WO2014083622A1 - 液体搬送デバイス及び液体分析装置 - Google Patents

液体搬送デバイス及び液体分析装置 Download PDF

Info

Publication number
WO2014083622A1
WO2014083622A1 PCT/JP2012/080669 JP2012080669W WO2014083622A1 WO 2014083622 A1 WO2014083622 A1 WO 2014083622A1 JP 2012080669 W JP2012080669 W JP 2012080669W WO 2014083622 A1 WO2014083622 A1 WO 2014083622A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sample
opening
substrate
liquid
Prior art date
Application number
PCT/JP2012/080669
Other languages
English (en)
French (fr)
Inventor
原田 邦男
足立 作一郎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/080669 priority Critical patent/WO2014083622A1/ja
Publication of WO2014083622A1 publication Critical patent/WO2014083622A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/163Biocompatibility
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0424Dielectrophoretic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • G01N2021/035Supports for sample drops
    • G01N2021/0353Conveyor of successive sample drops
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis

Definitions

  • the present invention relates to a device for operating and moving a liquid on a substrate, and an analysis apparatus using the device.
  • the sample solution which is the measurement object in a reaction vessel, is irradiated with white light from a halogen lamp or the like, and the light transmitted through the sample solution is diffraction grating
  • Spectroscopic analyzers that measure the amount of a target component by spectroscopically determining the absorbance at a target wavelength are widely used.
  • a biochemical automatic analyzer can be mentioned.
  • a reagent corresponding to the measurement object is added to form a sample solution, and the amount of reagent used reflects the analysis cost. Therefore, there is a demand for an apparatus that can reduce the amount of reagent and perform analysis with a smaller amount of sample solution.
  • the sample solution is not put into the reaction vessel, but moved in the form of droplets in a device consisting of two substrates kept parallel at regular intervals.
  • Patent Document 1 JP-A-2006-125900
  • EWOD ElectroWetting On Dielectric
  • DEP Dielectrophoresis
  • EWOD or DEP electrodes are formed on two substrates constituting a device for moving droplets on the side where the droplets are sandwiched, and the electrodes on one substrate are electrodes that match the size of the droplets. Are arranged so as to form a droplet movement path, and the other opposing electrode is formed as a common electrode covering the plurality of electrodes arranged so as to form the droplet movement path. The surfaces of both electrodes are covered with an insulating film, and a water repellent film is formed on the droplet side of the two substrates. Then, the droplet is moved by changing the timing of applying the voltage to each of the plurality of electrodes arranged so as to form the movement path of the droplet.
  • the EWOD or DEP device is being used for a small apparatus called POCT (Point Of Care Testing), a cell transfer apparatus, and the like in addition to the biochemical automatic analyzer.
  • POCT Point Of Care Testing
  • the droplet is moved by applying an electrostatic force to the droplet in the device, for example, by applying a voltage to the droplet.
  • the absorbance is calculated from the light that has been irradiated and transmitted.
  • the device needs to have optical transparency, and the electrode to which a voltage is applied in order to apply an electrostatic force to the droplets in the device must also have optical transparency at least in the measurement unit. Therefore, ITO (indium tin oxide), which is a light-transmitting conductive material, is used as an electrode material.
  • ITO indium tin oxide
  • the device it is desirable for the device to be light transmissive so that the inside can be seen for reasons such as to know the position of the droplet in the device, and one of the two substrates constituting the device.
  • a light-transmitting material such as glass is used for the substrate, and a light-transmitting conductive material such as ITO is formed on the entire surface of the glass substrate close to the droplets.
  • the device As a device configuration for moving droplets by EWOD or DEP, in addition to the method using two substrates as described above, the device is configured as disclosed in US 2004/0007377 (Patent Document 2). There is also a method in which one of the substrates is replaced with a catenary line.
  • ITO which is a conductive material having optical transparency
  • ITO has a weak adhesive force with glass as a substrate, and it is difficult to form an insulating film on ITO. For this reason, the insulating film becomes very weak, and the durability of the device is lowered.
  • the insulating film becomes very weak, and the durability of the device is lowered.
  • a first substrate in which a plurality of first electrodes to which a voltage is independently applied is provided in a liquid transport device;
  • a highly durable liquid transport device and a liquid transport apparatus including the liquid transport device can be manufactured.
  • FIG. 6 is a perspective view partially showing a state when the adjustment sample is sandwiched as a droplet in the sample transport device according to the embodiment of the present invention.
  • FIG. 1 is a plan view of the apparatus
  • FIG. 2 is a sectional view of the apparatus.
  • the liquid analysis system 100 in the present embodiment mainly includes a sample adjustment unit 110 and a sample transport measurement unit 150.
  • the sample adjustment unit 110 includes a sample cassette loading / conveying unit 111, a sample cassette 112, a stirring mechanism 113, a sample dispenser cleaning mechanism 114, a sample dispenser 115, a sample adjustment disk 116, a sample adjustment agent tank 117, and a sample adjustment agent dispenser 118. , And a sample adjustment disk cleaning mechanism 119.
  • the sample transport measurement unit 150 includes an adjustment sample input dispenser 151, an adjustment sample input dispenser cleaning mechanism 152, a sample transfer device 200, a reagent input unit 153, a measurement unit 154, A reagent charging unit 153 ′, a measuring unit 154 ′, and a waste liquid collecting unit 155 are included.
  • a plurality of sample tubes 121 containing the sample 120 are set in the sample cassette 112, and similarly, a plurality of sample adjustment tubes 122 are set on the sample adjustment disk 116.
  • the sample adjusting agent tank 117 contains a sample adjusting agent 123, and the sample 120 and the sample adjusting agent 123 are mixed and stirred in the sample adjusting tube 122 to become an adjusted sample 124.
  • reagents 156 and 156 ′ that are added to and mixed with the adjusted sample 124 and cause a specific reaction for measurement are placed in the reagent charging portions 153 and 153 ′.
  • the reagent 156 is discharged from the reagent introduction port 210 to the adjusted sample 124 introduced from the sample introduction port 209 into the sample transport device, and mixed to measure the reaction liquid 125.
  • Unit 154 measures. Thereafter, the reagent 156 ′ is discharged from the reagent introduction port 210 ′ to the reaction liquid 125 through the reagent introduction part 153 ′, mixed to become the reaction liquid 125, and measured by the measuring unit 154 ′.
  • FIG. 4 is a diagram in which only the sample transport device 200 is extracted, and a plan view is partially shown in section.
  • FIG. 5 is a sectional view of FIG. 4 as viewed from the front.
  • the sample transport device 200 includes a first substrate 201 made of transparent glass, ceramic, or resin, and a second material made of a similar material arranged in parallel with the first substrate 201.
  • the substrate 202 is composed of a spacer 203 that keeps the first substrate 201 and the second substrate 202 parallel and at a constant distance. Between the first substrate 201 and the second substrate 202, a silicon or fluorine-based carrier medium is used. Filled with oil 204.
  • the configuration of the sample transport device 200 will be described with reference to FIG.
  • a plurality of first electrodes 205 made of a conductive thin film are arranged on the side facing the second substrate 202 so as to be a plurality of transport paths for the adjustment sample 124 and the reagents 156, 156 ′.
  • the surface of the first electrode 205 is covered with an insulating film 206, and a water repellent film 207 is formed on the surface facing the second substrate 202.
  • the insulating film 206 is formed by CVD (Chemical Vapor Deposition) using, for example, silicon dioxide (SiO2).
  • the first electrode 205 and the insulating film 206 are very thin and cannot be written even when enlarged, and therefore, in the drawings of the present application, the thickness direction is exaggerated as shown in FIG. Further, since the water repellent film 207 is very thin and is confused with the insulating film 206, it is not shown except for FIG. FIG. 9 exaggerates the thickness direction of the water-repellent film 207 in order to show an equivalent circuit and the like which will be described later, and in order to easily explain the structure.
  • Each of the first electrodes 205 is wired by an AC rectangular wave power source 251 and a switch 250 as will be described later with reference to FIG.
  • the second electrode 208 is disposed on almost the entire surface on the side facing the first substrate 201 or in a range covering at least a portion facing the first electrode 205.
  • a water-repellent film 207 ′ is formed on the surface that is covered with the insulating film 206 ′ and faces the first substrate 201.
  • the second electrode 208 is desirably made of a light-transmitting conductive material such as ITO so that the inside of the sample transport device 200 can be observed.
  • the sample introduction port 209 for introducing the adjustment sample 124 into the sample transport measurement unit 150, the reagent introduction ports 210 and 210 ′ for introducing the reagents 156 and 156 ′, and the sample for which analysis has been completed are used as waste liquid.
  • the sample introduction port 209, the reagent introduction ports 210 and 210 ', and the waste liquid collection port 211 are arranged at a position overlapping the first electrode 205 when viewed from the plane.
  • the reagent 156 is discharged from the reagent introduction port 210 to the adjusted sample 124 introduced from the sample introduction port 209 into the sample conveyance device, and mixed.
  • the reaction liquid 125 is measured by the measuring unit 154. Thereafter, the reagent introduction unit 153 ′ discharges the reagent 156 ′ from the reagent introduction port 210 ′ to the reaction solution 125 measured by the measurement unit 154 and mixes it as the reaction solution 125 to perform further measurement by the measurement unit 154 ′. .
  • the spacer 203 has a structure for keeping the first substrate 201 and the second substrate 202 in parallel and at a constant distance as described above. Furthermore, it is possible to seal between the first substrate 201 and the second substrate 202 and hold the oil 204 in the space between them. In that case, any one of the sample introduction port 209, the reagent introduction ports 210 and 210 ', and the waste liquid collection port 211 is used as an oil introduction unit, and air is pushed out from another port and filled with oil. It is desirable that the oil contact portion be subjected to water repellent treatment in preparation for an unexpected situation such as the sample or reagent coming off the transport path.
