骤、操作、元件和/或组件的存在,但不排除存在或添加一个或更多个其它特征、步骤、操作、元件、部件和/或它们的组。如本文所用的,术语“和/或”包括一种或更多种的相关联的所列项目中的任一组合和所有组合,并且可缩写为“/”。
空间相关的术语,诸如“在...下(under)”、“在...下(below)”、“低于(lower)”、“在...上(over)”、“上部(upper)”等可在本文中使用,以便于描述如附图所示的一个元件或特征到另一个元件或特征或多个元件或特征的关系。将理解的是,空间相对的术语旨在包括除了附图中描绘的取向之外的使用或操作中的设备的不同取向。例如,如果附图中的设备被反向,如元件被描述为“在其它元件或特征下(under)”、“在其它元件或特征下(beneath)”,所述元件然后将取向成“在其它元件或特征上(over)”。因此,示例性术语“在...下(under)”可涵盖在...上和在...下的两种取向。该设备可以另外地取向(旋转90度或在其他方位),并且本文使用的空间相对描述词被相应地解释。类似地,除非另外特别说明,术语“向上(upwardly)”、“向下(downwardly)”、“垂直(vertical)”、“水平(horizontal)”等在本文中用于说明的目的。
虽然术语“第一”和“第二”在本文中可以用于描述各种特征/元素(包括步骤),但是这些特征/元素不应该受这些术语的限制,除非上下文另有说明。这些术语可以用于将一个特征/元件与另一个特征/元件区分开。因此,在不脱离本发明的教导的情况下,下面讨论的第一特征/元件可以被称为第二特征/元件,并且类似地,下面讨论的第二特征/元件可以被称为第一特征/元件。
在本说明书和所附权利要求书中,除非上下文另有要求,术语“包括(comprise)”以及诸如“包括(comprises)”和“包括(comprising)”的变型意味着可以在方法和制品中共同使用各种组分(例如,组合物以及包括器件的装置和方法)。例如,术语“包括(comprising)”将被理解为暗示包含任何所述的元素或步骤,但不排除任何其它元素或步骤。
如本文在说明书和权利要求书中所使用的,包括在示例中所使用的,并且除非另有明确说明,所有数字可被读作仿佛前面有“约(about)”或“大约(approximately)”的词语,即使该术语没有明确出现。当描述幅度和/或位置以指示所描述的值和/或位置在值和/或位置的合理预期范围内时,可以使用短语“约”或“大约”。例如,数值可以具有为设定值(或值的范围)的+/-0.1%、设定值(或值的范围)的+/-1%、设定值(或值的范围)的+/-2%、设定值(或值的范围)的+/-5%、设定值(或值的范围)的+/-10%的值等。除非上下文另有说明,本文所给出的任何数值还应当被理解为包括约该值或大约该值。例如,如果公开了值“10”,则还公开了“约10”。本文所述的任何数值范围旨在包括包含在其中的所有子范围。还应当理解,如本领域技术人员所适当理解的,当公开了“小于或等于”该值时,“大于或等于该值”的值和值之间的可能范围也被公开。例如,如果公开了“X”值,则小于等于X以及“大于等于X”(例如,其中,X为数值)也被公开。还应当理解,在整个应用中,以多种不同格式提供数据,并且该数据表示数据点的任何组合的端点和起点以及范围。例如,如果公开了特定数据点“10”和特定数据点“15”,则应当理解,大于、大于或等于、小于、小于或等于以及等于10和15被认为是公开的,以及在10到15之间被认为是公开的。还应当理解,两个特定单元之间的每个单元也被公开。例如,如果公开10和15,则还公开了11、12、13和14。
虽然上面描述了各种说明性实施例,但是在不脱离如权利要求所描述的本发明的范围的情况下,可以对各种实施例进行若干改变中的任一个。例如,在替代实施例中,通常可以改变执行各种所描述的方法步骤的顺序,并且在其他替代实施例中,可以一起跳过一个或更多个方法步骤。各种装置和系统实施例的可选特征可以被包括在一些实施例中而不被包括在其他实施例中。因此,前面的描述主要被提供用于示例性目的,并且不应被解释为限制如在权利要求中阐述的本发明的范围。
本文所包括的示例和说明通过说明而非限制的方式示出其中可以实践主题的具体实施例。如所提到的,可以利用和从其导出其他实施例,使得可以做出结构和逻辑替换和改变而不脱离本公开的范围。仅为了方便,本发明性主题的这样的实施例在本文中可单独地或共同地由术语“发明”来提及,并且不旨在将本申请的范围主动地限制为任何单个发明或发明概念,如果实际上多于一个被公开的话。因此,虽然本文已经说明和描述了具体实施例,但是被计算为达到相同目的的任何布置可以替代所示的具体实施例。本公开旨在覆盖各种实施例的任何和所有修改或变型。在阅读以上描述后,本领域的技术人员将明白以上实施例的组合以及本文未具体描述的其他实施例。
Claims (18)
1.一种空气基质数字微流控(DMF)装置,其被配置成处理全血并操纵从全血中提取的血浆,所述装置包括:
第一板,其具有第一疏水层;
第二板,其具有涂有第二疏水层的第一侧面,所述第二板具有样本出口;
气隙,其形成在所述第一疏水层与所述第二疏水层之间;
多个致动电极,其与所述第一疏水层相邻;
样本入口,其被定位在所述样本出口上方,所述样本入口被配置成接收全血样本;
血浆分离膜,其被定位在所述样本入口和所述样本出口之间,所述血浆分离膜被配置成从所述样本入口中的全血提取血浆到所述样本出口中;以及
控制器,其被编程为致动所述多个致动电极的子集,当从所述全血提取的血浆接触所述第一板时,所述多个致动电极的所述子集被激活,以便牵引血浆穿过所述血浆分离膜。
2.根据权利要求1所述的装置,其中,所述样本入口具有超疏水表面。
3.根据权利要求2所述的装置,其中,所述第二板具有第二侧面,该第二侧面具有超疏水表面,其中,所述血浆分离膜被定位在所述第二板的超疏水表面和所述样本入口的超疏水表面之间。
4.根据权利要求1所述的装置,其中,所述样本入口包括具有孔的盖板。
5.根据权利要求1所述的装置,其中,所述样本入口被定位在所述样本出口上方,使得当全血样本被放置在所述样本入口中时,重力牵引血浆穿过所述血浆分离膜。
6.根据权利要求1所述的装置,其中,所述血浆分离膜是多孔隙的,并且具有朝向所述样本入口定位的较大孔隙和朝向所述样本出口定位的较小孔隙。
7.根据权利要求6所述的装置,其中,所述血浆分离膜是具有不同孔隙尺寸的多个膜的组件。
8.根据权利要求1所述的装置,其中,所述第一板是可重复使用设备的一部分,并且所述第二板是一次性盒的一部分。
9.根据权利要求8所述的装置,其中,所述致动电极布置在可移除的薄膜上。
10.根据权利要求1所述的装置,其中,所述样本出口大于所述样本入口。
11.一种在空气基质数字微流控(DMF)装置中从全血提取血浆的方法,所述方法包括:
将全血样本引入所述空气基质DMF装置的样本入口;
从所述样本入口中的全血样本提取血浆穿过血浆分离膜并进入所述空气基质DMF装置的样本出口;
将提取的血浆从所述样本出口输送到所述空气基质DMF装置的多个致动电极中的一个或更多个致动电极;以及
致动所述空气基质DMF装置的所述一个或更多个致动电极,以从全血样本中主动提取血浆。
12.根据权利要求11所述的方法,还包括在将全血样本引入所述样本入口之前预润湿所述血浆分离膜。
13.根据权利要求11所述的方法,其中,所述样本入口被定位在所述样本出口上方,使得当全血样本被引入所述样本入口时,重力牵引血浆穿过所述血浆分离膜。
14.根据权利要求11所述的方法,其中,所述血浆分离膜被夹在一对超疏水表面之间。
15.根据权利要求11所述的方法,其中,所提取的血浆至少部分地通过重力从所述样本出口被输送到一个或更多个致动电极。
16.根据权利要求11所述的方法,还包括检测提取的血浆何时接触所述一个或更多个致动电极。
17.根据权利要求11所述的方法,还包括在提取的血浆接触所述一个或更多个致动电极之后致动所述一个或更多个致动电极。
18.根据权利要求11所述的方法,还包括在提取的血浆接触所述一个或更多个致动电极之前致动所述一个或更多个致动电极。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762536419P | 2017-07-24 | 2017-07-24 | |
US62/536,419 | 2017-07-24 | ||
PCT/US2018/043293 WO2019023133A1 (en) | 2017-07-24 | 2018-07-23 | DIGITAL MICROFLUIDIC SYSTEMS AND METHODS WITH INTEGRATED PLASMA COLLECTION DEVICE |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110892258A true CN110892258A (zh) | 2020-03-17 |
Family
ID=65040378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880045563.9A Pending CN110892258A (zh) | 2017-07-24 | 2018-07-23 | 具有集成的血浆收集设备的数字微流控系统和方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US11413617B2 (zh) |
EP (1) | EP3658908A4 (zh) |
CN (1) | CN110892258A (zh) |
WO (1) | WO2019023133A1 (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3303547A4 (en) | 2015-06-05 | 2018-12-19 | Miroculus Inc. | Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling |
WO2016197106A1 (en) | 2015-06-05 | 2016-12-08 | Miroculus Inc. | Evaporation management in digital microfluidic devices |
CN109715781A (zh) | 2016-08-22 | 2019-05-03 | 米罗库鲁斯公司 | 用于数字微流控设备中的并行液滴控制的反馈系统 |
JP2020515815A (ja) | 2016-12-28 | 2020-05-28 | ミロキュラス インコーポレイテッド | デジタルマイクロ流体デバイスおよび方法 |
WO2019023133A1 (en) | 2017-07-24 | 2019-01-31 | Miroculus Inc. | DIGITAL MICROFLUIDIC SYSTEMS AND METHODS WITH INTEGRATED PLASMA COLLECTION DEVICE |
CA3073058A1 (en) | 2017-09-01 | 2019-03-07 | Miroculus Inc. | Digital microfluidics devices and methods of using them |
CA3096855A1 (en) | 2018-05-23 | 2019-11-28 | Miroculus Inc. | Control of evaporation in digital microfluidics |
CN116351489A (zh) * | 2019-01-31 | 2023-06-30 | 米罗库鲁斯公司 | 非结垢组合物以及用于操控和处理包封的微滴的方法 |
US11738345B2 (en) | 2019-04-08 | 2023-08-29 | Miroculus Inc. | Multi-cartridge digital microfluidics apparatuses and methods of use |
CN110064449B (zh) * | 2019-05-17 | 2021-09-03 | 北京京东方传感技术有限公司 | 一种生物液滴检测基板及其制备方法和检测装置 |
US11524298B2 (en) | 2019-07-25 | 2022-12-13 | Miroculus Inc. | Digital microfluidics devices and methods of use thereof |
US11857961B2 (en) | 2022-01-12 | 2024-01-02 | Miroculus Inc. | Sequencing by synthesis using mechanical compression |
WO2023215993A1 (en) * | 2022-05-11 | 2023-11-16 | Nicoya Lifesciences, Inc. | Microfluidics device and method including bottom substrate, top substrate, and cover plate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080038810A1 (en) * | 2006-04-18 | 2008-02-14 | Pollack Michael G | Droplet-based nucleic acid amplification device, system, and method |
US20100081578A1 (en) * | 2008-10-01 | 2010-04-01 | Wheeler Aaron R | Exchangeable sheets pre-loaded with reagent depots for digital microfluidics |
WO2013090889A1 (en) * | 2011-12-16 | 2013-06-20 | Advanced Liquid Logic Inc | Sample preparation on a droplet actuator |
US20130288254A1 (en) * | 2009-08-13 | 2013-10-31 | Advanced Liquid Logic, Inc. | Droplet Actuator and Droplet-Based Techniques |
Family Cites Families (338)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4469863A (en) | 1980-11-12 | 1984-09-04 | Ts O Paul O P | Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof |
FR2543320B1 (fr) | 1983-03-23 | 1986-01-31 | Thomson Csf | Dispositif indicateur a commande electrique de deplacement d'un fluide |
FR2548431B1 (fr) | 1983-06-30 | 1985-10-25 | Thomson Csf | Dispositif a commande electrique de deplacement de fluide |