  • the method of filling the oil 204 between the first substrate 201 and the second substrate 202 can be performed by immersing the first substrate 201 and the second substrate 202 in a tank filled with the oil 204 without sealing with the spacer 203. is there.
  • the gap between the first substrate 201 and the second substrate 202 becomes an oil introduction part, and air is pushed out from any of the sample introduction port 209, the reagent introduction ports 210 and 210 ′, and the waste liquid collection port 211, and the oil It is filled.
  • a sample 120 to be measured is placed in a sample tube 121, a plurality of samples 120 are loaded into different sample tubes 121, and stored in a sample cassette 112, and then the main sample is loaded as shown in FIG.
  • the sample is loaded into the sample cassette loading / conveying section 111 of the liquid analysis system.
  • the sample cassette 112 is moved by the sample cassette loading / conveying unit 111 to a position where the sample dispenser 115 can suck the desired sample 120.
  • the sample dispenser 115 sucks the sample 120 and discharges a predetermined amount of the sample 120 to one of the plurality of sample adjustment tubes 122 in the sample adjustment disk 116.
  • the sample adjusting disk 116 is rotated so that the sample adjusting tube 122 from which the sample 120 has been discharged is moved to a position accessible by the sample adjusting agent dispenser 118, and as shown in FIGS. 1 and 2, the sample adjusting agent dispenser 118 is rotated.
  • the sample adjusting agent 123 in the sample adjusting agent tank 117 sucked by a predetermined amount is discharged into the sample adjusting tube 122.
  • the sample adjusting disk 116 is rotated to stir the sample 120 and the sample adjusting agent 123 discharged to a predetermined amount into the sample adjusting tube 122, and the sample adjusting tube 122 is moved to the position of the stirring mechanism 113.
  • the sample 120 and the sample adjusting agent 123 are stirred by the stirring mechanism 113 to obtain the adjusted sample 124, and then the sample adjusting disk 116 is rotated to pass to the sample transport measuring unit 150, and the adjusted sample loading dispenser 151 can be accessed.
  • the sample adjusting tube 122 is moved to a proper position.
  • the stirring mechanism 113 is cleaned by a cleaning mechanism provided therein for each stirring, and the sample dispenser 115 is cleaned by the sample dispenser cleaning mechanism 114 for each suction and discharge.
  • the sample adjustment tube 122 is also cleaned by the cleaning mechanism 14 as necessary.
  • the reason for cleaning the sample adjusting tube 122 as needed without cleaning it every time is that the amount of the adjusted sample 124 in the sample adjusting tube 122 is adjusted for a plurality of analyses. Cleaning is performed when the analysis of the above, the required number of times of analysis, or the re-examination of the unexpected situation are completed.
  • FIG. 6A to 6E are partial cross-sectional views of the sample transport device 200, and FIGS. 6A to 6E show the movement of the adjustment sample 124 and the reagent 156 in time series.
  • the first electrode 205 is wired by an AC rectangular wave power source 251 and a switch 250 as shown in FIG.
  • FIG. 6A shows a state in which the adjusted sample 124 is discharged from the sample inlet 209 by the adjusted sample charging dispenser 151 and the reagent 156 is discharged from the reagent inlet 210 by the reagent inlet 153.
  • a voltage 250 is applied to the electrode 205 below the reagent inlet 210 to hold the reagent 156, and the switch 250 on the adjustment sample 124 side is connected to the next electrode 205. In this state, the adjustment sample 124 is moved.
  • FIG. 6C shows a state where the switch 250 is similarly switched to further move the adjustment sample 124 and unite with the reagent 156.
  • 6D shows a state in which only the electrode 36 under the reagent 156 is turned ON and the adjustment sample 124 and the reagent 156 are mixed to form the reaction liquid 125.
  • FIG. 6 (e) shows a state where the switch 250 is further switched to move the reaction solution 125.
  • a voltage from an AC rectangular wave power source 251 can be applied between each of the first electrode 205 and the second electrode 208 of the sample transport device 200 via the switch 250.
  • the adjustment sample 124 discharged inside is attracted by electrostatic force onto the first electrode 205 to which a voltage is applied.
  • the suction force due to the electrostatic force works only when the adjustment sample 124 in the form of a droplet is placed on the first electrode 205 to which a voltage is applied, so that the adjustment sample 124 is slightly removed from the first electrode 205.
  • the capacitance is adjusted so that it protrudes from the adjacent first electrode 205. Therefore, the adjustment sample 124 can move on a plurality of conveyance paths in which the first electrodes 205 are arranged and formed by switching each switch 250 corresponding to the first electrode 205.
  • the reagent 156, 156 ′ and the reagent 156, 156 ′ can be mixed with the adjusted sample 124.
  • the subsequent droplets can move in the same manner.
  • an AC rectangular wave as a voltage to be applied to the first electrode 205
  • charging is performed with an insulating film or a water repellent treatment agent on the surface of the first electrode 205 or the second electrode 208 by continuously applying a DC voltage.
  • the AC rectangular wave can provide a larger driving force than the AC sine wave.
  • the reaction liquid 125 moved to the measuring units 154 and 154 ' is analyzed for the amount of components in the state shown in FIG. That is, the measuring units 154 and 154 ′ include a light source 158 that outputs light 157 having one or two specific wavelengths, and a light receiving unit 159 that receives the light 157 that has passed through the reaction liquid 125 and converts it into an electrical signal. Has been placed. Although details are omitted, the reaction liquid 125 mixed with the reagents 156 and 156 ′ reacts according to the amount of a specific component contained therein and absorbs light of a specific wavelength. The amount of a specific component contained in the reaction liquid 125 can be determined from the amount.
  • the wavelengths of the reagents 156, 156 ′ and the light 157 are different depending on the type of component to be determined, they are assigned to each of the plurality of transport paths described in the description of the first electrode 205 at the beginning of the sentence, and the sample introduction port 209
  • the introduced adjustment sample 124 can be sent to a conveyance path for a desired component analysis.
  • a combination of a plurality of light sources 158 and a light receiving unit 159 is arranged as shown in FIG. 7, and after the reaction between the adjustment sample 124 and the reagent 156 or the reagent 156 ′, Multiple measurements or measurements at different wavelengths are possible.
  • the light 157 having one or two kinds of wavelengths is transmitted through the reaction liquid 125 and converted into an electric signal by the light receiving unit 159.
  • a method may be used in which light is split and light of one specific type or two types of wavelengths is converted into an electrical signal.
  • the combination of the plurality of light sources 158 and the light receiving unit 159 in the measuring unit 154 is arranged such that the light 157 from the light source 158 passes through the center of the first electrode 205 and the light receiving unit 159 can receive the light. Accordingly, at least the first electrode 205 and the second electrode 208 in the measurement unit 154 are required to have a structure through which the light 157 can pass.
  • the structure is such that a conductive material having optical transparency such as ITO is used as the electrode material of the first electrode 205 and the second electrode 208, or the first electrode 205 and the second electrode 208 are used. And providing a window through which the light 157 can pass. Even when a light-transmitting conductive material such as ITO is used, it may be better to process the window due to the wavelength transmission characteristics of ITO.
  • the operation is configured to be performed twice in one transport path. That is, after the component amount is analyzed by the measurement unit 154, the adjustment sample 124 is further moved by electrostatic force, and the reagent 156 'is mixed and reacted, and then measured by the measurement unit 154'. This is because the reaction and measurement are performed twice for the purpose of eliminating the influence of impurities.
  • the reaction liquid 125 that has been measured by the measuring unit 154 ′ becomes the waste liquid 126, further moves by electrostatic force, and is recovered by the waste liquid recovery unit 155.
  • an electrode having a plurality of such openings is referred to as a mesh electrode.
  • the first substrate 201 constituting the sample transport device 200 of the sample transport measurement unit 150 includes the second substrate 202 and A plurality of first electrodes 205 made of a conductive thin film are arranged on opposite sides so as to be a plurality of transport paths for the adjustment sample 124 and the reagents 156 and 156 ′, and the second substrate 202 includes the first substrate 201. It has been described that the second electrode 208 is disposed on the entire surface on the side facing the first electrode 205 or in a range covering at least the portion facing the first electrode 205.
  • a conductive material having optical transparency such as ITO is used as the electrode material of the first electrode 205 and the second electrode 208, or the first electrode It has been described that the first electrode 205 and the second electrode 208 are required to have a structure through which the light 157 can pass by providing a window through which the light 157 can pass through the 205 and the second electrode 208.
  • a mesh-like conductive material having a plurality of hexagonal fine openings is used for the second electrode 208.
  • the insulating film is in a state of being bonded to the second substrate 202 provided with the second electrode 208 having an opening through the opening.
  • the electrode material can be seen through even if an opaque metal or semimetal is used instead of a transparent conductive material such as ITO, so that internal observation and optical measurement are possible. Therefore, it is not necessary to use rare metals such as indium.
  • the material used is a highly corrosion-resistant material, considering the cost resulting from the unit price of the material and the ease of manufacturing, Cr, Ti, W, Al, Cu, often used in semiconductor manufacturing and surface treatment Examples thereof include Ni, Zn, and alloys thereof, oxides and nitrides, and semimetals such as Si and C.
  • the second advantage is that a highly durable device can be configured.
  • ITO deposited on the surface of the second substrate 202 made of glass or the like has a weaker adhesive strength with glass than that of metal or the like. Since the insulating film 206 ′ formed on the ITO film after the ITO film is formed is also glassy, the adhesive force to the ITO is weak. Therefore, the adhesive strength of the insulating film 206 'to the second substrate 202 is very weak and easily peeled off, and the device resistance is lowered.
  • a mesh-like conductive material is used for the second electrode 208, an opaque metal can be used for the conductive material, and the metal is used for the second substrate 202 and the insulating film 206 ′. But the adhesive strength is strong.
  • the adhesive force does not depend on the material of the conductive material, and the second substrate 202 and the insulating film 206 ′. Are substantially the same material and have a very strong adhesive force, and the second substrate 202 and the insulating film 206 ′ are bonded to each other in the opening portion of about 90.3% mesh in this embodiment.
  • the insulating film 206 ′ is very firmly formed on the second substrate 202, and can form a highly resistant device.
  • FIG. 8 shows an example of a cross section of the second substrate 202 constituting the sample transport device 200 when the mesh electrode is used as the second electrode 208.
  • the thickness of the second electrode 208, the insulating film 206 ', and the water repellent film 207' is on the order of submicrons, so that the dimensions in the thickness direction are exaggerated.
  • the second electrode 208 formed on the surface of the second substrate 202 (the lower side surface in the figure) and patterned into a hexagonal fine mesh shape will be described later in detail on the mesh, but the cross-sectional line width is 0.005 mm.
  • the pitch of the hexagonal dihedral width direction is 0.1 mm.
  • the second substrate 202 and the insulating film 206 ′ having a strong adhesive force are bonded to each other with an opening of 0.095 mm except for the line width of 0.005 mm, so that the insulating film 206 ′ becomes a strong film,
  • the second electrode 208 that is embedded between the second substrate 202 and the insulating film 206 ′ is firmly held.
  • FIG. 9 is a schematic diagram and an equivalent circuit in which a cross section of a part of the sample transport device 200 is enlarged.
  • the adjustment sample 124 introduced between the two is sandwiched as droplets.
  • a rough equivalent circuit when the power source 251 is connected between the first electrode 205 and the second electrode 208 is shown on the left side, superimposed on the enlarged view of FIG.
  • FIG. 11 shows the result of calculating the current flowing in the droplet (pure water).
  • FIG. 11A shows a current flowing in the droplet when the second electrode 208 has a mesh shape described later in this embodiment
  • FIG. 11B shows the second electrode 208 without opening. In this case, the current flowing through the droplet is shown.
  • the value of the current flowing in the droplet can be reduced to about 1/10 by making the conductive material of the electrode according to the present invention into a mesh shape. I understand.
  • the fourth advantage is that the electrochemical value exerted on the droplet can be reduced by reducing the value of the current flowing in the droplet. Further, when a droplet containing cells is transported by EWOD or DEP, damage to the cells can be reduced. Furthermore, the lifetime of the device can be expected to be shortened by reducing the current flowing through the electrode.
  • the resistance to electrode damage is higher than when a catenary line (overhead wire) is used instead of the second electrode 208 as shown in Patent Document 2. That is, the catenary line can observe the inside as in the present invention, and also has the effect of reducing the current. However, if a catenary line is cut at one place, all of the lines cannot be used. On the other hand, the mesh-like electrode according to the present invention does not become unusable when several places are cut. . Further, as described above, since the first substrate 201 and the second substrate 202 are held in parallel and at a constant distance by the spacer 203, the reaction liquid 125 which is a droplet is the sample transport device 200 similarly to the adjustment sample 124.
  • the length of passage of the light 157 that is sandwiched between and irradiated by the measuring units 154 and 154 ′ is kept constant. Therefore, in a spectroscopic analyzer or the like that measures the target component amount by calculating the absorbance, the analysis accuracy Can be kept.
  • the above is an advantage obtained by making the conductive material of the electrode into a mesh shape.
  • indium which is a component of ITO, is a rare metal, and since it is used in large quantities in liquid crystal displays and the like, there is a problem that it may become depleted and difficult to obtain, A device or an apparatus can be manufactured without using such a rare metal.
  • FIG. 12 is an overall view
  • FIG. 13 is an enlarged view from A to I shown in FIG. 12, and FIG. It is shown enlarged.
  • FIG. 12 since the mesh cannot be represented directly on the paper as described above, the overall view of FIG. 12 shows the meshes of the sample introduction port 209, the reagent introduction ports 210 and 210 ′, and the waste liquid collection port 211. Only the opening 212 and the window 213 through which the light 157 of the measuring units 154 and 154 ′ can pass are shown.
  • FIG. 13 A to I in FIG. 12 are enlarged and arranged side by side according to the original positional relationship.
  • the periphery of the second electrode 208 is bordered with a width of 0.1 mm for manufacturing convenience.
  • FIG. 14 further expands I of FIG. 13 and shows the mesh shape in detail.
  • the hexagonal openings forming the mesh have a pitch of 0.1 mm in the dihedral width direction
  • the hexagonal openings have a dihedral width of 0.095 mm
  • the line width between the openings is 0.1 mm. 005 mm.
  • the reason why the pitch of the hexagonal openings in the two-plane width direction is 0.1 mm is that the adjustment sample 124 or the like that needs to be moved by the electrostatic force in the sample transport device 200 is dropped into the sample transport device 200 as a droplet.
  • the diameter in the planar direction when discharged and sandwiched between the first substrate 201 and the second substrate 202 constituting the sample transport device 200 is about ⁇ 1 mm at the minimum, partial damage to the conductive portion, etc. This is because it is considered necessary that at least about 10 conductive portions overlap each other.
  • the reason why the hexagonal opening width is 0.095 mm and the line width between the openings is 0.005 mm is that it is necessary to secure an opening ratio of 90% or more in order to observe the inside through the mesh.
  • the measurement unit 154 measures through a mesh, it is considered that a light transmittance of 90% or more is necessary.
  • the aperture ratio in this embodiment is about 90.3%, and the aperture ratio is the same when the apertures are square with the same pitch and the same line width. Moreover, the manufacturing cost of a mesh is mentioned as a reason which made the line
  • the reason why the shape of the opening is hexagonal rather than quadrilateral is that both the X direction and the Y direction of the plane or one (one row) when tension is applied in the surface direction of the mesh due to thermal expansion or bending of the second substrate 202. This is because it is considered that the strength is higher than the combination of quadrilaterals in which the straight portions are included in each of the positions.
  • FIG. 15 shows a part extracted from the sample transport device 200 and is shown in a perspective view.
  • a plurality of first electrodes 205 are arranged on the side facing the second substrate 202 so as to serve as a droplet transport path.
  • FIG. 15 shows a part of the transport path for two rows and droplets.
  • a second electrode 208 in which hexagonal openings are arranged is disposed on almost the entire surface facing the first substrate 201.
  • the surface of the first electrode 205 is covered with an insulating film 206, and further a water repellent film 207 is formed.
  • the surface of the second electrode 208 is covered with an insulating film 206 ′, and further, the water repellent film 207 is formed.
  • the adjustment sample 124 that is a supplied droplet is sandwiched between the first substrate 201 and the second substrate 202.
  • Each adjustment sample 124 is configured by switching the electrode 205 to which a voltage is applied from among the plurality of first electrodes 205 with a switch 250 (not shown) and applying a voltage between the second electrode 208. Then, it moves on the plurality of first electrodes 205 arranged so as to form a transport path.
  • the first electrode 205 may be configured as a mesh electrode (for easy understanding of the state of the first electrode 205, FIG. (The second substrate 202 having the mesh-like second electrode is not shown). Furthermore, it is possible to adopt a configuration in which only the first electrode 205 is a mesh electrode.
  • a metal thin film is formed on almost the entire surface of the second substrate 202 facing the first substrate 201, and a mesh is formed by etching.
  • the window 213 is post-processed after the mesh molding, but may be processed simultaneously after the mesh molding.
  • the waste liquid collection opening 212 is processed at the same time when the sample introduction port 209, the reagent introduction ports 210 and 210 ', and the waste liquid collection port 211 are processed in the second substrate 202.
  • FIGS. 16 and 17 show windows for allowing the light 157 to pass through the reaction solution 125 for measurement.
  • FIG. 16 shows a window 213 opened in the second electrode 208 of the second substrate 202 in order to allow the light 157 to pass through the reaction solution 125 in the sample transport device 200, and the other hexagonal openings are the openings of the openings. The shape is different and the opening is larger than the other openings.
  • FIG. 17 is a window 214 opened in the first electrode 205 of the first substrate 201 in order to allow the light 157 to pass through the reaction liquid 125 in the sample transport device 200.
  • the first electrode 205 is processed into a first electrode 205 ′ located below the window 213. Note that a plurality of windows 213 and 214 are processed at the positions shown in FIG. The light 157 passes through the reaction liquid 125 that has moved to the position of the window 213 of the measuring units 154 and 154 ′, and the target component amount is measured.
  • the window 213 is not necessarily required. If the light 157 has a light amount necessary for the target measurement, the second electrode 208 passes through the mesh opening. Measurement is possible, but by placing a window with an opening larger than the other openings, such as the window 213, at a position facing the measurement units 154 and 154 ', the light 157 can be easily transmitted, and the measurement accuracy is improved. Can be made. The same applies to the first electrode 205. If the first electrode 205 has a mesh structure like the second electrode 208, measurement through the mesh opening is possible without processing the window 214. .
  • DESCRIPTION OF SYMBOLS 100 Liquid analysis system, 110 ... Sample preparation part, 111 ... Sample cassette insertion conveyance part, 112 ... Sample cassette, 113 ... Agitation mechanism, 114 ... Sample dispenser washing mechanism, 115 ... Sample dispenser, 116 ... Sample adjustment disk, 117: Sample adjusting agent tank, 118 ... Sample adjusting agent dispenser, 119 ... Sample adjusting disk cleaning mechanism, 120 ... Sample, 121 ... Sample tube, 122 ... Sample adjusting tube, 123 ... Sample adjusting agent, 124 ... Adjusted sample, 125 ... reaction liquid, 126 ... waste liquid, 150 ... sample conveyance measuring section, 151 ... adjusted sample loading dispenser, 152 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 従来技術では、電極材料として光透過性を持つ導電材料であるITOを用いる場合が多い。ITOは基板となるガラスとの接着力が弱い上、ITO上への絶縁膜の成膜も難しい。そのため、絶縁膜が非常に弱いものになってしまい、デバイスの耐性が低下してしまう。そこで、液体搬送デバイスに、各々独立して電圧が印加される複数の第1の電極が設けられた第1の基板と、第1の基板に対して隙間をあけて対向配置され、第1の電極に対向する第2の電極が設けられた第2の基板と、を備え、第1の電極と第2の電極の少なくとも一方が開口部を有し、絶縁膜が、開口部を有する電極が設けられた基板と、開口部を介して接着している構成とした。