FR2548795B1 (fr) | 1983-07-04 | 1986-11-21 | Thomson Csf | Dispositif de commutation optique a deplacement de fluide et dispositif de composition d'une ligne de points |
US5235033A (en) | 1985-03-15 | 1993-08-10 | Anti-Gene Development Group | Alpha-morpholino ribonucleoside derivatives and polymers thereof |
US5034506A (en) | 1985-03-15 | 1991-07-23 | Anti-Gene Development Group | Uncharged morpholino-based polymers having achiral intersubunit linkages |
CA1340807C (en) | 1988-02-24 | 1999-11-02 | Lawrence T. Malek | Nucleic acid amplification process |
US5216141A (en) | 1988-06-06 | 1993-06-01 | Benner Steven A | Oligonucleotide analogs containing sulfur linkages |
US5130238A (en) | 1988-06-24 | 1992-07-14 | Cangene Corporation | Enhanced nucleic acid amplification process |
US5270185A (en) | 1989-04-21 | 1993-12-14 | Hoffmann-La Roche Inc. | High-efficiency cloning of CDNA |
CA2020958C (en) | 1989-07-11 | 2005-01-11 | Daniel L. Kacian | Nucleic acid sequence amplification methods |
EP0515506B1 (en) | 1990-02-16 | 2000-01-05 | F. Hoffmann-La Roche Ag | Improvements in the specificity and convenience of the polymerase chain reaction |
US5770029A (en) | 1996-07-30 | 1998-06-23 | Soane Biosciences | Integrated electrophoretic microdevices |
US5386023A (en) | 1990-07-27 | 1995-01-31 | Isis Pharmaceuticals | Backbone modified oligonucleotide analogs and preparation thereof through reductive coupling |
US5602240A (en) | 1990-07-27 | 1997-02-11 | Ciba Geigy Ag. | Backbone modified oligonucleotide analogs |
US5455166A (en) | 1991-01-31 | 1995-10-03 | Becton, Dickinson And Company | Strand displacement amplification |
US5644048A (en) | 1992-01-10 | 1997-07-01 | Isis Pharmaceuticals, Inc. | Process for preparing phosphorothioate oligonucleotides |
US5486337A (en) | 1994-02-18 | 1996-01-23 | General Atomics | Device for electrostatic manipulation of droplets |
US5637684A (en) | 1994-02-23 | 1997-06-10 | Isis Pharmaceuticals, Inc. | Phosphoramidate and phosphorothioamidate oligomeric compounds |
US5681702A (en) | 1994-08-30 | 1997-10-28 | Chiron Corporation | Reduction of nonspecific hybridization by using novel base-pairing schemes |
US5710029A (en) | 1995-06-07 | 1998-01-20 | Gen-Probe Incorporated | Methods for determining pre-amplification levels of a nucleic acid target sequence from post-amplification levels of product |
US5705365A (en) | 1995-06-07 | 1998-01-06 | Gen-Probe Incorporated | Kits for determining pre-amplification levels of a nucleic acid target sequence from post-amplification levels of product |
US6074725A (en) | 1997-12-10 | 2000-06-13 | Caliper Technologies Corp. | Fabrication of microfluidic circuits by printing techniques |
US6787111B2 (en) | 1998-07-02 | 2004-09-07 | Amersham Biosciences (Sv) Corp. | Apparatus and method for filling and cleaning channels and inlet ports in microchips used for biological analysis |
US6132685A (en) | 1998-08-10 | 2000-10-17 | Caliper Technologies Corporation | High throughput microfluidic systems and methods |
SE9803734D0 (sv) | 1998-10-30 | 1998-10-30 | Amersham Pharm Biotech Ab | Liquid handling system |
US6565727B1 (en) | 1999-01-25 | 2003-05-20 | Nanolytics, Inc. | Actuators for microfluidics without moving parts |
US6294063B1 (en) | 1999-02-12 | 2001-09-25 | Board Of Regents, The University Of Texas System | Method and apparatus for programmable fluidic processing |
DE60044490D1 (de) | 1999-02-23 | 2010-07-15 | Caliper Life Sciences Inc | Manipulation von mikroteilchen in mikrofluiden systemen |
US6352838B1 (en) | 1999-04-07 | 2002-03-05 | The Regents Of The Universtiy Of California | Microfluidic DNA sample preparation method and device |
US6555389B1 (en) | 1999-05-11 | 2003-04-29 | Aclara Biosciences, Inc. | Sample evaporative control |
DE19949735A1 (de) | 1999-10-15 | 2001-05-10 | Bruker Daltonik Gmbh | Prozessieren von Proben in Lösungen mit definiert kleiner Wandkontaktfläche |
DE60035199T2 (de) | 1999-08-11 | 2008-02-14 | Asahi Kasei Kabushiki Kaisha | Analysenkassette und flüssigkeitsförderkontroller |
AU7853000A (en) | 1999-10-04 | 2001-05-10 | Nanostream, Inc. | Modular microfluidic devices comprising layered circuit board-type substrates |
DE19947788A1 (de) | 1999-10-05 | 2001-04-12 | Bayer Ag | Verfahren und Vorrichtung zum Bewegen von Flüssigkeiten |
CN1237572C (zh) | 1999-12-30 | 2006-01-18 | 阿德维昂生物科学公司 | 多电雾化装置、系统和方法 |
JP2003520962A (ja) | 2000-01-18 | 2003-07-08 | アドビオン バイオサイエンシーズ インコーポレーティッド | 分離媒体、複式電気噴霧ノズルシステム、および方法 |
DE10011022A1 (de) | 2000-03-07 | 2001-09-27 | Meinhard Knoll | Vorrichtung und Verfahren zur Durchführung von Synthesen, Analysen oder Transportvorgängen |
US6401552B1 (en) | 2000-04-17 | 2002-06-11 | Carlos D. Elkins | Centrifuge tube and method for collecting and dispensing mixed concentrated fluid samples |
US6773566B2 (en) | 2000-08-31 | 2004-08-10 | Nanolytics, Inc. | Electrostatic actuators for microfluidics and methods for using same |
US7216660B2 (en) | 2000-11-02 | 2007-05-15 | Princeton University | Method and device for controlling liquid flow on the surface of a microfluidic chip |
NL1016779C2 (nl) | 2000-12-02 | 2002-06-04 | Cornelis Johannes Maria V Rijn | Matrijs, werkwijze voor het vervaardigen van precisieproducten met behulp van een matrijs, alsmede precisieproducten, in het bijzonder microzeven en membraanfilters, vervaardigd met een dergelijke matrijs. |
JP3876146B2 (ja) | 2001-02-21 | 2007-01-31 | 三菱製紙株式会社 | インクジェット被記録媒体及びその製造方法 |
US6617136B2 (en) | 2001-04-24 | 2003-09-09 | 3M Innovative Properties Company | Biological sample processing methods and compositions that include surfactants |
WO2002088672A1 (en) | 2001-04-26 | 2002-11-07 | Varian, Inc. | Hollow fiber membrane sample preparation devices |
AU2002354577B2 (en) | 2001-07-13 | 2007-02-08 | Ambergen, Inc. | Nucleotide compositions comprising photocleavable markers and methods of preparation thereof |
US7390463B2 (en) | 2001-09-07 | 2008-06-24 | Corning Incorporated | Microcolumn-based, high-throughput microfluidic device |
US6887384B1 (en) | 2001-09-21 | 2005-05-03 | The Regents Of The University Of California | Monolithic microfluidic concentrators and mixers |
US7111635B2 (en) | 2001-10-11 | 2006-09-26 | Wisconsin Alumni Research Foundation | Method of fabricating a flow constriction within a channel of a microfluidic device |
US8053249B2 (en) | 2001-10-19 | 2011-11-08 | Wisconsin Alumni Research Foundation | Method of pumping fluid through a microfluidic device |
CA2472029C (en) | 2001-11-26 | 2014-04-15 | Keck Graduate Institute | Method, apparatus and article for microfluidic control via electrowetting, for chemical, biochemical and biological assays and the like |