Description

液体搬送デバイス及び液体分析装置
 本発明は、基板上で液体を操作して移動させるデバイス、及びそのデバイスを用いた分析装置に関する。
 測定対象物中に含まれる成分量を検出する分析装置として、ハロゲンランプ等からの白色光を反応容器に入れた測定対象物である試料溶液に照射し、試料溶液を透過してきた光を回折格子で分光して、目的の波長の吸光度を割り出すことで目的の成分量を測定する分光分析装置が広く用いられている。具体的には生化学自動分析装置が挙げられる。このような分析装置では、測定対象物に対応した試薬を加えて試料溶液にしており、使用する試薬量が分析コストに反映する。そのため試薬量を低減し、より少ない試料溶液で分析が可能な装置が求められている。
 より少ない試料溶液で分析することを目的に、試料溶液を反応容器に入れず、一定の間隔で平行に保たれた2枚の基板からなるデバイス内を液滴の状態で移動し、一連の分析動作を実行する方法として、特開2006-125900(特許文献1)に開示される技術がある。これはEWOD(ElectroWetting On Dielectric)と呼ばれる技術を用いて静電力により液滴を移動する方法であり、DEP(Dielectrophoresis)と呼ばれる場合もある。
 EWODもしくはDEPでは、液滴を移動するためのデバイスを構成する2枚の基板の、液滴を挟み込む側に電極が形成されており、一方の基板の電極は液滴の大きさに合わせた電極を液滴の移動経路をなすように複数配置し、対向するもう一方の電極は前記液滴の移動経路を形成するように複数配置された電極を網羅する共通の電極として形成されている。また、両方の電極の表面は絶縁膜で覆われ、かつ、前記2枚の基板の液滴側には撥水膜が形成されている。そして、前記液滴の移動経路をなすように複数配置された電極毎に電圧を印加するタイミングを変えることで液滴を移動する。EWODもしくはDEPデバイスは、前記生化学自動分析装置以外にPOCT(Point Of Care Testing)と呼ばれる小型装置や、細胞搬送装置などに用途が広がりつつある。
 これらの場合、デバイス内の液滴に電圧を印加する等して液滴に静電力を及ぼすことで液滴を移動し、試料溶液である液滴の分析時には、外部から液滴に測定光を照射し、透過してきた光から吸光度を割り出す。そのため、デバイスは光透過性を持つことが必要であり、デバイス内の液滴に静電力を及ぼすために電圧を印加する電極も、少なくとも計測部で光透過性を持つことが必要である。そこで電極材料として光透過性を持つ導電材料であるITO(酸化インジウムスズ)等が用いられている。また、計測部以外でも、デバイス内の液滴の位置を知るため等の理由から内部が見えるように、デバイスは光透過性を持つ方が望ましく、デバイスを構成する前記2枚の基板の内一方の基板にガラス等の光透過性材料を用い、ガラス基板の液滴に近い側の全面にITO等の光透過性を持つ導電材料を成膜して用いている。
 EWODやDEPにより液滴を移動するためのデバイスの構成として、前述のように2枚の基板を用いる方法以外に、US2004/0007377(特許文献2)に開示されるように、デバイスを構成する2枚の基板の内一方をカテナリーライン(架線)に置き換えた方法もある。
特開2006-125900号公報 US2004/0007377号公報
 従来技術では、電極材料として光透過性を持つ導電材料であるITOを用いる場合が多い。しかし、ITOは基板となるガラスとの接着力が弱い上、ITO上への絶縁膜の成膜も難しい。そのため、絶縁膜が非常に弱いものになってしまい、デバイスの耐性が低下してしまう。また、カテナリーラインを用いた液滴の移動によるデバイスでは、カテナリーラインが切断されるなどのダメージを受けると、そのライン上全ての電極が使用できなくなるという課題がある。
 上述した課題の少なくとも一の課題を解決するための本発明の一態様として、液体搬送デバイスに、各々独立して電圧が印加される複数の第1の電極が設けられた第1の基板と、第1の基板に対して隙間をあけて対向配置され、第1の電極に対向する第2の電極が設けられた第2の基板と、を備え、第1の電極と第2の電極の少なくとも一方が開口部を有し、絶縁膜が、開口部を有する電極が設けられた基板と、開口部を介して接着している構成とした。
 本発明により、耐久性の高い液体搬送デバイス、及び当該液体搬送デバイスを備えた液体搬送装置を作製することができる。
本発明の実施例による液体分析システムの構成における装置平面図である。 本発明の実施例による液体分析システムの構成における装置断面図である。 本発明の実施例による試料カセット部の断面図である。 本発明の実施例による試料搬送デバイスで、部分的に断面した場合の平面図である。 本発明の実施例による試料搬送デバイスで、部分的に断面した場合の正面図である。 本発明の実施例による試料搬送デバイスの部分断面図で、調整試料と試薬の移動を時系列に表したものである。 本発明の実施例による計測部領域の部分断面図である。 試料搬送デバイスを構成する第2基板の断面図である。 本発明の実施例による試料搬送デバイス部分断面の拡大略図と等価回路である。 本発明の実施例による試料搬送デバイスの等価回路である。 本発明の実施例による試料搬送デバイスで、液滴に流れる電流を計算した結果を表すグラフである。 本発明の実施例による試料搬送デバイスから第2の電極を抜き出して表す構成図である。 本発明の実施例による試料搬送デバイスから第2の電極を部分的に拡大して表す構成図である。 本発明の実施例による試料搬送デバイスから第2の電極を部分的に拡大して表す構成図である。 本発明の実施例による試料搬送デバイスに調整試料が液滴となって挟み込まれた時の状態を一部断面した透視図である。 本発明の実施例による第2の電極に加工した、開口の形状と大きさが異なる窓の形状を表す構成図である。 本発明の実施例による第1の電極に加工した、窓の形状を表す構成図である。 本発明の実施例による試料搬送デバイスに調整試料が液滴となって挟み込まれた時の状態を一部断面した透視図であえる。
 図1から図15を用い、本発明による液体分析システムと前記液体分析システムを構成する主要部品であるデバイスについて説明する。図1、及び、図2は液体分析システムの構成を示す略図であり、図1は装置の平面図、図2は装置の断面図を示す。
 本実施例での液体分析システム100は主に試料調整部110と試料搬送計測部150から構成されている。試料調整部110は、試料カセット投入搬送部111、試料カセット112、攪拌機構113、試料用ディスペンサ洗浄機構114、試料用ディスペンサ115、試料調整ディスク116、試料調整剤タンク117、試料調整剤用ディスペンサ118、及び、試料調整ディスク洗浄機構119から構成されており、試料搬送計測部150は、調整試料投入ディスペンサ151、調整試料投入ディスペンサ洗浄機構152、試料搬送デバイス200、試薬投入部153、計測部154、試薬投入部153’、計測部154’、及び、廃液回収部155から構成されている。
 試料カセット112には、図3に示すように試料120を入れた試料チューブ121が複数本セットされており、同様に試料調整ディスク116には試料調整チューブ122が複数本セットされている。試料調整剤タンク117には試料調整剤123が入れてあり、試料120と試料調整剤123は試料調整チューブ122内で混合、撹拌され、調整試料124となる。同様に試薬投入部153及び153’には、調整試料124に添加混合し測定のために特定の反応を起こす試薬156、156’が入れてある。
 本実施例では、試料搬送デバイス内に試料導入口209から導入された調整試料124に、試薬投入部153により試薬導入口210から試薬156を吐出し、混合して反応液125なった物を計測部154で計測する。その後、反応液125に試薬投入部153’により試薬導入口210’から試薬156’を吐出し、混合して反応液125になり、計測部154’で計測する。
 次に試料搬送計測部150について、主な構成要素である試料搬送デバイス200を図4、図5により詳細に説明する。図4は試料搬送デバイス200のみを抜き出した図で、平面図を部分的に断面して示す。図5は図4を正面から見た断面図で示す。
 図4、及び、図5に示すように、試料搬送デバイス200は、透明なガラス、セラミック、若しくは樹脂製の第1基板201、第1基板201と並行に配置された同様の材質からなる第2基板202、第1基板201と第2基板202を並行かつ一定距離に保つスペーサ203から構成されており、第1基板201と第2基板202との間には、搬送媒体としてシリコーン若しくはフッ素系のオイル204で満たされている。
 図5を用いて試料搬送デバイス200の構成を述べる。第1基板201には、第2基板202と向かい合う側に導電薄膜による複数の第1の電極205が、調整試料124や試薬156、156’の複数の搬送路となるように配列されており、第1の電極205の表面は絶縁膜206で覆われ、更に、第2基板202と向かい合う側の表面には撥水膜207が成膜されている。絶縁膜206は、例えば、二酸化ケイ素(SiO2)を用い、CVD(Chemical Vapor Deposition)で成膜する。
 なお、第1の電極205と絶縁膜206は非常に薄く、拡大しても書き表せないため、本願の図面においては、必要に応じて図6のように厚さ方向を誇張して表す。また撥水膜207も非常に薄く、絶縁膜206と混同してしまうため、図9以外には図示していない。図9は後述の等価回路等を示すためと、構造をわかりやすく説明するために撥水膜207の厚さ方向を誇張して表している。第1の電極205それぞれは、図6で後述するように交流矩形波の電源251とスイッチ250で配線されている。
 第2基板202には、第1基板201と向かい合う側のほぼ全面に、若しくは少なくとも第1の電極205と向かい合う部分をカバーする範囲に第2の電極208が配置されており、第1の電極205同様に絶縁膜206’で覆われ、更に、第1基板201と向かい合う側の表面には撥水膜207’が成膜されている。また、第2の電極208は、試料搬送デバイス200の内部が観察可能なようにITO等の光透過性を持つ導電材料を用いることが望ましい。
 第2基板202には、試料搬送計測部150内に調整試料124を導入する試料導入口209、試薬156、156’を導入する試薬導入口210、210’、及び、分析が終了した試料を廃液として取り出す廃液回収口211が設けられている。試料導入口209、試薬導入口210、210’、廃液回収口211は、平面から見た時に第1の電極205と重なる位置に配置されている。当該構造における試料搬送から計測までの処理の例としては、試料搬送デバイス内に試料導入口209から導入された調整試料124に、試薬投入部153により試薬導入口210から試薬156を吐出し、混合して反応液125なった物を計測部154で計測する。その後、計測部154で計測された反応液125に試薬投入部153’により試薬導入口210’から試薬156’を吐出し、混合して反応液125として、計測部154’で更なる計測を行う。
 スペーサ203は、前述のように第1基板201と第2基板202を並行かつ一定距離に保つ構造である。さらに、第1基板201と第2基板202との間をシールし、その間のスペースにオイル204を保持することも可能である。その場合、試料導入口209、試薬導入口210、210’、廃液回収口211のいずれかの口をオイル導入部とし、別の口から空気が押し出され、オイルで満たされる。オイルが接触する部分は、試料や試薬が搬送路から外れる等の不測の事態に備え、撥水処理しておくのが望ましい。第1基板201と第2基板202との間にオイル204を満たす方法は、スペーサ203でシールせず、第1基板201と第2基板202をオイル204で満たされた槽に浸すことでも可能である。その場合、第1基板201と第2基板202の隙間がオイル導入部となり、試料導入口209、試薬導入口210、210’、廃液回収口211のいずれかの口から空気が押し出され、オイルで満たされる。この場合も、試料や試薬が搬送路から外れる等の不測の事態に備え、オイルが接触する部分を撥水処理しておくのが望ましい。このようにオイルを満たすことで、微少量の液体を搬送する場合にその途中で水系の液体が蒸発して体積が変化することを防止することが可能となる。
 次に、本液体分析システムにて分析を行う際の各部の動作を説明する。第1に試料調整部110における動作、第2に試料搬送計測部150での動作等を説明する。
 まず、試料調整部110の動作について説明する。はじめに、図3に示すように測定対象である試料120を試料チューブ121に入れ、複数の試料120をそれぞれ異なる試料チューブ121に装填し、試料カセット112に収めた上で、図1のように本液体分析システムの試料カセット投入搬送部111に装填する。図1において、試料カセット112を試料カセット投入搬送部111により、試料用ディスペンサ115が所望の試料120を吸引可能な位置に移動する。試料用ディスペンサ115が試料120を吸引し、試料調整ディスク116内に複数ある試料調整チューブ122の内の1本に一定量の試料120を吐出する。
 次に試料120を吐出した試料調整チューブ122を試料調整剤用ディスペンサ118がアクセス可能な位置に移動するよう試料調整ディスク116を回転し、図1及び図2に示すように試料調整剤用ディスペンサ118で一定量吸引した試料調整剤タンク117内の試料調整剤123を前記試料調整チューブ122内に吐出する。
 つづいて、試料調整チューブ122に一定量吐出された試料120と試料調整剤123を撹拌するために試料調整ディスク116を回転し、前記試料調整チューブ122を攪拌機構113の位置まで移動する。この位置で攪拌機構113により試料120と試料調整剤123を撹拌し、調整試料124とした後、試料搬送計測部150に渡すために試料調整ディスク116を回転し、調整試料投入ディスペンサ151がアクセス可能な位置に前記試料調整チューブ122を移動する。攪拌機構113は、1回の撹拌毎に内部に持つ洗浄機構によって洗浄され、試料用ディスペンサ115は、1回の吸引吐出毎に、試料用ディスペンサ洗浄機構114にて洗浄する。また、試料調整チューブ122も必要に応じて洗浄機構14で洗浄される。試料調整チューブ122を毎回洗浄せず必要に応じて洗浄する理由は、試料調整チューブ122内にある調整試料124は複数回の分析に必要な量が調整されているためであり、必要な項目数の分析、必要な回数の分析、あるいは不測の事態の再検査等が終了した時点で洗浄が行われる。
 次に、図6を用いて試料搬送計測部150での動作等を説明する。図6の(a)から(e)は、試料搬送デバイス200の部分断面図であり、(a)から(e)で調整試料124と試薬156の移動の様子を時系列に表している。また、第1の電極205は、図6で示すように交流矩形波の電源251とスイッチ250で配線されている。
 図6の(a)では、調整試料投入ディスペンサ151により試料導入口209から調整試料124を、試薬投入部153により試薬導入口210から試薬156を吐出している状態を表している。この時、スイッチ250の番号を表しているスイッチ250のみONになっており、試料導入口209と試薬導入口210の下の電極205に電圧が印加されているため、導入された調整試料124と試薬156がその場で保持されている。
 図6の(b)では、試薬導入口210の下の電極205に電圧を印加して試薬156を保持したまま、調整試料124側のスイッチ250を一つ隣の電極205に接続されている側に切り替え、調整試料124を移動する状態を表している。
 図6の(c)では、同様にスイッチ250を切り替えて調整試料124を更に移動し、試薬156と合体する状態を表している。
 図6の(d)では、スイッチ250を試薬156の下にある電極36のみONにし、調整試料124と試薬156を混合し、反応液125とした状態を表している。
 図6の(e)では、更にスイッチ250を切り替え、反応液125を移動している状態を表している。
 試料搬送デバイス200の第1の電極205それぞれと第2の電極208の間には、交流矩形波の電源251からの電圧を、スイッチ250を介して印加出来るようになっており、試料搬送デバイス200内部に吐出された調整試料124は、電圧が印加された第1の電極205上に静電力により吸引される。静電力による吸引力は、液滴状になった調整試料124等が、電圧が印加された第1の電極205上に掛っているところでのみ働くため、調整試料124は第1の電極205からわずかにはみ出し、隣の第1の電極205に掛るように容量が調整されている。そのため調整試料124は、第1の電極205に対応するそれぞれのスイッチ250を切り替えることで、第1の電極205が配列され形成された複数の搬送路上を移動することが出来る。
 また、第1の電極205の大きさを液滴の大きさに合わせて調整してあるため、試薬156、156’や、試薬156、156’と調整試料124の混合も可能であり、混合された後の液滴についても、同様に移動することが出来る。
 ここで第1の電極205に印加する電圧に交流矩形波を用いることで、直流電圧を印加し続けることにより第1の電極205や第2の電極208表面の絶縁膜や撥水処理剤で帯電が起こり、静電力による搬送ができなくなることを交流電圧を印加することにより防止できる。さらに、交流正弦波よりも交流矩形波の方が大きな駆動力が得られる。
 次に、図7の部分断面図を用いて、試料搬送計測部150の、計測部154、154’領域の構成について説明する。
 計測部154、154’に移動した反応液125は、図7に示される状態でその成分量を分析される。すなわち、計測部154、154’には特定の1種類、若しくは2種類の波長の光157を出力する光源158と、反応液125を透過した光157を受光し電気信号に変換する受光部159が配置されている。詳細は割愛するが、試薬156、156’と混ぜ合わされた反応液125は、そこに含まれる特定の成分量に応じて反応し、特定の波長の光を吸収するため、受光部159での受光量から反応液125に含まれる特定の成分量を割り出すことができる。割り出したい成分の種類により、試薬156、156’、及び、光157の波長が違うため、文頭の第1の電極205の説明で述べた複数の搬送路各々にそれらを割り当て、試料導入口209から導入した調整試料124を希望する成分分析のための搬送路に送ることができるようになっている。
 計測部154、及び、計測部154’には、図7のように複数の光源158と受光部159の組合せが配置されており、調整試料124と試薬156、若しくは試薬156’との反応後、複数回の計測、若しくは異なった波長での計測が可能になっている。また、1種類、若しくは2種類の波長の光157を反応液125に透過し受光部159で電気信号に変換すると述べたが、白色光を反応液125に透過し、透過後回折格子やフィルタで分光し、特定の1種類、若しくは2種類の波長の光を電気信号に変換する方法でも良い。
 計測部154内の複数の光源158と受光部159の組み合わせは、それぞれ第1の電極205の中心を光源158からの光157が通過し受光部159が受光出来るように配置されている。それに合わせて、少なくとも計測部154における第1の電極205及び第2の電極208には、光157が通過出来る構造が求められる。その構造は、第1の電極205、及び、第2の電極208の電極材料としてITO等の光透過性を持つ導電材料を用いること、もしくは、第1の電極205、及び、第2の電極208に光157が通過可能な窓を設けることである。ITO等の光透過性を持つ導電材料を用いた場合でも、ITOの波長透過特性により、窓を加工する方が良い場合もある。
 本実施例では、調整試料124を試料搬送計測部150へ導入してからここまでの動作、つまり、調整試料124と試薬156を混ぜ合わせて反応し、計測部154で成分量を分析するまでの動作を、一つの搬送路で2回行うような構成になっている。すなわち、計測部154で成分量を分析した後、調整試料124を静電力により更に移動し、試薬156’を混ぜ合わせて反応させた後、計測部154’で計測する。これは、夾雑物の影響を排除する等の目的で、反応と計測を2度行うためである。計測部154’で計測が終了した反応液125は廃液126となり、静電力により更に移動し、廃液回収部155で回収される。
 以上が本実施例での液体分析システムの構成と、液体分析システムを用いた分析方法についての説明である。
 次に、以下にて、電極に六角形、四角形等の細かい開口を複数持つ導電材料を用いたデバイス構成について説明する。なお、以下では、このような開口を複数持つ電極をメッシュ電極と呼ぶ。
 先に説明した本実施例での液体分析システムの構成と液体分析システムを用いた分析方法では、試料搬送計測部150の試料搬送デバイス200を構成する第1基板201には、第2基板202と向かい合う側に導電薄膜による複数の第1の電極205が、調整試料124や試薬156、156’の複数の搬送路となるように配列されていること、第2基板202には、第1基板201と向かい合う側の全面に、若しくは少なくとも第1の電極205と向かい合う部分をカバーする範囲に第2の電極208が配置されていることを述べた。また、試料搬送デバイス200の計測部154においては、第1の電極205、及び、第2の電極208の電極材料としてITO等の光透過性を持つ導電材料を用いること、もしくは、第1の電極205、及び、第2の電極208に光157が通過可能な窓を設けることにより第1の電極205及び第2の電極208には、光157が通過出来る構造が求められると述べた。
 本実施例では、例えば図13に示すように、第2の電極208に六角形の細かい開口を複数持つメッシュ状の導電材料を用いている。また、絶縁膜は、開口部を有する第2の電極208が設けられた第2基板202と、開口部を介して接着している状態である。電極の導電材料をメッシュ状にすることで次のような利点がある。
 一つ目として、電極材料にITO等の透明な導電材料ではなく、不透明な金属や半金属を用いても透けて見えるため、内部の観察や光計測が可能であることが挙げられる。そのため、希少金属であるインジウム等を使わずに済む。具体的に使用する材料としては、耐蝕性の高い材料で、材料単価や製造のし易さから来るコストを考慮すると、半導体製造や表面処理に良く用いられるCr、Ti、W、Al、Cu、Ni、Zn、及び、それらの合金、酸化物や窒化物、また、Si、C等の半金属が挙げられる。
 二つ目の利点として、耐性の高いデバイスを構成できることが挙げられる。ガラス等からなる第2基板202の表面に成膜したITOは、ガラスとの接着力が金属等に比べて弱い。ITOの成膜後に更にその上に成膜する絶縁膜206’もガラス質であるため、ITOへの接着力は弱い。したがって、第2基板202に対する絶縁膜206’の接着強度は非常に弱く剥がれ易くなってしまい、デバイスの耐性が低くなってしまう。それに対し、第2の電極208にメッシュ状の導電材料を用いた場合、導電材料に不透明な金属を用いることが可能であり、金属は第2基板202に対しても絶縁膜206’に対しても接着力は強い。更に、絶縁膜は第2基板202と第2の電極208の開口部を介して直に接着しているため、接着力は導電材料の材質に依らないこと、第2基板202と絶縁膜206’は略同じ材質であり接着力は非常に強固であること、及び、本実施例での約90.3%のメッシュの開口部分全てで第2基板202と絶縁膜206’が接着されることから、絶縁膜206’は非常に強固に第2基板202に成膜され、耐性の高いデバイスを構成することができる。