DE10162064A1 (de) | 2001-12-17 | 2003-06-26 | Sunyx Surface Nanotechnologies | Hydrophobe Oberfläche mit einer Vielzahl von Elektroden |
CA2470847A1 (en) | 2001-12-19 | 2003-07-03 | Sau Lan Tang Staats | Interface members and holders for microfluidic array devices |
US7147763B2 (en) | 2002-04-01 | 2006-12-12 | Palo Alto Research Center Incorporated | Apparatus and method for using electrostatic force to cause fluid movement |
JP2003295281A (ja) | 2002-04-03 | 2003-10-15 | Canon Inc | 撮像装置及び動作処理方法及びプログラム及び記憶媒体 |
CN100507496C (zh) | 2002-06-20 | 2009-07-01 | 视觉生物体系有限公司 | 带有排放机构的生物反应装置及方法 |
NO20023398D0 (no) | 2002-07-15 | 2002-07-15 | Osmotex As | Anordning og fremgangsmåte for transport av v¶ske gjennom materialer |
US6989234B2 (en) | 2002-09-24 | 2006-01-24 | Duke University | Method and apparatus for non-contact electrostatic actuation of droplets |
US6911132B2 (en) | 2002-09-24 | 2005-06-28 | Duke University | Apparatus for manipulating droplets by electrowetting-based techniques |
US7329545B2 (en) | 2002-09-24 | 2008-02-12 | Duke University | Methods for sampling a liquid flow |
JP2009166041A (ja) | 2002-10-04 | 2009-07-30 | California Inst Of Technology | ミクロ流体タンパク質結晶法 |
US6885083B2 (en) | 2002-10-31 | 2005-04-26 | Hewlett-Packard Development Company, L.P. | Drop generator die processing |
US7851150B2 (en) | 2002-12-18 | 2010-12-14 | Third Wave Technologies, Inc. | Detection of small nucleic acids |
CA2512071A1 (en) | 2002-12-30 | 2004-07-22 | The Regents Of The University Of California | Methods and apparatus for pathogen detection and analysis |
US7547380B2 (en) | 2003-01-13 | 2009-06-16 | North Carolina State University | Droplet transportation devices and methods having a fluid surface |
AU2003900796A0 (en) | 2003-02-24 | 2003-03-13 | Microtechnology Centre Management Limited | Microfluidic filter |
GB0306163D0 (en) | 2003-03-18 | 2003-04-23 | Univ Cambridge Tech | Embossing microfluidic sensors |
US20050220675A1 (en) | 2003-09-19 | 2005-10-06 | Reed Mark T | High density plate filler |
CN100478075C (zh) | 2003-11-17 | 2009-04-15 | 皇家飞利浦电子股份有限公司 | 用于操纵流体实体的系统 |
KR100852348B1 (ko) | 2003-12-23 | 2008-08-14 | 와코 쥰야꾸 고교 가부시키가이샤 | 분석물 주입 시스템 |
US7445939B2 (en) | 2004-02-27 | 2008-11-04 | Varian, Inc. | Stable liquid membranes for liquid phase microextraction |
WO2005118129A1 (en) | 2004-05-27 | 2005-12-15 | Stratos Biosystems, Llc | Solid-phase affinity-based method for preparing and manipulating an analyte-containing solution |
FR2871150B1 (fr) | 2004-06-04 | 2006-09-22 | Univ Lille Sciences Tech | Dispositif de manipulation de gouttes destine a l'analyse biochimique, procede de fabrication du dispositif, et systeme d'analyse microfluidique |
FR2871076A1 (fr) | 2004-06-04 | 2005-12-09 | Univ Lille Sciences Tech | Dispositif pour desorption par rayonnement laser incorporant une manipulation de l'echantillon liquide sous forme de gouttes individuelles permettant leur traitement chimique et biochimique |
GB0414546D0 (en) | 2004-06-29 | 2004-08-04 | Oxford Biosensors Ltd | Electrode for electrochemical sensor |
US20060060769A1 (en) | 2004-09-21 | 2006-03-23 | Predicant Biosciences, Inc. | Electrospray apparatus with an integrated electrode |
US20080169197A1 (en) | 2004-10-18 | 2008-07-17 | Stratos Biosystems, Llc | Single-Sided Apparatus For Manipulating Droplets By Electrowetting-On-Dielectric Techniques |
US20060091015A1 (en) | 2004-11-01 | 2006-05-04 | Applera Corporation | Surface modification for non-specific adsorption of biological material |
US8685216B2 (en) | 2004-12-21 | 2014-04-01 | Palo Alto Research Center Incorporated | Apparatus and method for improved electrostatic drop merging and mixing |
WO2006081558A2 (en) | 2005-01-28 | 2006-08-03 | Duke University | Apparatuses and methods for manipulating droplets on a printed circuit board |
JP4632300B2 (ja) | 2005-02-14 | 2011-02-16 | 国立大学法人 筑波大学 | 送液装置 |
US20060211000A1 (en) | 2005-03-21 | 2006-09-21 | Sorge Joseph A | Methods, compositions, and kits for detection of microRNA |
FR2884438B1 (fr) | 2005-04-19 | 2007-08-03 | Commissariat Energie Atomique | Procede d'extraction d'au moins un compose d'une phase liquide comprenant un liquide ionique fonctionnalise, et systeme microfluidique pour la mise en oeuvre de ce procede. |
FR2884437B1 (fr) | 2005-04-19 | 2007-07-20 | Commissariat Energie Atomique | Dispositif et procede microfluidique de transfert de matiere entre deux phases immiscibles. |
JP2008539759A (ja) | 2005-05-11 | 2008-11-20 | ナノリティックス・インコーポレイテッド | 多数の温度で生化学的又は化学的な反応を実施する方法及び装置 |
WO2006127451A2 (en) | 2005-05-21 | 2006-11-30 | Core-Microsolutions, Inc. | Mitigation of biomolecular adsorption with hydrophilic polymer additives |
WO2007136386A2 (en) | 2005-06-06 | 2007-11-29 | The Regents Of The University Of California | Droplet-based on-chip sample preparation for mass spectrometry |
CN101252993A (zh) | 2005-06-16 | 2008-08-27 | 精华微技有限公司 | 利用液滴驱动、搅拌和蒸发的生物传感器检测 |
FR2887305B1 (fr) | 2005-06-17 | 2011-05-27 | Commissariat Energie Atomique | Dispositif de pompage par electromouillage et application aux mesures d'activite electrique |
US20070023292A1 (en) | 2005-07-26 | 2007-02-01 | The Regents Of The University Of California | Small object moving on printed circuit board |
US20080293051A1 (en) | 2005-08-30 | 2008-11-27 | Board Of Regents, The University Of Texas System | proximity ligation assay |
CN101351270A (zh) | 2005-10-22 | 2009-01-21 | 精华微技有限公司 | 从用于芯片微流控的液柱中抽取液滴 |
US20070095407A1 (en) | 2005-10-28 | 2007-05-03 | Academia Sinica | Electrically controlled addressable multi-dimensional microfluidic device and method |
CN101360818A (zh) | 2005-12-08 | 2009-02-04 | 蛋白质发现公司 | 用于分级和富集化学分析中分析物的方法和设备 |
KR100738087B1 (ko) | 2005-12-22 | 2007-07-12 | 삼성전자주식회사 | 액적 조작을 이용한 세포 정량 분배장치 |
EP1979079A4 (en) | 2006-02-03 | 2012-11-28 | Integenx Inc | MICROFLUIDIC DEVICES |
US8673567B2 (en) | 2006-03-08 | 2014-03-18 | Atila Biosystems, Inc. | Method and kit for nucleic acid sequence detection |
US8261598B2 (en) | 2006-03-09 | 2012-09-11 | Agency For Science, Technology And Research | Apparatus for performing a reaction in a droplet and method of using the same |
US8613889B2 (en) | 2006-04-13 | 2013-12-24 | Advanced Liquid Logic, Inc. | Droplet-based washing |
US8637317B2 (en) | 2006-04-18 | 2014-01-28 | Advanced Liquid Logic, Inc. | Method of washing beads |
US8492168B2 (en) | 2006-04-18 | 2013-07-23 | Advanced Liquid Logic Inc. | Droplet-based affinity assays |
WO2010006166A2 (en) | 2008-07-09 | 2010-01-14 | Advanced Liquid Logic, Inc. | Bead manipulation techniques |
US9476856B2 (en) | 2006-04-13 | 2016-10-25 | Advanced Liquid Logic, Inc. | Droplet-based affinity assays |