 図8に、第2の電極208として当該メッシュ電極を用いた場合の試料搬送デバイス200を構成する第2基板202の断面の一例を示す。尚、第2の電極208、絶縁膜206’、及び、撥水膜207’は、その厚さがサブミクロンオーダーであるため、厚さ方向は寸法を誇張して図示している。第2基板202の表面(図下側面)に成膜し、六角形の細かいメッシュ状にパターンニングされた第2の電極208は、メッシュの詳細で後述するが、断面の線幅は0.005mmであり、六角形の2面幅方向のピッチは0.1mmである。そのため、接着力の強い第2基板202と絶縁膜206’は、線幅0.005mmを除いた0.095mmの開口部全てで接着されるため、絶縁膜206’は強固な膜となり、また、第2基板202と絶縁膜206’との間に埋め込まれた形になる第2の電極208は、しっかりと保持される。
 三つ目の利点として、液滴に流れる電流を低減することが挙げられる。図9は試料搬送デバイス200の一部の断面を拡大した略図と等価回路である。第1基板201に成形されている第1の電極205、絶縁膜206、及び、撥水膜207と、第2基板202に成形されている第2の電極208、及び、撥水膜207’との間に導入された調整試料124が液滴となって挟み込まれている。この状態で第1の電極205と第2の電極208間に電源251を接続したときの大まかな等価回路を図9の拡大図に重ねて左側に示している。
 この等価回路をより厳密にし、図10に示す。この図10の等価回路を基に、電極サイズを2mm×2mm、電源251の電圧を±30Vに設定し、更に、絶縁膜206に含まれる欠陥等を考慮したうえで、周波数を可変して液滴(純水)に流れる電流を計算した結果を図11に示す。図11(a)は、第2の電極208を本実施例の後述するメッシュ形状にした場合に液滴に流れる電流を表し、図11(b)は、第2の電極208を開口無しにした場合に液滴に流れる電流を表している。図11(a)と図11(b)を比較してわかるように、本発明による電極の導電材料をメッシュ状にすることで、液滴に流れる電流値がおよそ10分の1に低減できることが分かる。
 四つ目の利点として、液滴に流れる電流値を低減できることで、液滴に及ぼす電気化学反応を低減できると言う効果が挙げられる。また、EWODやDEPにより細胞を含んだ液滴を搬送する場合などには、細胞に与えるダメージを低減することが出来る。更には、電極に流れる電流が低減することでデバイスの長寿命化が期待できる。
 五つ目の利点として、特許文献2に示すような第2の電極208に代えてカテナリーライン(架線)を用いた場合に比べ、電極の損傷に対する耐性が高いことが挙げられる。すなわち、カテナリーラインは本発明と同様に内部の観察が可能である上、電流低減の効果も同様に持っている。しかし、カテナリーラインは1ヶ所切断すればそのラインは全て使用不可能となるのに対し、本発明によるメッシュ状の電極であれば、数か所が切断されたところで使用不可能になることは無い。また、前述のように、第1基板201と第2基板202はスペーサ203により並行かつ一定距離に保たれているため、液滴である反応液125は、調整試料124と同様に試料搬送デバイス200の中に挟み込まれ、計測部154、154’において照射される光157が通過する長さが一定に保たれるため、吸光度を割り出すことで目的の成分量を測定する分光分析装置等では分析精度を保つことが出来る。以上が電極の導電材料をメッシュ状にすることで得られる利点である。
 さらに、六つ目の利点として、ITOの成分であるインジウムは希少金属であり、液晶ディスプレイ等で大量に使用されるため枯渇や入手困難になる可能性があると言う課題があったが、このような希少金属を用いずにデバイスや装置を作製ができることが挙げられる。
 次に、本実施例による第2の電極208であるメッシュ状電極の詳細を説明する。図12、図13、図14は、試料搬送デバイス200に配置されている第2の電極208を抜き出して示したものでる。メッシュはピッチが0.1mmであり、紙面では直接表せないため、図12には全体図、図13には図12に示すAからIを拡大して示し、図14で図13のIを更に拡大して示している。
 図12において、前述のようにメッシュを紙面で直接表すことが出来ないため、図12の全体図には、試料導入口209、試薬導入口210、210’、及び、廃液回収口211のメッシュの開口部212と、計測部154、154’の光157が通過可能な窓213のみが表されている。図13では、図12のAからIを拡大し、元の位置関係通りに並べて示している。第2の電極208の周囲は、製造上の都合により0.1mm幅で縁取りしてある。
 図14は、図13のIを更に拡大し、メッシュの形状を詳細に表わしている。図14に示すように、メッシュを形成する六角形の開口の2面幅方向のピッチは0.1mm、六角形の開口の2面幅は0.095mm、そして開口部間の線幅は0.005mmである。六角形の開口の2面幅方向のピッチを0.1mmにした理由は、試料搬送デバイス200内で静電力により移動することが必要な調整試料124等が、試料搬送デバイス200内に液滴として吐出され、試料搬送デバイス200内構成する第1基板201と第2基板202で挟まれた状態になった時の平面方向の直径が最小φ1mm程度であるため、部分的な導電部の破損等をも考慮し、その中に最低でも10本程度の導電部が重なっていることが必要と考えたためである。六角形の開口の2面幅を0.095mm、開口部間の線幅を0.005mmにした理由は、メッシュを通して内部を観察するためには開口率を90%以上確保することが必要と考えたこと、また、計測部154においてメッシュを通して計測することになった場合、やはり90%以上の光透過率が必要と考えたためである。尚、本実施例での開口率は約90.3%であり、同じピッチ、同じ線幅で開口部を四角形にした場合も開口率は同じである。また、開口部間の線幅を0.005mmにした理由として、メッシュの製造コストが挙げられる。本実施例の第1の電極205、及び、第2の電極208の厚さは100nmから200nmであるため、0.005mmであればウェットエッチングにより安価に製造することが可能である。
 開口の形状を四角形ではなく六角形にしたのは、第2基板202の熱膨張や曲げ等でメッシュの面方向に張力が掛った場合に、平面のX方向、Y方向両方、もしくは一方(一列ごとにずらして配置)に直線部分が含まれる四角形の組み合わせよりも強度が高いと考えたためである。因みに、同一形状の正多角形で平面を埋められる開口形状として正三角形があるが、同じピッチ、同じ線幅で開口部を正三角形にした場合の開口率は約83.4%である。
 図15に試料搬送デバイス200から一部分を抜き出し、透視図で示す。第1基板201には、第2基板202と向かい合う側に複数の第1の電極205が液滴の搬送路となるように配列されている。図15では、2列分の搬送路の一部と液滴を示している。第2基板202には、第1基板201と向かい合う側のほぼ全面に、六角形の開口を配列した第2の電極208が配置されている。第1の電極205の表面は絶縁膜206で覆われ、更に、撥水膜207が成膜されており、第2の電極208の表面は絶縁膜206’で覆われ、更に、撥水膜207’が成膜されているが、絶縁膜206、206’、撥水膜207、207’の膜厚は共に1μm以下であるため、図示していない。
 第1基板201と第2基板202の間には、供給された液滴である調整試料124が挟み込まれている。それぞれの調整試料124は、複数の第1の電極205の中から電圧を印加する電極205をスイッチ250(図示せず。)で切り替え、第2の電極208との間に電圧を印加することで、搬送路となるように配列された複数の第1の電極205上を移動する。また、図18に示すように、第2の電極に加え、第1の電極205をメッシュ電極とした構成にすることも可能である(第1の電極205の状態が分かり易いように、図18では、メッシュ状の第2の電極を持つ第2基板202は表示していない)。さらに、第1の電極205のみをメッシュ電極とした構成にすることも可能である。
 本実施例では、第2基板202の第1基板201と向かい合う側のほぼ全面に金属薄膜を成膜し、エッチングによりメッシュを成型している。窓213はメッシュ成型後に後加工しているが、メッシュ成型時後に同時に加工しても良い。また、廃液回収開口部212は、第2基板202に試料導入口209、試薬導入口210、210’、及び、廃液回収口211を加工する時に同時に加工している。
 図16、図17に計測のために反応液125に光157を通過するための窓を示す。図16は、試料搬送デバイス200内の反応液125に光157を通過するために、第2基板202の第2の電極208に開けた窓213であり、他の六角形の開口とは開口の形状が異なり、他の開口よりも開口が大きい。
 図17は、同じく試料搬送デバイス200内の反応液125に光157を通過するために、第1基板201の第1の電極205に開けた窓214であり、第1基板201の複数の第1の電極205の内、窓213の下に位置する第1の電極205’に加工されている。尚、窓213、窓214は、平面方向から見ると図12の位置に複数加工されている。計測部154、154’の窓213の位置に移動してきた反応液125に光157が通過し、目的の成分量が計測される。
 この時、前述のように第2の電極208は開口率が90%以上あるため、必ずしも窓213は必要なく、光157が目的の計測に必要な光量を持っていればメッシュの開口を通した計測も可能であるが、窓213のように他の開口より大きい開口を有する窓を計測部154、154’と対向する位置に配置することで光157を透過しやすくし、計測の精度を向上させることができる。また、第1の電極205においても同様であり、第1の電極205が第2の電極208のようなメッシュ構造であれば窓214を加工せずともメッシュの開口を通した計測が可能である。
 100…液体分析システム、110…試料調整部、111…試料カセット投入搬送部、112…試料カセット、113…攪拌機構、114…試料用ディスペンサ洗浄機構、115…試料用ディスペンサ、116…試料調整ディスク、117…試料調整剤タンク、118…試料調整剤用ディスペンサ、119…試料調整ディスク洗浄機構、120…試料、121…試料チューブ、122…試料調整チューブ、123…試料調整剤、124…調整試料、125…反応液、126…廃液、150…試料搬送計測部、151…調整試料投入ディスペンサ、152…調整試料投入ディスペンサ洗浄機構、153…試薬投入部、153’…試薬投入部、154…計測部、154’…計測部、155…廃液回収部、156…試薬、156’…試薬、157…光、158…光源、159…受光部、200…試料搬送デバイス、201…第1基板、202…第2基板、203…スペーサ、204…オイル、205…第1の電極、205’…第1の電極、206…絶縁膜、206’…絶縁膜、207…撥水膜、207’…撥水膜、208…第2の電極、209…試料導入口、210…試薬導入口、210’…試薬導入口、211…廃液回収口、212…廃液回収開口部、213…窓、214…窓、250…スイッチ、251…電源。

Claims (15)

  1.  各々独立して電圧が印加される複数の第1の電極が設けられた第1の基板と、
     前記第1の基板に対して隙間をあけて対向配置され、前記第1の電極に対向する第2の電極が設けられた第2の基板と、
     前記第1の基板と前記第2の基板の間の隙間に試料を導入する試料導入口と、
     前記第1の電極と、前記第2の電極と、の間に電圧を印加する電圧制御部と、
     測定光を発生する光源と、
     前記試料を通過した前記測定光を検出する検出部と、を備え、
     前記第1の電極と前記第2の電極の少なくとも一方が、絶縁膜によって被膜され、開口部を有しており、
     前記絶縁膜は、前記開口部を有する電極が設けられた基板と、前記開口部を介して接着している、ことを特徴とする液体分析装置。
  2.  請求項1に記載の液体分析装置であって、
     前記開口部を有する電極は、網目構造を有する電極である、ことを特徴とする液体分析装置。
  3.  請求項1に記載の液体分析装置であって、
     前記開口部を有する電極が設けられた基板は光透過性の基板である、ことを特徴とする液体分析装置。
  4.  請求項1に記載の液体分析装置であって、
     前記電圧制御部は、
     複数の前記第1の電極の中の一部と、前記第2の電極と、の間に交流電圧を印加する、ことを特徴とする液体分析装置。
  5.  請求項4に記載の液体分析装置であって、
     前記電圧制御部は、
     複数の前記第1の電極の中の一部と、前記第2の電極と、の間に印加する交流電圧として交流矩形波を用いる、ことを特徴とする液体分析装置。
  6.  請求項1に記載の液体分析装置であって、
     前記開口部の形状が四角形もしくは六角形である、ことを特徴とする液体分析装置。
  7.  請求項1に記載の液体分析装置であって、
     前記開口部の大きさが、前記隙間内に導入された試料液滴の、前記開口部を有する電極が設けられた基板の平面方向に投影される面積より小さいことを特徴とする液体分析装置。
  8.  請求項1に記載の液体分析装置であって、
     前記開口部を有する電極は、他の開口部と比して形状と大きさの少なくとも一方が異なる開口部を、前記光源と前記検出部との間に有する、ことを特徴とする液体分析装置。
  9.  請求項1に記載の液体分析装置であって、
     前記開口部を有する電極は、メッシュ電極である、ことを特徴とする液体分析装置。
  10.  各々独立して電圧が印加される複数の第1の電極が設けられた第1の基板と、
     前記第1の基板に対して隙間をあけて対向配置され、前記第1の電極に対向する第2の電極が設けられた第2の基板と、
     前記第1の基板と前記第2の基板の間の隙間に試料を導入する試料導入口と、を備え、
     前記第1の電極と前記第2の電極の少なくとも一方が、絶縁膜によって被膜され、開口部を有しており、
     前記絶縁膜は、前記開口部を有する電極が設けられた基板と、前記開口部を介して接着している、ことを特徴とする液体搬送デバイス。
  11.  請求項10に記載の液体搬送デバイスであって、
     前記開口部を有する電極は、網目構造を有する電極である、ことを特徴とする液体搬送デバイス。
  12.  請求項10に記載の液体搬送デバイスであって、
     前記開口部を有する電極が設けられた基板は光透過性の基板である、ことを特徴とする液体搬送デバイス。
  13.  請求項10に記載の液体搬送デバイスであって、
     前記開口部の形状が四角形もしくは六角形である、ことを特徴とする液体搬送デバイス。
  14.  請求項9に記載の液体搬送デバイスであって、
     前記開口部の大きさが、前記隙間内に導入された試料液滴の、前記メッシュ電極が設けられた基板の平面方向に投影される面積より小さいことを特徴とする液体搬送デバイス。
  15.  請求項10に記載の液体搬送デバイスであって、
     前記開口部を有する電極は、メッシュ電極である、ことを特徴とする液体搬送デバイス。
PCT/JP2012/080669 2012-11-28 2012-11-28 液体搬送デバイス及び液体分析装置 WO2014083622A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080669 WO2014083622A1 (ja) 2012-11-28 2012-11-28 液体搬送デバイス及び液体分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080669 WO2014083622A1 (ja) 2012-11-28 2012-11-28 液体搬送デバイス及び液体分析装置