WO2010042637A2 (en) | 2008-10-07 | 2010-04-15 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
DE602006018794D1 (de) | 2006-04-18 | 2011-01-20 | Advanced Liquid Logic Inc | Biochemie auf tröpfchenbasis |
US7763471B2 (en) | 2006-04-18 | 2010-07-27 | Advanced Liquid Logic, Inc. | Method of electrowetting droplet operations for protein crystallization |
US8685754B2 (en) | 2006-04-18 | 2014-04-01 | Advanced Liquid Logic, Inc. | Droplet actuator devices and methods for immunoassays and washing |
US8470606B2 (en) | 2006-04-18 | 2013-06-25 | Duke University | Manipulation of beads in droplets and methods for splitting droplets |
US8980198B2 (en) | 2006-04-18 | 2015-03-17 | Advanced Liquid Logic, Inc. | Filler fluids for droplet operations |
US8637324B2 (en) | 2006-04-18 | 2014-01-28 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
WO2007123908A2 (en) | 2006-04-18 | 2007-11-01 | Advanced Liquid Logic, Inc. | Droplet-based multiwell operations |
US7815871B2 (en) | 2006-04-18 | 2010-10-19 | Advanced Liquid Logic, Inc. | Droplet microactuator system |
US7851184B2 (en) | 2006-04-18 | 2010-12-14 | Advanced Liquid Logic, Inc. | Droplet-based nucleic acid amplification method and apparatus |
US8809068B2 (en) | 2006-04-18 | 2014-08-19 | Advanced Liquid Logic, Inc. | Manipulation of beads in droplets and methods for manipulating droplets |
US7901947B2 (en) | 2006-04-18 | 2011-03-08 | Advanced Liquid Logic, Inc. | Droplet-based particle sorting |
US8716015B2 (en) | 2006-04-18 | 2014-05-06 | Advanced Liquid Logic, Inc. | Manipulation of cells on a droplet actuator |
US8658111B2 (en) | 2006-04-18 | 2014-02-25 | Advanced Liquid Logic, Inc. | Droplet actuators, modified fluids and methods |
US7439014B2 (en) | 2006-04-18 | 2008-10-21 | Advanced Liquid Logic, Inc. | Droplet-based surface modification and washing |
WO2010027894A2 (en) | 2008-08-27 | 2010-03-11 | Advanced Liquid Logic, Inc. | Droplet actuators, modified fluids and methods |
US20070259156A1 (en) | 2006-05-03 | 2007-11-08 | Lucent Technologies, Inc. | Hydrophobic surfaces and fabrication process |
US7822510B2 (en) | 2006-05-09 | 2010-10-26 | Advanced Liquid Logic, Inc. | Systems, methods, and products for graphically illustrating and controlling a droplet actuator |
US9675972B2 (en) | 2006-05-09 | 2017-06-13 | Advanced Liquid Logic, Inc. | Method of concentrating beads in a droplet |
WO2009026339A2 (en) | 2007-08-20 | 2009-02-26 | Advanced Liquid Logic, Inc. | Modular droplet actuator drive |
US7939021B2 (en) | 2007-05-09 | 2011-05-10 | Advanced Liquid Logic, Inc. | Droplet actuator analyzer with cartridge |
US8041463B2 (en) | 2006-05-09 | 2011-10-18 | Advanced Liquid Logic, Inc. | Modular droplet actuator drive |
CN101501333A (zh) | 2006-08-14 | 2009-08-05 | 皇家飞利浦电子股份有限公司 | 使用有源矩阵原理的、基于电的微流体装置 |
EP2076775B1 (en) | 2006-10-18 | 2015-08-19 | President and Fellows of Harvard College | Lateral flow and flow-through bioassay based on patterned porous media, methods of making same, and methods of using same |
US8047235B2 (en) | 2006-11-30 | 2011-11-01 | Alcatel Lucent | Fluid-permeable body having a superhydrophobic surface |
US7897737B2 (en) | 2006-12-05 | 2011-03-01 | Lasergen, Inc. | 3′-OH unblocked, nucleotides and nucleosides, base modified with photocleavable, terminating groups and methods for their use in DNA sequencing |
US8685344B2 (en) | 2007-01-22 | 2014-04-01 | Advanced Liquid Logic, Inc. | Surface assisted fluid loading and droplet dispensing |
KR101431778B1 (ko) | 2007-02-09 | 2014-08-20 | 어드밴스드 리퀴드 로직, 아이엔씨. | 자성 비즈를 이용하는 액적 작동기 장치 및 방법 |
WO2008101194A2 (en) | 2007-02-15 | 2008-08-21 | Advanced Liquid Logic, Inc. | Capacitance detection in a droplet actuator |
US20100025250A1 (en) | 2007-03-01 | 2010-02-04 | Advanced Liquid Logic, Inc. | Droplet Actuator Structures |
US8426213B2 (en) | 2007-03-05 | 2013-04-23 | Advanced Liquid Logic Inc | Hydrogen peroxide droplet-based assays |
WO2008109176A2 (en) | 2007-03-07 | 2008-09-12 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
AU2008225060B2 (en) | 2007-03-13 | 2013-04-04 | Advanced Liquid Logic, Inc. | Droplet actuator devices, configurations, and methods for improving absorbance detection |
EP2126038B1 (en) | 2007-03-22 | 2015-01-07 | Advanced Liquid Logic, Inc. | Enzymatic assays for a droplet actuator |
US20100048410A1 (en) | 2007-03-22 | 2010-02-25 | Advanced Liquid Logic, Inc. | Bead Sorting on a Droplet Actuator |
US8093062B2 (en) * | 2007-03-22 | 2012-01-10 | Theodore Winger | Enzymatic assays using umbelliferone substrates with cyclodextrins in droplets in oil |
US8202686B2 (en) | 2007-03-22 | 2012-06-19 | Advanced Liquid Logic, Inc. | Enzyme assays for a droplet actuator |
WO2008118831A2 (en) | 2007-03-23 | 2008-10-02 | Advanced Liquid Logic, Inc. | Droplet actuator loading and target concentration |
US20080241831A1 (en) | 2007-03-28 | 2008-10-02 | Jian-Bing Fan | Methods for detecting small RNA species |
AU2008237017B2 (en) | 2007-04-10 | 2013-10-24 | Advanced Liquid Logic, Inc. | Droplet dispensing device and methods |
WO2010009463A2 (en) | 2008-07-18 | 2010-01-21 | Advanced Liquid Logic, Inc. | Droplet operations device |
WO2008134153A1 (en) | 2007-04-23 | 2008-11-06 | Advanced Liquid Logic, Inc. | Bead-based multiplexed analytical methods and instrumentation |
WO2009011952A1 (en) | 2007-04-23 | 2009-01-22 | Advanced Liquid Logic, Inc. | Device and method for sample collection and concentration |
US20100087012A1 (en) | 2007-04-23 | 2010-04-08 | Advanced Liquid Logic, Inc. | Sample Collector and Processor |
WO2009002920A1 (en) | 2007-06-22 | 2008-12-31 | Advanced Liquid Logic, Inc. | Droplet-based nucleic acid amplification in a temperature gradient |
US20090017197A1 (en) | 2007-07-12 | 2009-01-15 | Sharp Laboratories Of America, Inc. | IrOx nanowire protein sensor |
US9689031B2 (en) | 2007-07-14 | 2017-06-27 | Ionian Technologies, Inc. | Nicking and extension amplification reaction for the exponential amplification of nucleic acids |
US20110303542A1 (en) | 2007-08-08 | 2011-12-15 | Advanced Liquid Logic, Inc. | Use of Additives for Enhancing Droplet Operations |
US20100120130A1 (en) | 2007-08-08 | 2010-05-13 | Advanced Liquid Logic, Inc. | Droplet Actuator with Droplet Retention Structures |
WO2009021233A2 (en) | 2007-08-09 | 2009-02-12 | Advanced Liquid Logic, Inc. | Pcb droplet actuator fabrication |
WO2009029561A2 (en) | 2007-08-24 | 2009-03-05 | Advanced Liquid Logic, Inc. | Bead manipulations on a droplet actuator |
WO2009032863A2 (en) | 2007-09-04 | 2009-03-12 | Advanced Liquid Logic, Inc. | Droplet actuator with improved top substrate |
BRPI0816274A2 (pt) | 2007-09-07 | 2019-09-10 | Third Wave Tech Inc | método e aplicações para quantificação de alvo |
WO2009052095A1 (en) | 2007-10-17 | 2009-04-23 | Advanced Liquid Logic, Inc. | Reagent storage and reconstitution for a droplet actuator |
WO2009052354A2 (en) | 2007-10-17 | 2009-04-23 | Advanced Liquid Logic, Inc. | Droplet actuator structures |
US20100236928A1 (en) | 2007-10-17 | 2010-09-23 | Advanced Liquid Logic, Inc. | Multiplexed Detection Schemes for a Droplet Actuator |
EP2212683A4 (en) | 2007-10-17 | 2011-08-31 | Advanced Liquid Logic Inc | MANIPULATION OF BEADS INTO DROPLETS |
US20100236929A1 (en) | 2007-10-18 | 2010-09-23 | Advanced Liquid Logic, Inc. | Droplet Actuators, Systems and Methods |
EP2232535A4 (en) | 2007-12-10 | 2016-04-13 | Advanced Liquid Logic Inc | DROPLET ACTUATOR CONFIGURATIONS AND METHODS |
CN103707643B (zh) | 2007-12-23 | 2016-06-01 | 先进液体逻辑公司 | 液滴致动器配置以及引导液滴操作的方法 |
CA2639954C (en) | 2008-02-11 | 2017-08-15 | Aaron R. Wheeler | Droplet-based cell culture and cell assays using digital microfluidics |
JP2009190262A (ja) | 2008-02-14 | 2009-08-27 | Seiko Epson Corp | 流体噴射装置のメンテナンス方法 |
USD599832S1 (en) | 2008-02-25 | 2009-09-08 | Advanced Liquid Logic, Inc. | Benchtop instrument housing |
WO2009111431A2 (en) | 2008-03-04 | 2009-09-11 | Waters Technologies Corporation | Interfacing with a digital microfluidic device |
US20110076734A1 (en) | 2008-03-07 | 2011-03-31 | Drexel University | Electrowetting Microarray Printing System and Methods for Bioactive Tissue Construct Manufacturing |
US8057754B2 (en) | 2008-03-12 | 2011-11-15 | Cellectricon Ab | Apparatus and method for tip alignment in multiwell plates |
CN108088824B (zh) | 2008-03-14 | 2021-06-04 | 雅培快速诊断耶拿有限公司 | 一种用于检测分析物的系统 |
US9409177B2 (en) | 2008-03-21 | 2016-08-09 | Lawrence Livermore National Security, Llc | Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences |
KR101035389B1 (ko) | 2008-03-31 | 2011-05-20 | 영남대학교 산학협력단 | 벌크 이종접합형 태양전지 및 그 제조방법 |
US20110104725A1 (en) | 2008-05-02 | 2011-05-05 | Advanced Liquid Logic, Inc. | Method of Effecting Coagulation in a Droplet |
US8852952B2 (en) | 2008-05-03 | 2014-10-07 | Advanced Liquid Logic, Inc. | Method of loading a droplet actuator |
US20110097763A1 (en) | 2008-05-13 | 2011-04-28 | Advanced Liquid Logic, Inc. | Thermal Cycling Method |
ES2438989T3 (es) | 2008-05-13 | 2014-01-21 | Advanced Liquid Logic, Inc. | Dispositivos, sistemas y métodos accionadores de gotitas |
EP2286228B1 (en) | 2008-05-16 | 2019-04-03 | Advanced Liquid Logic, Inc. | Droplet actuator devices and methods for manipulating beads |
NZ616821A (en) | 2008-07-11 | 2015-08-28 | Univ Monash | Method of fabricating microfluidic systems |
EP4047367A1 (en) | 2008-07-18 | 2022-08-24 | Bio-Rad Laboratories, Inc. | Method for detecting target analytes with droplet libraries |
US8364315B2 (en) | 2008-08-13 | 2013-01-29 | Advanced Liquid Logic Inc. | Methods, systems, and products for conducting droplet operations |
CA2735735C (en) | 2008-09-02 | 2016-11-22 | The Governing Council Of The University Of Toronto | Nanostructured microelectrodes and biosensing devices incorporating the same |
US8851103B2 (en) | 2008-09-23 | 2014-10-07 | The Curators Of The University Of Missouri | Microfluidic valve systems and methods |
US8053239B2 (en) | 2008-10-08 | 2011-11-08 | The Governing Council Of The University Of Toronto | Digital microfluidic method for protein extraction by precipitation from heterogeneous mixtures |
EP2346777A4 (en) | 2008-10-10 | 2014-10-01 | Univ Toronto | DIGITAL AND CHANNEL HYBRID MICROFLUIDIC DEVICES AND METHODS OF USE THEREOF |
JP2010098133A (ja) | 2008-10-16 | 2010-04-30 | Shimadzu Corp | 光マトリックスデバイスの製造方法および光マトリックスデバイス |
AU2009324884B2 (en) | 2008-11-25 | 2013-10-03 | Gen-Probe Incorporated | Compositions and methods for detecting small RNAs, and uses thereof |
US20110311980A1 (en) | 2008-12-15 | 2011-12-22 | Advanced Liquid Logic, Inc. | Nucleic Acid Amplification and Sequencing on a Droplet Actuator |
CH700127A1 (de) | 2008-12-17 | 2010-06-30 | Tecan Trading Ag | System und Vorrichtung zur Aufarbeitung biologischer Proben und zur Manipulation von Flüssigkeiten mit biologischen Proben. |
US8877512B2 (en) | 2009-01-23 | 2014-11-04 | Advanced Liquid Logic, Inc. | Bubble formation techniques using physical or chemical features to retain a gas bubble within a droplet actuator |
US20110293851A1 (en) | 2009-02-02 | 2011-12-01 | Bollstroem Roger | Method for creating a substrate for printed or coated functionality, substrate, functional device and its use |
US8696917B2 (en) | 2009-02-09 | 2014-04-15 | Edwards Lifesciences Corporation | Analyte sensor and fabrication methods |
US9851365B2 (en) | 2009-02-26 | 2017-12-26 | The Governing Council Of The University Of Toronto | Digital microfluidic liquid-liquid extraction device and method of use thereof |
US8202736B2 (en) | 2009-02-26 | 2012-06-19 | The Governing Council Of The University Of Toronto | Method of hormone extraction using digital microfluidics |
WO2010111265A1 (en) | 2009-03-24 | 2010-09-30 | University Of Chicago | Slip chip device and methods |
EP2419538B1 (en) | 2009-04-16 | 2016-09-14 | Padma Arunachalam | Methods and compositions to detect and differentiate small rnas in rna maturation pathway |
EP2425216B1 (en) | 2009-04-27 | 2019-10-23 | Expedeon Holdings Ltd. | Programmable electrophoretic notch filter systems and methods |
US8859956B2 (en) | 2009-04-30 | 2014-10-14 | Purdue Research Foundation | Ion generation using wetted porous material |
WO2011002957A2 (en) | 2009-07-01 | 2011-01-06 | Advanced Liquid Logic, Inc. | Droplet actuator devices and methods |
CN101609063B (zh) | 2009-07-16 | 2014-01-08 | 复旦大学 | 一种用于电化学免疫检测的微电极阵列芯片传感器 |
US8460814B2 (en) | 2009-07-29 | 2013-06-11 | The Invention Science Fund I, Llc | Fluid-surfaced electrode |
EP2280079A1 (en) | 2009-07-31 | 2011-02-02 | Qiagen GmbH | Ligation-based method of normalized quantification of nucleic acids |
US8926065B2 (en) | 2009-08-14 | 2015-01-06 | Advanced Liquid Logic, Inc. | Droplet actuator devices and methods |
US20110076685A1 (en) | 2009-09-23 | 2011-03-31 | Sirs-Lab Gmbh | Method for in vitro detection and differentiation of pathophysiological conditions |
US8846414B2 (en) | 2009-09-29 | 2014-09-30 | Advanced Liquid Logic, Inc. | Detection of cardiac markers on a droplet actuator |
WO2011046615A2 (en) | 2009-10-15 | 2011-04-21 | The Regents Of The University Of California | Digital microfluidic platform for radiochemistry |
WO2011057197A2 (en) | 2009-11-06 | 2011-05-12 | Advanced Liquid Logic, Inc. | Integrated droplet actuator for gel electrophoresis and molecular analysis |
WO2011062557A1 (en) | 2009-11-23 | 2011-05-26 | Haiqing Gong | Improved microfluidic device and method |
TWI385029B (zh) | 2009-12-18 | 2013-02-11 | Univ Nat Chiao Tung | 產生可移除外殼之包覆式液滴的微流體系統及方法 |
EP2516669B1 (en) | 2009-12-21 | 2016-10-12 | Advanced Liquid Logic, Inc. | Enzyme assays on a droplet actuator |
WO2011094577A2 (en) | 2010-01-29 | 2011-08-04 | Micronics, Inc. | Sample-to-answer microfluidic cartridge |
EP3072968A1 (en) | 2010-02-25 | 2016-09-28 | Advanced Liquid Logic, Inc. | Method of making nucleic acid libraries |
US8815070B2 (en) | 2010-03-09 | 2014-08-26 | Sparkle Power, Inc. | Microelectrode array architecture |
EP2553473A4 (en) | 2010-03-30 | 2016-08-10 | Advanced Liquid Logic Inc | DROPLET OPERATION PLATFORM |
EP2567213B1 (en) | 2010-05-05 | 2018-01-24 | The Governing Council of the Universtiy of Toronto | Method of processing dried samples using digital microfluidic device |
US20120000777A1 (en) | 2010-06-04 | 2012-01-05 | The Regents Of The University Of California | Devices and methods for forming double emulsion droplet compositions and polymer particles |
US9850527B2 (en) | 2010-06-14 | 2017-12-26 | National University Of Singapore | Modified stem-loop oligonucleotide mediated reverse transcription and base-spacing constrained quantitative PCR |
US20120045748A1 (en) | 2010-06-30 | 2012-02-23 | Willson Richard C | Particulate labels |
EP2588322B1 (en) | 2010-06-30 | 2015-06-17 | Advanced Liquid Logic, Inc. | Droplet actuator assemblies and methods of making same |
US20130215492A1 (en) | 2010-06-30 | 2013-08-22 | University Of Cincinnati | Electrowetting devices on flat and flexible paper substrates |
US8653832B2 (en) | 2010-07-06 | 2014-02-18 | Sharp Kabushiki Kaisha | Array element circuit and active matrix device |
WO2012007786A1 (en) | 2010-07-15 | 2012-01-19 | Indian Statistical Institute | High throughput and volumetric error resilient dilution with digital microfluidic based lab-on-a-chip |
WO2012009320A2 (en) | 2010-07-15 | 2012-01-19 | Advanced Liquid Logic, Inc. | Systems for and methods of promoting cell lysis in droplet actuators |
WO2012037308A2 (en) | 2010-09-16 | 2012-03-22 | Advanced Liquid Logic, Inc. | Droplet actuator systems, devices and methods |
WO2012040861A1 (en) | 2010-10-01 | 2012-04-05 | The Governing Council Of The University Of Toronto | Digital microfluidic devices and methods incorporating a solid phase |
US8829171B2 (en) | 2011-02-10 | 2014-09-09 | Illumina, Inc. | Linking sequence reads using paired code tags |
CA2821299C (en) | 2010-11-05 | 2019-02-12 | Frank J. Steemers | Linking sequence reads using paired code tags |
US9074251B2 (en) | 2011-02-10 | 2015-07-07 | Illumina, Inc. | Linking sequence reads using paired code tags |
WO2012068055A2 (en) | 2010-11-17 | 2012-05-24 | Advanced Liquid Logic, Inc. | Capacitance detection in a droplet actuator |
US20130068622A1 (en) | 2010-11-24 | 2013-03-21 | Michael John Schertzer | Method and apparatus for real-time monitoring of droplet composition in microfluidic devices |
WO2012139121A1 (en) | 2011-04-08 | 2012-10-11 | Arrhythmia Research Technology, Inc. | Ambulatory physiological monitoring with remote analysis |
EP2705374A4 (en) | 2011-05-02 | 2014-11-12 | Advanced Liquid Logic Inc | MOLECULAR DIAGNOSTIC PLATFORM |
CA2833897C (en) | 2011-05-09 | 2020-05-19 | Advanced Liquid Logic, Inc. | Microfluidic feedback using impedance detection |
AU2012253595B2 (en) | 2011-05-10 | 2016-10-20 | Advanced Liquid Logic, Inc. | Enzyme concentration and assays |
US8557787B2 (en) | 2011-05-13 | 2013-10-15 | The Board Of Trustees Of The Leland Stanford Junior University | Diagnostic, prognostic and therapeutic uses of long non-coding RNAs for cancer and regenerative medicine |
CN103502386B (zh) | 2011-05-23 | 2017-03-08 | 阿克佐诺贝尔化学国际公司 | 增稠的粘弹性流体及其用途 |
US9227200B2 (en) | 2011-06-03 | 2016-01-05 | The Regents Of The University Of California | Microfluidic devices with flexible optically transparent electrodes |
FI123323B (fi) | 2011-06-14 | 2013-02-28 | Teknologian Tutkimuskeskus Vtt | Piilokuvioiden muodostaminen huokoisille substraateille |
CN103733059B (zh) | 2011-07-06 | 2016-04-06 | 先进流体逻辑公司 | 在微滴执行机构上的试剂储存 |
US8901043B2 (en) | 2011-07-06 | 2014-12-02 | Advanced Liquid Logic, Inc. | Systems for and methods of hybrid pyrosequencing |
US20130018611A1 (en) | 2011-07-11 | 2013-01-17 | Advanced Liquid Logic Inc | Systems and Methods of Measuring Gap Height |
US20130017544A1 (en) | 2011-07-11 | 2013-01-17 | Advanced Liquid Logic Inc | High Resolution Melting Analysis on a Droplet Actuator |
US9513253B2 (en) | 2011-07-11 | 2016-12-06 | Advanced Liquid Logic, Inc. | Droplet actuators and techniques for droplet-based enzymatic assays |
US8470153B2 (en) | 2011-07-22 | 2013-06-25 | Tecan Trading Ag | Cartridge and system for manipulating samples in liquid droplets |
US9435765B2 (en) | 2011-07-22 | 2016-09-06 | Tecan Trading Ag | Cartridge and system for manipulating samples in liquid droplets |
US9446404B2 (en) | 2011-07-25 | 2016-09-20 | Advanced Liquid Logic, Inc. | Droplet actuator apparatus and system |
US20150205272A1 (en) | 2011-08-05 | 2015-07-23 | Advanced Liquid Logic, Inc. | Droplet actuator with improved waste disposal capability |
US20130062205A1 (en) | 2011-09-14 | 2013-03-14 | Sharp Kabushiki Kaisha | Active matrix device for fluid control by electro-wetting and dielectrophoresis and method of driving |
WO2013040562A2 (en) | 2011-09-15 | 2013-03-21 | Advanced Liquid Logic Inc | Microfluidic loading apparatus and methods |
CA2850412A1 (en) | 2011-09-30 | 2013-04-04 | The University Of British Columbia | Methods and apparatus for flow-controlled wetting |
WO2013078216A1 (en) | 2011-11-21 | 2013-05-30 | Advanced Liquid Logic Inc | Glucose-6-phosphate dehydrogenase assays |
US8821705B2 (en) | 2011-11-25 | 2014-09-02 | Tecan Trading Ag | Digital microfluidics system with disposable cartridges |
US10724988B2 (en) | 2011-11-25 | 2020-07-28 | Tecan Trading Ag | Digital microfluidics system with swappable PCB's |
US9377439B2 (en) | 2011-11-25 | 2016-06-28 | Tecan Trading Ag | Disposable cartridge for microfluidics system |
US20130157259A1 (en) | 2011-12-15 | 2013-06-20 | Samsung Electronics Co., Ltd. | Method of amplifying dna from rna in sample and use thereof |
US9816130B2 (en) | 2011-12-22 | 2017-11-14 | Somagenics, Inc. | Methods of constructing small RNA libraries and their use for expression profiling of target RNAs |
US9714463B2 (en) | 2011-12-30 | 2017-07-25 | Gvd Corporation | Coatings for electrowetting and electrofluidic devices |
WO2013116039A1 (en) | 2012-01-31 | 2013-08-08 | Advanced Liquid Logic Inc | Amplification primers and probes for detection of hiv-1 |
WO2013116675A1 (en) | 2012-02-01 | 2013-08-08 | Wayne State University | Electrowetting on dielectric using graphene |
CN102719526B (zh) | 2012-04-13 | 2014-12-24 | 华东理工大学 | 一种利用恒温扩增反应合成荧光纳米银簇探针定量检测microRNA的分析方法 |
WO2013169722A1 (en) | 2012-05-07 | 2013-11-14 | Advanced Liquid Logic Inc | Biotinidase assays |
KR101969852B1 (ko) | 2012-05-16 | 2019-04-17 | 삼성전자주식회사 | 미세 유체 소자 및 미세 유체 소자의 유체 조절 방법 |
US9617589B2 (en) | 2012-05-25 | 2017-04-11 | The University Of North Carolina At Chapel Hill | Microfluidic devices, solid supports for reagents and related methods |
US9649632B2 (en) | 2012-06-08 | 2017-05-16 | The Regents Of The University Of California | Disposable world-to-chip interface for digital microfluidics |
US9223317B2 (en) | 2012-06-14 | 2015-12-29 | Advanced Liquid Logic, Inc. | Droplet actuators that include molecular barrier coatings |
IN2015DN00359A (zh) | 2012-06-27 | 2015-06-12 | Advanced Liquid Logic Inc | |
US20140005066A1 (en) | 2012-06-29 | 2014-01-02 | Advanced Liquid Logic Inc. | Multiplexed PCR and Fluorescence Detection on a Droplet Actuator |
CA2881783A1 (en) | 2012-08-13 | 2014-02-20 | The Regents Of The University Of California | Methods and systems for detecting biological components |
US8764958B2 (en) | 2012-08-24 | 2014-07-01 | Gary Chorng-Jyh Wang | High-voltage microfluidic droplets actuation by low-voltage fabrication technologies |
WO2014039844A2 (en) | 2012-09-06 | 2014-03-13 | The Board Of Trustees Of The Leland Stanford Junior University | Punch card programmable microfluidics |
CN102836653B (zh) | 2012-09-20 | 2014-08-06 | 复旦大学 | 基于电润湿数字微流体芯片的液滴混合单元 |
US9863913B2 (en) | 2012-10-15 | 2018-01-09 | Advanced Liquid Logic, Inc. | Digital microfluidics cartridge and system for operating a flow cell |
JP1628115S (zh) | 2012-10-24 | 2019-04-01 | ||
CN103014148B (zh) | 2012-10-29 | 2014-03-12 | 中国科学院成都生物研究所 | 一种rna的等温检测方法 |
WO2014078100A1 (en) | 2012-11-02 | 2014-05-22 | Advanced Liquid Logic, Inc. | Mechanisms for and methods of loading a droplet actuator with filler fluid |
AU2013337988A1 (en) | 2012-11-05 | 2015-04-09 | Advanced Liquid Logic, Inc. | Acyl-CoA dehydrogenase assays |
US20140124037A1 (en) | 2012-11-07 | 2014-05-08 | Advanced Liquid Logic, Inc. | Methods of manipulating a droplet in a droplet actuator |
WO2014083622A1 (ja) | 2012-11-28 | 2014-06-05 | 株式会社日立製作所 | 液体搬送デバイス及び液体分析装置 |
EP2925447B1 (en) | 2012-11-30 | 2020-04-08 | The Broad Institute, Inc. | High-throughput dynamic reagent delivery system |
US20140161686A1 (en) | 2012-12-10 | 2014-06-12 | Advanced Liquid Logic, Inc. | System and method of dispensing liquids in a microfluidic device |
US20150322272A1 (en) | 2012-12-13 | 2015-11-12 | Technion Research & Development Foundation Limited | Hydrophobic and oleophobic surfaces and uses thereof |
US10597650B2 (en) | 2012-12-21 | 2020-03-24 | New England Biolabs, Inc. | Ligase activity |
WO2014106167A1 (en) | 2012-12-31 | 2014-07-03 | Advanced Liquid Logic, Inc. | Digital microfluidic gene synthesis and error correction |
JP6033959B2 (ja) | 2013-01-09 | 2016-11-30 | テカン・トレーディング・アクチェンゲゼルシャフトTECAN Trading AG | マイクロ流体システム用使い捨てカートリッジ |
US20140216559A1 (en) | 2013-02-07 | 2014-08-07 | Advanced Liquid Logic, Inc. | Droplet actuator with local variation in gap height to assist in droplet splitting and merging operations |
CN103170383B (zh) | 2013-03-10 | 2015-05-13 | 复旦大学 | 基于纳米材料电极修饰的电化学集成数字微流控芯片 |
JP2014176303A (ja) | 2013-03-13 | 2014-09-25 | Seiko Epson Corp | cDNAの合成方法 |
EP2992083A4 (en) | 2013-05-01 | 2017-02-08 | Advanced Liquid Logic, Inc. | Analysis of dna |
WO2014183118A1 (en) | 2013-05-10 | 2014-11-13 | The Regents Of The University Of California | Digital microfluidic platform for creating, maintaining and analyzing 3-dimensional cell spheroids |
EP2997126A4 (en) | 2013-05-16 | 2017-01-18 | Advanced Liquid Logic, Inc. | Droplet actuator for electroporation and transforming cells |
EP2999538B1 (en) | 2013-05-23 | 2021-04-21 | Tecan Trading AG | Digital microfluidics system with swappable pcb`s |
WO2014201341A1 (en) | 2013-06-14 | 2014-12-18 | Advanced Liquid Logic, Inc. | Droplet actuator and methods |
CN105636707A (zh) | 2013-07-19 | 2016-06-01 | 先进流体逻辑公司 | 致动器上温度测量的方法 |
US20150021182A1 (en) | 2013-07-22 | 2015-01-22 | Advanced Liquid Logic, Inc. | Methods of maintaining droplet transport |
WO2015023745A1 (en) | 2013-08-13 | 2015-02-19 | Advanced Liquid Logic, Inc. | Droplet actuator test cartridge for a microfluidics system |
WO2015023747A1 (en) | 2013-08-13 | 2015-02-19 | Advanced Liquid Logic, Inc. | Methods of improving accuracy and precision of droplet metering using an on-actuator reservoir as the fluid input |
CA2920390A1 (en) | 2013-08-30 | 2015-03-05 | Illumina, Inc. | Manipulation of droplets on hydrophilic or variegated-hydrophilic surfaces |
JP6700173B2 (ja) | 2013-09-24 | 2020-05-27 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | ターゲット検出方法及びシステム |
JP6606070B2 (ja) | 2013-10-23 | 2019-11-13 | ザ ガバニング カウンシル オブ ザ ユニバーシティ オブ トロント | プリントデジタルマイクロ流体装置、その使用方法および製造方法 |
WO2015077737A1 (en) | 2013-11-25 | 2015-05-28 | Basf Se | Cleaning concentrate for removing scale from a surface of a system |
EP3090058A4 (en) | 2013-12-30 | 2017-08-30 | Miroculus Inc. | Systems, compositions and methods for detecting and analyzing micro-rna profiles from a biological sample |
WO2015172256A1 (en) | 2014-05-12 | 2015-11-19 | Sro Tech Corporation | Methods and apparatus for biomass growth |
US10596570B2 (en) | 2014-05-16 | 2020-03-24 | Qvella Corporation | Apparatus, system and method for performing automated centrifugal separation |
WO2016061684A1 (en) | 2014-10-21 | 2016-04-28 | The Governing Council Of The University Of Toronto | Digital microfluidic devices with integrated electrochemical sensors |
WO2016065365A1 (en) | 2014-10-24 | 2016-04-28 | Sandia Corporation | Method and device for tracking and manipulation of droplets |
US10005080B2 (en) | 2014-11-11 | 2018-06-26 | Genmark Diagnostics, Inc. | Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation |
US9815056B2 (en) | 2014-12-05 | 2017-11-14 | The Regents Of The University Of California | Single sided light-actuated microfluidic device with integrated mesh ground |
US10427331B2 (en) | 2014-12-09 | 2019-10-01 | The Regents Of The University Of California | Scalable manufacturing of superhydrophobic structures in plastics |
GB2533952A (en) | 2015-01-08 | 2016-07-13 | Sharp Kk | Active matrix device and method of driving |
US10391488B2 (en) | 2015-02-13 | 2019-08-27 | International Business Machines Corporation | Microfluidic probe head for providing a sequence of separate liquid volumes separated by spacers |
US20180095067A1 (en) | 2015-04-03 | 2018-04-05 | Abbott Laboratories | Devices and methods for sample analysis |
SG11201708350UA (en) | 2015-04-13 | 2017-11-29 | Univ Johns Hopkins | Multiplexed, continuous-flow, droplet-based platform for high-throughput genetic detection |
KR20160132213A (ko) | 2015-05-07 | 2016-11-17 | 연세대학교 산학협력단 | 액적 제어 장치 및 방법 |
US10589273B2 (en) | 2015-05-08 | 2020-03-17 | Illumina, Inc. | Cationic polymers and method of surface application |
WO2016197106A1 (en) | 2015-06-05 | 2016-12-08 | Miroculus Inc. | Evaporation management in digital microfluidic devices |
EP3303547A4 (en) | 2015-06-05 | 2018-12-19 | Miroculus Inc. | Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling |
WO2016197013A1 (en) | 2015-06-05 | 2016-12-08 | Iyer Jagadish | Solar energy collection panel cleaning system |
US11203016B2 (en) | 2015-12-01 | 2021-12-21 | Illumina, Inc. | Digital microfluidic system for single-cell isolation and characterization of analytes |
WO2017094021A1 (en) | 2015-12-04 | 2017-06-08 | Indian Institute Of Technology Bombay | Controlled spontaneous three dimensional fabrication of micro/meso structures |
WO2017223026A1 (en) | 2016-06-20 | 2017-12-28 | Miroculus Inc. | Detection of rna using ligation actuated loop mediated amplification methods and digital microfluidics |
US10543466B2 (en) | 2016-06-29 | 2020-01-28 | Digital Biosystems | High resolution temperature profile creation in a digital microfluidic device |
EP3270018A1 (en) | 2016-07-13 | 2018-01-17 | Stratec Consumables GmbH | Microfluidic flow control and device |
CN106092865B (zh) | 2016-08-12 | 2018-10-02 | 南京理工大学 | 一种基于数字微流控的荧光液滴分选系统及其分选方法 |
CN109715781A (zh) | 2016-08-22 | 2019-05-03 | 米罗库鲁斯公司 | 用于数字微流控设备中的并行液滴控制的反馈系统 |
US20180059056A1 (en) | 2016-08-30 | 2018-03-01 | Sharp Life Science (Eu) Limited | Electrowetting on dielectric device including surfactant containing siloxane group |
WO2018119253A1 (en) | 2016-12-21 | 2018-06-28 | President And Fellows Of Harvard College | Modulation of enzymatic polynucleotide synthesis using chelated divalent cations |
JP2020515815A (ja) | 2016-12-28 | 2020-05-28 | ミロキュラス インコーポレイテッド | デジタルマイクロ流体デバイスおよび方法 |
EP3357576B1 (en) | 2017-02-06 | 2019-10-16 | Sharp Life Science (EU) Limited | Microfluidic device with multiple temperature zones |
WO2018187476A1 (en) | 2017-04-04 | 2018-10-11 | Miroculus Inc. | Digital microfluidic apparatuses and methods for manipulating and processing encapsulated droplets |
WO2019023133A1 (en) | 2017-07-24 | 2019-01-31 | Miroculus Inc. | DIGITAL MICROFLUIDIC SYSTEMS AND METHODS WITH INTEGRATED PLASMA COLLECTION DEVICE |
CA3073058A1 (en) | 2017-09-01 | 2019-03-07 | Miroculus Inc. | Digital microfluidics devices and methods of using them |
WO2019075211A1 (en) | 2017-10-11 | 2019-04-18 | The Charles Stark Draper Laboratory, Inc. | SYNTHESIZER OF OLIGONUCLEOTIDES WITH GUIDED DROPLETS |
CA3096855A1 (en) | 2018-05-23 | 2019-11-28 | Miroculus Inc. | Control of evaporation in digital microfluidics |
CN116351489A (zh) | 2019-01-31 | 2023-06-30 | 米罗库鲁斯公司 | 非结垢组合物以及用于操控和处理包封的微滴的方法 |
WO2020176816A1 (en) | 2019-02-28 | 2020-09-03 | Miroculus Inc. | Digital microfluidics devices and methods of using them |
US11738345B2 (en) | 2019-04-08 | 2023-08-29 | Miroculus Inc. | Multi-cartridge digital microfluidics apparatuses and methods of use |
US11524298B2 (en) | 2019-07-25 | 2022-12-13 | Miroculus Inc. | Digital microfluidics devices and methods of use thereof |
WO2021092325A1 (en) | 2019-11-07 | 2021-05-14 | Miroculus Inc. | Digital microfluidics systems, apparatuses and methods of using them |
CN115151653A (zh) | 2020-02-24 | 2022-10-04 | 米罗库鲁斯公司 | 使用酶促dna合成和数字微流控的信息存储 |
-
2018
- 2018-07-23 WO PCT/US2018/043293 patent/WO2019023133A1/en unknown
- 2018-07-23 EP EP18838553.8A patent/EP3658908A4/en active Pending
- 2018-07-23 CN CN201880045563.9A patent/CN110892258A/zh active Pending
- 2018-07-23 US US16/614,396 patent/US11413617B2/en active Active
-
2022
- 2022-08-15 US US17/888,461 patent/US11857969B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080038810A1 (en) * | 2006-04-18 | 2008-02-14 | Pollack Michael G | Droplet-based nucleic acid amplification device, system, and method |
US20100081578A1 (en) * | 2008-10-01 | 2010-04-01 | Wheeler Aaron R | Exchangeable sheets pre-loaded with reagent depots for digital microfluidics |
US20130288254A1 (en) * | 2009-08-13 | 2013-10-31 | Advanced Liquid Logic, Inc. | Droplet Actuator and Droplet-Based Techniques |
WO2013090889A1 (en) * | 2011-12-16 | 2013-06-20 | Advanced Liquid Logic Inc | Sample preparation on a droplet actuator |
Also Published As
Publication number | Publication date |
---|---|
US20200179933A1 (en) | 2020-06-11 |
WO2019023133A1 (en) | 2019-01-31 |
EP3658908A4 (en) | 2021-04-07 |
US11857969B2 (en) | 2024-01-02 |
US11413617B2 (en) | 2022-08-16 |
US20230049633A1 (en) | 2023-02-16 |
EP3658908A1 (en) | 2020-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11857969B2 (en) | Digital microfluidics systems and methods with integrated plasma collection device | |
US20230249185A1 (en) | Digital microfluidics apparatuses and methods for manipulating and processing encapsulated droplets | |
US20210370304A1 (en) | Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling | |
US11992842B2 (en) | Control of evaporation in digital microfluidics | |
Choi et al. | Digital microfluidics | |
Wang et al. | Digital microfluidics: A promising technique for biochemical applications | |
Shen et al. | EWOD microfluidic systems for biomedical applications | |
US20220161216A1 (en) | Nonfouling compositions and methods for manipulating and processing encapsulated droplets | |
US20090269767A1 (en) | Microfluidic chip devices and their use | |
US10590477B2 (en) | Method and apparatus for purifying nucleic acids and performing polymerase chain reaction assays using an immiscible fluid | |
WO2015089238A1 (en) | Systems and methods for biological analysis and computation | |
JP6668336B2 (ja) | 非混和性液体を分離して少なくとも1つの液体を効果的に単離する方法及び装置 | |
Tong et al. | Combining sensors and actuators with electrowetting-on-dielectric (EWOD): advanced digital microfluidic systems for biomedical applications | |
US20220280941A1 (en) | Systems and methods for generating droplets and performing digital analyses | |
Abdelgawad | Digital microfluidics: automating microscale liquid handling | |
Wang et al. | Digital microfluidic biosensors | |
Brennan et al. | A hybrid approach to device integration on a genetic analysis platform | |
US20220283174A1 (en) | Systems and methods for generating droplets and performing digital analyses | |
Zhang et al. | Droplet‐based protein chip with Ni–Co coated surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200317 |
|
WD01 | Invention patent application deemed withdrawn after publication |