Publications (1)

Publication Number Publication Date
WO2014083622A1 true WO2014083622A1 (ja) 2014-06-05

Family

ID=50827298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080669 WO2014083622A1 (ja) 2012-11-28 2012-11-28 液体搬送デバイス及び液体分析装置

Country Status (1)

Country Link
WO (1) WO2014083622A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020079834A1 (ja) * 2018-10-19 2020-04-23 株式会社日立ハイテクノロジーズ 生化学用カートリッジ及び生化学分析装置
JP2020532723A (ja) * 2017-09-01 2020-11-12 ミロキュラス インコーポレイテッド デジタルマイクロ流体デバイスおよびその使用方法
US20210348097A1 (en) * 2020-05-08 2021-11-11 Panasonic Intellectual Property Management Co., Ltd. Cell culture chip
US11738345B2 (en) 2019-04-08 2023-08-29 Miroculus Inc. Multi-cartridge digital microfluidics apparatuses and methods of use
US11772093B2 (en) 2022-01-12 2023-10-03 Miroculus Inc. Methods of mechanical microfluidic manipulation
US11833516B2 (en) 2016-12-28 2023-12-05 Miroculus Inc. Digital microfluidic devices and methods
US11857969B2 (en) 2017-07-24 2024-01-02 Miroculus Inc. Digital microfluidics systems and methods with integrated plasma collection device
US11890617B2 (en) 2015-06-05 2024-02-06 Miroculus Inc. Evaporation management in digital microfluidic devices
US11944974B2 (en) 2015-06-05 2024-04-02 Miroculus Inc. Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling
US11992842B2 (en) 2018-05-23 2024-05-28 Miroculus Inc. Control of evaporation in digital microfluidics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152406A (ja) * 1994-11-29 1996-06-11 Shimadzu Corp 蛍光分析装置
JP2006196694A (ja) * 2005-01-13 2006-07-27 Sony Corp 半導体発光素子
JP2006317365A (ja) * 2005-05-16 2006-11-24 Hitachi High-Technologies Corp 化学分析装置
JP2008275412A (ja) * 2007-04-27 2008-11-13 Hitachi High-Technologies Corp 試料分析システム及び試料搬送方法
JP2012230105A (ja) * 2011-04-22 2012-11-22 Sharp Corp アクティブマトリクス装置およびその駆動方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152406A (ja) * 1994-11-29 1996-06-11 Shimadzu Corp 蛍光分析装置
JP2006196694A (ja) * 2005-01-13 2006-07-27 Sony Corp 半導体発光素子
US20060169997A1 (en) * 2005-01-13 2006-08-03 Jun Suzuki Semiconductor light-emitting device
JP2006317365A (ja) * 2005-05-16 2006-11-24 Hitachi High-Technologies Corp 化学分析装置
JP2008275412A (ja) * 2007-04-27 2008-11-13 Hitachi High-Technologies Corp 試料分析システム及び試料搬送方法
JP2012230105A (ja) * 2011-04-22 2012-11-22 Sharp Corp アクティブマトリクス装置およびその駆動方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11944974B2 (en) 2015-06-05 2024-04-02 Miroculus Inc. Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling
US11890617B2 (en) 2015-06-05 2024-02-06 Miroculus Inc. Evaporation management in digital microfluidic devices
US11833516B2 (en) 2016-12-28 2023-12-05 Miroculus Inc. Digital microfluidic devices and methods
US11857969B2 (en) 2017-07-24 2024-01-02 Miroculus Inc. Digital microfluidics systems and methods with integrated plasma collection device
JP7341124B2 (ja) 2017-09-01 2023-09-08 ミロキュラス インコーポレイテッド デジタルマイクロ流体デバイスおよびその使用方法
JP2020532723A (ja) * 2017-09-01 2020-11-12 ミロキュラス インコーポレイテッド デジタルマイクロ流体デバイスおよびその使用方法
US11992842B2 (en) 2018-05-23 2024-05-28 Miroculus Inc. Control of evaporation in digital microfluidics
JPWO2020079834A1 (ja) * 2018-10-19 2021-09-09 株式会社日立ハイテク 生化学用カートリッジ及び生化学分析装置
GB2591370B (en) * 2018-10-19 2022-09-21 Hitachi High Tech Corp Biochemical cartridge and biochemical analysis device
JP7022845B2 (ja) 2018-10-19 2022-02-18 株式会社日立ハイテク 生化学用カートリッジ及び生化学分析装置
WO2020079834A1 (ja) * 2018-10-19 2020-04-23 株式会社日立ハイテクノロジーズ 生化学用カートリッジ及び生化学分析装置
GB2591370A (en) * 2018-10-19 2021-07-28 Hitachi High Tech Corp Biochemical cartridge and biochemical analysis device
CN112585474A (zh) * 2018-10-19 2021-03-30 株式会社日立高新技术 生物化学用盒和生物化学分析装置
US12064767B2 (en) 2018-10-19 2024-08-20 Hitachi High-Tech Corporation Biochemical cartridge and biochemical analysis device
US11738345B2 (en) 2019-04-08 2023-08-29 Miroculus Inc. Multi-cartridge digital microfluidics apparatuses and methods of use
US20210348097A1 (en) * 2020-05-08 2021-11-11 Panasonic Intellectual Property Management Co., Ltd. Cell culture chip
US11772093B2 (en) 2022-01-12 2023-10-03 Miroculus Inc. Methods of mechanical microfluidic manipulation
US11857961B2 (en) 2022-01-12 2024-01-02 Miroculus Inc. Sequencing by synthesis using mechanical compression

Similar Documents

Publication Publication Date Title
WO2014083622A1 (ja) 液体搬送デバイス及び液体分析装置
CN111107937B (zh) 包括具有薄膜晶体管和电容感测的双基底的数字微流体设备
JP4881950B2 (ja) 液体搬送デバイス
EP3300802A1 (en) Microfluidic device
CN107110816A (zh) 具有集成的电化学传感器的数字微流体设备
CN104048919A (zh) 用于生物实体的光学检测
WO2007046485A1 (ja) 誘電泳動チップおよび誘電泳動装置並びに誘電泳動システム
US20190056341A1 (en) Devices, systems, and methods for performing optical and electrochemical assays
US9068930B2 (en) Analysis device with transducer stiffening elements
US20190056342A1 (en) Techniques for performing optical and electrochemical assays with universal circuitry
CN103091233A (zh) 生物芯片
US20230003683A1 (en) Digital microfluidics (DMF) device including an FET-biosensor (FETB) and method of field-effect sensing
US9983128B2 (en) Parallel optical examinations of a sample
WO2013179835A1 (ja) 液体分析デバイス,液体分析システム及び液体分析方法
TWI644102B (zh) 微流體感測元件及其製作方法
JP5786308B2 (ja) 表面プラズモン共鳴測定装置
JP5483134B2 (ja) 微量液滴の体積測定方法及び装置
US20240238781A1 (en) Digital Microfluidics Chip and Drive Method thereof, and Digital Microfluidics Apparatus
ES2428853T3 (es) Dispositivo del tipo de una cámara electroquímica así como procedimiento para la producción y la utilización del dispositivo
US8902414B2 (en) Method of measuring uniformity of exposing light and exposure system for performing the same
WO2012173130A1 (ja) 液体分析装置
JP4547304B2 (ja) 液体搬送基板及び分析システム
Wang et al. Droplet-based label-free detection system based on guided-mode resonance and electrowetting-on-dielectric for concentration measurement
US20200158645A1 (en) Sers sensor apparatus with passivation film
CN115151342B (zh) 基板、微流控装置、驱动方法和制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP