CN106092865B - 一种基于数字微流控的荧光液滴分选系统及其分选方法 - Google Patents

一种基于数字微流控的荧光液滴分选系统及其分选方法 Download PDF

Info

Publication number
CN106092865B
CN106092865B CN201610662779.2A CN201610662779A CN106092865B CN 106092865 B CN106092865 B CN 106092865B CN 201610662779 A CN201610662779 A CN 201610662779A CN 106092865 B CN106092865 B CN 106092865B
Authority
CN
China
Prior art keywords
fluorescence
circuit
drop
digital microcurrent
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610662779.2A
Other languages
English (en)
Other versions
CN106092865A (zh
Inventor
王伟强
曹康
万莹
苏岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201610662779.2A priority Critical patent/CN106092865B/zh
Publication of CN106092865A publication Critical patent/CN106092865A/zh
Application granted granted Critical
Publication of CN106092865B publication Critical patent/CN106092865B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种基于数字微流控的荧光液滴分选系统及其分选方法,包括数字微流控芯片、综合电路和荧光激发与采集模块。所述数字微流控芯片与综合电路连接,荧光激发与采集模块分别与数字微流控芯片和综合电路连接。本发明所述基于数字微流控的荧光液滴分选系统在液滴的生成、运输及分选过程中全部是依靠芯片上介电润湿原理,因此不需添加第三方的实现机构,更容易实现系统的小型化,且过程中是对单个液滴的操控与分析,结合生物化学染色、荧光蛋白标记技术,可用于单个细胞、分泌蛋白或微生物的检测与分选,用于早期疾病诊断与治疗等领域。

Description

一种基于数字微流控的荧光液滴分选系统及其分选方法
技术领域
本发明属于微流控技术领域,具体涉及一种基于数字微流控的荧光液滴分选系统及其分选方法。
背景技术
目前已有的液滴分选方法,分选控制模块会作用于液滴流经的区域而非单个液滴本身,因此会出现分选不精准,漏选或错选的现象。
其次,较常用使用的荧光液滴分选系统使用的连续微流控技术,采用基于玻璃或塑料的微流道来实现的,适用于一些简单的事先定义好的应用,难以实现复杂的处理,并且一般只能工作于串行模式,工作效率低。由于工作参数(如压强、流体阻力、电场强度等)在整个微流道系统中处处不同,微流体会受到整个微流道系统的影响,也易发生微粒阻塞流道的现象发生。
目前常用的液滴分选系统中,生成液滴时大多需借助外接泵、鞘液及特殊构造的流道实现,这会造成系统的发杂度提升,不便于小型化的实现。(如专利CN201380039184.6)
另外,常用的基于微流控的荧光液滴分选装置中,利用激发荧光信号检测样本微粒的方法已经得到广泛应用,如Zhenning Cao等人提出了Droplet sorting based on thenumber of encapsulated particles using a solenoid valve一文,但在检测到样本微粒后,已发展出的筛选机制如:光镊子、机械开关、水流传导力、介电泳等,存在技术手段昂贵、需微加工通道、需添加第三方分选模块等短板。
发明内容
本发明的目的在于提供一种基于数字微流控的荧光液滴分选系统及其分选方法,填补数字微流控技术应用于荧光液滴分选领域,进行单个特异性细胞、蛋白质等生物微粒检测和分析的空白。
实现本发明目的的技术解决方案为:一种基于数字微流控的荧光液滴分选系统,包括数字微流控芯片、综合电路和荧光激发与采集模块;所述数字微流控芯片与综合电路连接,荧光激发与采集模块分别与数字微流控芯片和综合电路连接。
所述数字微流控芯片为双极板结构,包括一个下极板、一个上极板和连接层,下极板和上极板平行设置,且上极板位于下极板上方,两者之间形成间隙,连接层位于所述间隙中。
所述下极板从下到上依次包括下极板基底、 电极层、介电层和下极板疏水层, 电极层设置在下极板基底和介电层之间,下极板疏水层设置在介电层的上表面;所述上极板从下到上依次包括上极板疏水层、接地层和上极板基底。
所述电极层包括蓄液配发单元、检测分选节点电极、两个液滴收集电极和三组通道电极阵列,以检测分选节点电极为中心,三组通道电极阵列一端分别与检测分选节点电极连接,另一端与蓄液配发单元和两个液滴收集电极分别连接。
所述蓄液配发单元包括依次设置的蓄液电极、第一传输电极和第二传输电极,第二传输电极与通道电极阵列连接,第二传输电极的面积不大于第一传输电极的面积。
所述综合电路包括依次连接的模拟荧光信号调制电路、采样控制电路、电极驱动电路和封装接口;数字微流控芯片通过封装接口固定在综合电路的电路板上,封装接口与数字微流控芯片的电极层连接。
所述模拟荧光信号调制电路包括依次连接的前置放大电路、差分电路和低通滤波电路。
所述采样控制电路包括依次连接的A/D转换模块和控制电路;A/D转换模块与低通滤波电路连接,控制电路与电极驱动电路连接。
液滴到达检测分选节点电极后,经荧光激发与采集模块产生模拟荧光强度信号,模拟荧光强度信号经前置放大电路放大后,进入差分电路去除偏置,再进入低通滤波电路滤波去除噪声,之后经A/D转换模块变为数字信号,进入控制电路与所设定的强度阈值进行比较,根据比较结果控制电路会输出对应的控制指令,控制指令控制电极驱动电路输出相应变化规律的电压,并通过封装接口传输到数字微流控芯片上,从而实现对液滴的分选操控。
所述封装接口包括pogo pin连接器、电路板接插件和电路板;pogo pin连接器和电路板接插件均焊接在电路板上,pogo pin连接器与数字微流控芯片的电极层连接;电路板接插件与综合电路连接。
所述荧光激发与采集模块包括物镜、二向色镜、分光镜、扩束镜、激光器、光电倍增管、CCD、计算机和两个滤光片。
物镜对准检测分选节点电极,共光轴依次设置激光器、扩束镜和二向色镜,共光轴依次设置物镜、二向色镜、分光镜、一个滤光片 和CCD,上述部件所在光轴为第一光轴,且物镜位于二向色镜的反射光路上,其中二向色镜和分光镜均与第一光轴存在夹角,另一个滤光片和光电倍增管依次设置在分光镜的反射光路上,CCD与计算机连接,光电倍增管与综合电路的模拟荧光信号调制电路连接。
激光器产生的激光经扩束镜扩束后射入二向色镜,经二向色镜反射后通过物镜聚焦到准检测分选节点电极上,当包含荧光微粒的液滴经过时,液滴里的荧光微粒在激光的激发下产生荧光,荧光又依次通过物镜、二向色镜后进入分光镜,经分光镜分为反射荧光和透射荧光,反射荧光经滤光片后进入光电倍增管被检测,产生模拟荧光强度信号送入模拟荧光信号调制电路,透射荧光经滤光片后进入CCD被拍摄并显示在计算机上。
一种基于数字微流控的荧光液滴分选系统的分选方法,分选步骤如下:
步骤1、将带有荧光颗粒与非荧光颗粒的液体置于数字微流控芯片的蓄液配发单元内,转入步骤2。
步骤2、综合电路的控制电路控制电极驱动电路进行通断电,从而从蓄液配发单元产生一颗液滴,并通过与其连接的通道电极阵列将液滴搬运至检测分选节点电极,转入步骤3。
步骤3、激光器产生的激光经扩束镜扩束后射入二向色镜,经二向色镜反射后通过物镜聚焦到准检测分选节点电极上,当包含荧光微粒的液滴经过时,液滴里的荧光微粒在激光的激发下产生荧光,荧光又依次通过物镜、二向色镜后进入分光镜,经分光镜分为反射荧光和透射荧光,反射荧光经滤光片后进入光电倍增管被检测,产生模拟荧光强度信号送入模拟荧光信号调制电路,透射荧光经滤光片后进入CCD被拍摄并显示在计算机上,转入步骤4。
步骤4、产生模拟荧光强度信号送入模拟荧光信号调制电路后,经A/D转换模块变为数字信号,进入控制电路与所设定的强度阈值进行比较,根据比较结果控制电路会输出对应的控制指令,控制指令控制电极驱动电路输出相应变化规律的电压,并通过封装接口传输到数字微流控芯片上,从而实现对液滴的分选操控,转入步骤5。
步骤5、返回步骤2,如此循环,直至蓄液配发单元内的液体被分选完。
本发明与现有技术相比,其显著优点在于:
(1)不借助泵及流道,凭借芯片自身产生离散液滴,将待分选的生物微粒包裹于液滴中,依托对液滴操作实现对生物微粒的操作,实现对单个液滴的分析检测,基本不会存在漏选的现象,是高精度、绝对定量化的检测。
(2)基于开放式或半开放式芯片,液滴沿电极运动,所以避免了微流通道的加工过程及微粒阻塞流道的现象,芯片结构简单。
(3)因为该筛选机制依据电润湿原理及芯片结构本身来驱动液滴,省去了第三方用于筛分的模块,降低了控制难度,便于系统小型化、减少了成本。
附图说明
图1为本发明基于数字微流控的荧光液滴分选系统的整体结构示意图。
图2为本发明基于数字微流控的液滴分选芯片的结构示意图;其中(a)为其剖面结构示意图,(b)为其平面结构示意图。
图3为本发明的综合电路结构框图。
图4为本发明在图2的数字微流控芯片上实现液滴分选的原理图,A待分选大液滴、B生成小液滴、C正在被分选小液滴、D已分选非荧光小液滴、E已分选荧光小液滴、F为已收集非荧光液滴和G为已收集荧光液滴。
具体实施方式
下面结合附图对本发明作进一步详细描述。
结合图1,一种基于数字微流控的荧光液滴分选系统,包括数字微流控芯片1、综合电路2、荧光激发与采集模块3。所述数字微流控芯片1与综合电路2连接,荧光激发与采集模块3分别与数字微流控芯片1和综合电路2连接。
所述数字微流控芯片1为双极板结构,包括一个下极板11、一个上极板12和连接层13,下极板11和上极板12平行设置,且上极板12位于下极板11上方,两者之间形成间隙,连接层13位于所述间隙中。
所述下极板11从下到上依次包括下极板基底111、 电极层112、介电层113和下极板疏水层114, 电极层112设置在下极板基底111和介电层113之间,下极板疏水层114设置在介电层113的上表面;所述上极板从下到上依次包括上极板疏水层121、接地层122和上极板基底123。
所述电极层112包括蓄液配发单元1121、检测分选节点电极1123、两个液滴收集电极1124和三组通道电极阵列1122,以检测分选节点电极1123为中心,三组通道电极阵列1122一端分别与检测分选节点电极1123连接,另一端与蓄液配发单元1121和两个液滴收集电极1124分别连接。
微流控器件的驱动电压施加在电极层112和接地层122之间,依靠其上排布相关电极阵列,液滴可在极板间间隙进行配发、运输和分选等操作。
结合图2(a),所述数字微流控芯片1实施的步骤如下:
下极板11:
1)下极板基底111的选择
下极板基底111可以为任意绝缘透明材料,如玻璃;
2)电极层112的制备
电极层112可以为金属、导电氧化物等,采用蒸镀或溅射形成。电极图形显现可以先淀积金属层,再光刻显影后湿法或干法刻蚀,也可以先光刻显影后,再淀积金属后有机溶液超声玻璃;
3)介电层113的制备
介电层113的材料为各种高介电常数的介质材料。采用化学或物理气相沉积的方式;
4)下极板疏水层114的制作
下极板疏水层114的疏水材料可以为Teflon,采用旋涂或提拉镀膜结合退火工艺制作。
上极板12:
1)上极板基底123的选择
上极板基底123可以为任意绝缘透明材料,如玻璃。
2)接地层122的制备
接地层122的材料为透明导电材料,如ITO。采用溅射或蒸镀工艺。
3)上极板疏水层121的制备
上极板疏水层121的疏水材料可以为Teflon,采用旋涂或提拉镀膜结合退火工艺制作。
连接层13只要求材料具有一定厚度且可保证与两个极板的粘接性,可以为双面胶带。在下极板11和上极板12制作完成后,先将其黏在下极板11适当位置,在滴加待分选溶液后,再将上极板11粘附在连接层13上。
结合图2(b), 所述电极层112包括依次设置的蓄液电极1121-1、第一传输电极1121-2和第二传输电极1121-3,第二传输电极1121-3与通道电极阵列1122连接,第二传输电极1121-3的面积不大于第一传输电极1121-2的面积,第一传输电极1121-2和第二传输电极1121-3形状不局限于图中所示,可为矩形、方形、月牙形等。蓄液电极1121-1形状不局限于图中所示,但要保证具有与第一传输电极1121-2嵌套的“凹”口。
其中通道电极阵列1122由一系列小电极构成,小电极的形状可为方形或任意形状,根据运输方向与距离的不同,小电极的数量及排布方式可调。
其中检测分选节点电极1123位于通道电极阵列1122的交叉位置,其中部被抠除,该抠除区域要保证透光性,且该抠除区域可为任意形状(如圆形、方形)。
其中液滴收集电极1124为尺寸较大电极,其形状不限,可以为方形、圆形。
结合图1和图3,本发明所述综合电路2为包含多种功能模块的PCB电路板,本实施例中,为方便荧光穿过,其形状为“凹”字形,但其可以为任意形状,综合电路2包括模拟荧光信号调制电路21、采样控制电路22、电极驱动电路23和封装接口24。数字微流控芯片1通过封装接口24固定在综合电路2的电路板上,封装接口24与数字微流控芯片1的电极层112连接。
其中,模拟荧光信号调制电路21包括依次连接的前置放大电路211、差分电路212、低通滤波电路213。根据输入信号的大小范围,差分电路212模块也可以去除。所述采样控制电路22包括A/D转换模块221和控制电路222;A/D转换模块221与低通滤波电路213连接,控制电路222与电极驱动电路23连接。根据控制电路222的功能不同,A/D转换模块221也可以集成到控制电路222中,作为其功能的一部分。
液滴14到达检测分选节点电极1123后,经荧光激发与采集模块3产生模拟荧光强度信号,模拟荧光强度信号经前置放大电路211放大后,进入差分电路212去除偏置,再进入低通滤波电路213滤波去除噪声,之后经A/D转换模块221变为数字信号,进入控制电路222与所设定的强度阈值进行比较,根据比较结果控制电路222会输出对应的控制指令,控制指令控制电极驱动电路23输出相应变化规律的电压,并通过封装接口24传输到数字微流控芯片1上,从而实现对液滴14的分选操控。
电极驱动电路23核心器件为多个光继电器,其实现方式可参考(TOSHIBA公司,TLP240J数据手册)给出的转换时间测试电路。
封装接口24包括pogo pin连接器241、电路板接插件242和电路板。其中,pogo pin连接器241和电路板接插件242均焊接在电路板上;pogo pin连接器241与数字微流控芯片1的电极层112连接;电路板接插件242与综合电路2连接。
结合图1,荧光激发与采集模块3包括物镜31、二向色镜32、分光镜33、扩束镜34、激光器35、滤光片36、光电倍增管37、CCD38和计算机39。
物镜31对准检测分选节点电极1123,共光轴依次设置激光器35、扩束镜34和二向色镜32,共光轴依次设置物镜31、二向色镜32、分光镜33、一个滤光片36 和CCD38,上述部件所在光轴为第一光轴,且物镜31位于二向色镜32的反射光路上,其中二向色镜32和分光镜33均与第一光轴存在夹角,另一个滤光片36和光电倍增管37依次设置在分光镜33的反射光路上,CCD38与计算机39连接,光电倍增管37与综合电路2的模拟荧光信号调制电路21连接。
激光器35产生的激光经扩束镜34扩束后射入二向色镜32,经二向色镜32反射后通过物镜31聚焦到准检测分选节点电极1123上,当包含荧光微粒的液滴经过时,液滴里的荧光微粒在激光的激发下产生荧光,荧光又依次通过物镜31、二向色镜32后进入分光镜33,经分光镜33分为反射荧光和透射荧光,反射荧光经滤光片36后进入光电倍增管37被检测,产生模拟荧光强度信号送入模拟荧光信号调制电路21,透射荧光经滤光片36后进入CCD38被拍摄并显示在计算机39上。
其中,根据具体需要,可以添加或去除CCD 38图像采集部分;根据微粒荧光物质特性,激光器35可选多种波段激光器;且本模块所述各部件均为可购得商品。
一种基于数字微流控的荧光液滴分选系统的分选方法,分选步骤如下:
步骤1、将带有荧光颗粒与非荧光颗粒的液体置于数字微流控芯片1的蓄液配发单元1121内。
步骤2、综合电路2的控制电路222控制电极驱动电路23进行通断电,从而从蓄液配发单元1121产生包含一种微粒的液滴,并通过与其连接的通道电极阵列1122将液滴搬运至检测分选节点电极1123。
步骤3、激光器35产生的激光经扩束镜34扩束后射入二向色镜32,经二向色镜32反射后通过物镜31聚焦到准检测分选节点电极1123上,当包含荧光微粒的液滴经过时,液滴里的荧光微粒在激光的激发下产生荧光,荧光又依次通过物镜31、二向色镜32后进入分光镜33,经分光镜33分为反射荧光和透射荧光,反射荧光经滤光片36后进入光电倍增管37被检测,产生模拟荧光强度信号送入模拟荧光信号调制电路21,透射荧光经滤光片36后进入CCD38被拍摄并显示在计算机39上。
步骤4、产生模拟荧光强度信号送入模拟荧光信号调制电路21后,经A/D转换模块221变为数字信号,进入控制电路222与所设定的强度阈值进行比较,根据比较结果控制电路222会输出对应的控制指令,控制指令控制电极驱动电路23输出相应变化规律的电压,并通过封装接口24传输到数字微流控芯片1上,从而实现对液滴14的分选操控。
步骤5、返回步骤2,如此循环,直至蓄液配发单元1121内的液体被分选完。
本发明所述基于数字微流控的液滴分选系统,在本实施例中,其工作过程为:
分选前将待分选的含有混合微粒的大液滴A置于数字微流控芯片1的蓄液配发单元1121,通过控制电路222控制电极驱动电路23,实现数字微流控芯片1上各电极的通断电配合。如图4,首先,对蓄液配发单元1121的三个电极进行通电,可实现大液滴沿第一传输电极1121-2和第二传输电极1121-3形成“液体手指”,然后第一传输电极1121-2断电,“液体手指”从第一传输电极1121-2处断开,在第二传输电极1121-3处产生包含单个生物微粒的小液滴,并通过控制与蓄液配发单元1121连接的通道电极阵列1122的电极依次通断电,将液滴搬运至检测分选节点电极1123,如液滴B为刚生成的正在被运输的液滴。
液滴C到达检测分选节点电极1123后,含有荧光物质的微粒会被激发产生荧光信号,荧光信号经过光路一部分会被CCD38采集,并在计算机39上形成相应照片以供参考,荧光信号的另一部分经过光路会被光电倍增管37采集并转化为模拟荧光强度信号。
模拟荧光强度电信号在经过前置放大电路211、差分电路212和低通滤波电路213后,会经A/D转换模块221转换为数字信号,并被送入控制电路222。
控制电路222会将数字荧光强度信号与设定阈值进行对比,判断荧光强度是否达到预设,从而判断出该液滴是否为包含荧光微粒的液滴。
根据判断结果,控制电路222会操控相应电极驱动电路23,实现数字微流控芯片1上的相关通道电极阵列1122通断电,使不同类型液滴被运输至不同区域(如已分选非荧光液滴D和已分选荧光液滴E),实现分选。这里液滴C为非荧光液滴,会被运往已收集非荧光液滴F处。而荧光液滴,会被运往已收集荧光液滴G处。

Claims (7)

1.一种基于数字微流控的荧光液滴分选系统,其特征在于:
包括数字微流控芯片(1)、综合电路(2)和荧光激发与采集模块(3);所述数字微流控芯片(1)与综合电路(2)连接,荧光激发与采集模块(3)分别与数字微流控芯片(1)和综合电路(2)连接;
所述数字微流控芯片(1)为双极板结构,包括一个下极板(11)、一个上极板(12)和连接层(13),下极板(11)和上极板(12)平行设置,且上极板(12)位于下极板(11)上方,两者之间形成间隙,连接层(13)位于所述间隙中;
所述下极板(11)从下到上依次包括下极板基底(111)、 电极层(112)、介电层(113)和下极板疏水层(114), 电极层(112)设置在下极板基底(111)和介电层(113)之间,下极板疏水层(114)设置在介电层(113)的上表面;所述上极板从下到上依次包括上极板疏水层(121)、接地层(122)和上极板基底(123);
所述电极层(112)包括蓄液配发单元(1121)、检测分选节点电极(1123)、两个液滴收集电极(1124)和三组通道电极阵列(1122),以检测分选节点电极(1123)为中心,三组通道电极阵列(1122)一端分别与检测分选节点电极(1123)连接,另一端与蓄液配发单元(1121)和两个液滴收集电极(1124)分别连接。
2.根据权利要求1所述的基于数字微流控的荧光液滴分选系统,其特征在于:所述蓄液配发单元(1121)包括依次设置的蓄液电极(1121-1)、第一传输电极(1121-2)和第二传输电极(1121-3),第二传输电极(1121-3)与通道电极阵列(1122)连接,第二传输电极(1121-3)的面积不大于第一传输电极(1121-2)的面积。
3.根据权利要求1所述的基于数字微流控的荧光液滴分选系统,其特征在于:
所述综合电路(2)包括依次连接的模拟荧光信号调制电路(21)、采样控制电路(22)、电极驱动电路(23)和封装接口(24);数字微流控芯片(1)通过封装接口(24)固定在综合电路(2)的电路板上,封装接口(24)与数字微流控芯片(1)的电极层(112)连接;
所述模拟荧光信号调制电路(21)包括依次连接的前置放大电路(211)、差分电路(212)和低通滤波电路(213);
所述采样控制电路(22)包括依次连接的A/D转换模块(221)和控制电路(222);A/D转换模块(221)与低通滤波电路(213)连接,控制电路(222)与电极驱动电路(23)连接;
液滴到达检测分选节点电极(1123)后,经荧光激发与采集模块(3)产生模拟荧光强度信号,模拟荧光强度信号经前置放大电路(211)放大后,进入差分电路(212)去除偏置,再进入低通滤波电路(213)滤波去除噪声,之后经A/D转换模块(221)变为数字信号,进入控制电路(222)与所设定的强度阈值进行比较,根据比较结果控制电路(222)会输出对应的控制指令,控制指令控制电极驱动电路(23)输出相应变化规律的电压,并通过封装接口(24)传输到数字微流控芯片(1)上,从而实现对液滴(14)的分选操控。
4.根据权利要求3所述的基于数字微流控的荧光液滴分选系统,其特征在于:所述封装接口(24)包括pogo pin连接器(241)、电路板接插件(242)和电路板;pogo pin连接器(241)和电路板接插件(242)均焊接在电路板上,pogo pin连接器(241)与数字微流控芯片(1)的电极层(112)连接;电路板接插件(242)与综合电路(2)连接。
5.根据权利要求3所述的基于数字微流控的荧光液滴分选系统,其特征在于:所述荧光激发与采集模块(3)包括物镜(31)、二向色镜(32)、分光镜(33)、扩束镜(34)、激光器(35)、光电倍增管(37)、CCD(38)、计算机(39)和两个滤光片(36);
物镜(31)对准检测分选节点电极(1123),共光轴依次设置激光器(35)、扩束镜(34)和二向色镜(32),共光轴依次设置物镜(31)、二向色镜(32)、分光镜(33)、一个滤光片(36) 和CCD(38),物镜(31)、二向色镜(32)、分光镜(33)、一个滤光片(36) 和CCD(38)所在的光轴为第一光轴,且物镜(31)位于二向色镜(32)的反射光路上,其中二向色镜(32)和分光镜(33)均与第一光轴存在夹角,另一个滤光片(36)和光电倍增管(37)依次设置在分光镜(33)的反射光路上,CCD(38)与计算机(39)连接,光电倍增管(37)与综合电路(2)的模拟荧光信号调制电路(21)连接;
激光器(35)产生的激光经扩束镜(34)扩束后射入二向色镜(32),经二向色镜(32)反射后通过物镜(31)聚焦到准检测分选节点电极(1123)上,当包含荧光微粒的液滴经过时,液滴里的荧光微粒在激光的激发下产生荧光,荧光又依次通过物镜(31)、二向色镜(32)后进入分光镜(33),经分光镜(33)分为反射荧光和透射荧光,反射荧光经滤光片(36)后进入光电倍增管(37)被检测,产生模拟荧光强度信号送入模拟荧光信号调制电路(21),透射荧光经滤光片(36)后进入CCD(38)被拍摄并显示在计算机(39)上。
6.根据权利要求1所述的基于数字微流控的荧光液滴分选系统,其特征在于:所述接地层(122)为驱动电压负极连接层,采用透明状导电膜。
7.基于权利要求1所述的基于数字微流控的荧光液滴分选系统的分选方法,其特征在于,分选步骤如下:
步骤1、将带有荧光颗粒与非荧光颗粒的液体置于数字微流控芯片(1)的蓄液配发单元(1121)内,转入步骤2;
步骤2、综合电路(2)的控制电路(222)控制电极驱动电路(23)进行通断电,从而从蓄液配发单元(1121)产生一颗液滴,并通过与其连接的通道电极阵列(1122)将液滴搬运至检测分选节点电极(1123),转入步骤3;
步骤3、激光器(35)产生的激光经扩束镜(34)扩束后射入二向色镜(32),经二向色镜(32)反射后通过物镜(31)聚焦到准检测分选节点电极(1123)上,当包含荧光微粒的液滴经过时,液滴里的荧光微粒在激光的激发下产生荧光,荧光又依次通过物镜(31)、二向色镜(32)后进入分光镜(33),经分光镜(33)分为反射荧光和透射荧光,反射荧光经滤光片(36)后进入光电倍增管(37)被检测,产生模拟荧光强度信号送入模拟荧光信号调制电路(21),透射荧光经滤光片(36)后进入CCD(38)被拍摄并显示在计算机(39)上,转入步骤4;
步骤4、产生模拟荧光强度信号送入模拟荧光信号调制电路(21)后,经A/D转换模块(221)变为数字信号,进入控制电路(222)与所设定的强度阈值进行比较,根据比较结果控制电路(222)会输出对应的控制指令,控制指令控制电极驱动电路(23)输出相应变化规律的电压,并通过封装接口(24)传输到数字微流控芯片(1)上,从而实现对液滴的分选操控,转入步骤5;
步骤5、返回步骤2,如此循环,直至蓄液配发单元(1121)内的液体被分选完。
CN201610662779.2A 2016-08-12 2016-08-12 一种基于数字微流控的荧光液滴分选系统及其分选方法 Active CN106092865B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610662779.2A CN106092865B (zh) 2016-08-12 2016-08-12 一种基于数字微流控的荧光液滴分选系统及其分选方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610662779.2A CN106092865B (zh) 2016-08-12 2016-08-12 一种基于数字微流控的荧光液滴分选系统及其分选方法

Publications (2)

Publication Number Publication Date
CN106092865A CN106092865A (zh) 2016-11-09
CN106092865B true CN106092865B (zh) 2018-10-02

Family

ID=57457232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610662779.2A Active CN106092865B (zh) 2016-08-12 2016-08-12 一种基于数字微流控的荧光液滴分选系统及其分选方法

Country Status (1)

Country Link
CN (1) CN106092865B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018039281A1 (en) 2016-08-22 2018-03-01 Miroculus Inc. Feedback system for parallel droplet control in a digital microfluidic device
EP3563151A4 (en) 2016-12-28 2020-08-19 Miroculus Inc. DIGITAL MICROFLUIDIC DEVICES AND METHODS
CN108330065A (zh) * 2017-01-20 2018-07-27 上海新微技术研发中心有限公司 一种基于细胞打印喷头阵列的细胞筛选装置和细胞筛选方法
CN106933142A (zh) * 2017-02-24 2017-07-07 华南师范大学 一种基于电润湿的微流控液滴定位系统及方法
US11623219B2 (en) 2017-04-04 2023-04-11 Miroculus Inc. Digital microfluidics apparatuses and methods for manipulating and processing encapsulated droplets
CN108020490A (zh) * 2017-06-23 2018-05-11 中国科学院天津工业生物技术研究所 一种使用液滴微流控芯片的高通量筛选设备
CN110892258A (zh) 2017-07-24 2020-03-17 米罗库鲁斯公司 具有集成的血浆收集设备的数字微流控系统和方法
CN115582155A (zh) * 2017-09-01 2023-01-10 米罗库鲁斯公司 数字微流控设备及其使用方法
CN107937265A (zh) * 2017-11-07 2018-04-20 厦门大学 一种基于数字微流控技术的掌上焦磷酸测序系统
CN107904163B (zh) * 2017-12-12 2019-11-26 厦门大学 一种基于数字微流控技术的全自动单颗粒/单细胞捕获芯片及其应用
CN108333115B (zh) * 2018-03-01 2024-05-07 北京新羿生物科技有限公司 一种微液滴检测装置
CN112469504A (zh) 2018-05-23 2021-03-09 米罗库鲁斯公司 对数字微流控中的蒸发的控制
CN108844936A (zh) * 2018-07-09 2018-11-20 领航基因科技(杭州)有限公司 一种三维液滴检测系统及检测方法
CN110170341B (zh) * 2018-11-23 2020-05-12 复旦大学 利用声表面波技术实现粒子高通量分选的数字微流控器件
CA3133124A1 (en) 2019-04-08 2020-10-15 Miroculus Inc. Multi-cartridge digital microfluidics apparatuses and methods of use
CN110026258B (zh) * 2019-04-26 2023-11-28 珠海市迪奇孚瑞生物科技有限公司 基于数字微流控芯片的检测电路、装置及dna或rna检测装置
WO2021016614A1 (en) 2019-07-25 2021-01-28 Miroculus Inc. Digital microfluidics devices and methods of use thereof
CN111440719B (zh) * 2020-06-11 2020-09-22 江苏奥素液芯生物技术有限公司 一种单细胞培养系统及单细胞培养方法
CN111966740A (zh) * 2020-08-24 2020-11-20 安徽思环科技有限公司 一种基于深度学习的水质荧光数据特征提取方法
CN114113010A (zh) * 2021-10-28 2022-03-01 山东师范大学 一种基于数字微流控的自动化细菌检测系统及方法
US11857961B2 (en) 2022-01-12 2024-01-02 Miroculus Inc. Sequencing by synthesis using mechanical compression
CN115895877B (zh) * 2022-11-30 2024-03-12 重庆大学 一种用于反向灭杀的微流控芯片检测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034041A1 (en) * 2001-10-12 2003-04-24 Imperial College Innovations Limited Particle measurement system using time-frequency transform
CN1987420A (zh) * 2006-12-30 2007-06-27 清华大学 一种对单一颗粒物进行多功能检测的微流控芯片装置
CN102604824A (zh) * 2012-02-29 2012-07-25 北京工业大学 面向空间的微型微流控实时荧光pcr工作系统
EP2522981A1 (en) * 2011-05-09 2012-11-14 Universiteit Twente Compact 2D light detection system for on-chip analysis
CN102879366A (zh) * 2012-09-21 2013-01-16 常州大学 检测量子点与生物分子相互作用的液滴微流控系统及方法
CN203220910U (zh) * 2013-03-01 2013-10-02 东南大学 生物微粒高通量分选和计数检测的集成芯片
CN206281759U (zh) * 2016-08-12 2017-06-27 南京理工大学 一种基于数字微流控的荧光液滴分选系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061595B2 (en) * 2000-08-02 2006-06-13 Honeywell International Inc. Miniaturized flow controller with closed loop regulation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034041A1 (en) * 2001-10-12 2003-04-24 Imperial College Innovations Limited Particle measurement system using time-frequency transform
CN1987420A (zh) * 2006-12-30 2007-06-27 清华大学 一种对单一颗粒物进行多功能检测的微流控芯片装置
EP2522981A1 (en) * 2011-05-09 2012-11-14 Universiteit Twente Compact 2D light detection system for on-chip analysis
CN102604824A (zh) * 2012-02-29 2012-07-25 北京工业大学 面向空间的微型微流控实时荧光pcr工作系统
CN102879366A (zh) * 2012-09-21 2013-01-16 常州大学 检测量子点与生物分子相互作用的液滴微流控系统及方法
CN203220910U (zh) * 2013-03-01 2013-10-02 东南大学 生物微粒高通量分选和计数检测的集成芯片
CN206281759U (zh) * 2016-08-12 2017-06-27 南京理工大学 一种基于数字微流控的荧光液滴分选系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Electrowetting-based actuation of liquid droplets for microfluidic applications;Michael G. Pollack等;《Applied Physics Letters》;20000911;第77卷(第11期);第1725-1726页 *
EWOD-based Digital Microfluidic Chip and Its Application;Yin Xia Chang等;《Applied Mechanics and Materials》;20120229;第1071-1074页 *
基于液滴微流控芯片的单细胞分离;洪龙烨等;《湖北大学学报(自然科学版)》;20120930;第34卷(第3期);第282-285页 *

Also Published As

Publication number Publication date
CN106092865A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN106092865B (zh) 一种基于数字微流控的荧光液滴分选系统及其分选方法
CN206281759U (zh) 一种基于数字微流控的荧光液滴分选系统
US11371984B2 (en) Apparatus and method for analyzing and sorting cell particles in solution
CN101726585A (zh) 一种基于微流控芯片的流式细胞仪
CN111526943B (zh) 微流体路由
CN103191791B (zh) 生物微粒高通量分选和计数检测的集成芯片系统及应用
CN201548547U (zh) 一种基于微流控芯片的流式细胞分析装置
JP2832117B2 (ja) サンプル測定デバイス及びサンプル測定システム
CN112175824B (zh) 一种基于数字微流控技术的全自动单细胞捕获芯片及其应用
US20080070311A1 (en) Microfluidic flow cytometer and applications of same
WO2013083815A1 (en) Analysis and sorting of objects in flow
CN105300943B (zh) 一种用于液滴荧光检测的显微镜集成光路系统
CN109540771A (zh) 一种精准分选白细胞亚型的声光微流控芯片及其分选方法
CN109735429A (zh) 微流控芯片及分离多种细胞的系统及其分离方法
CN105319197A (zh) 基于微透镜阵列的液滴微流控芯片
CN109456874A (zh) 一种细胞双向介电泳单细胞操控微流控芯片
WO2018173611A1 (ja) 液体取扱装置、液体取扱方法および液体取扱システム
CN112646701B (zh) 一步式单细胞分离分配系统
US11701658B2 (en) Systems and methods for microfluidic particle selection, encapsulation, and injection using surface acoustic waves
CN112574851B (zh) 一种单细胞筛选器、筛选组件、筛选方法及应用
Kang et al. On-chip fluorescence-activated particle counting and sorting system
JP2020519305A (ja) 標的細胞の検出と単離のためのMicroFACS
CN110967513B (zh) 样本初筛芯片、样品检测方法及筛选芯片装置
CN114113010A (zh) 一种基于数字微流控的自动化细菌检测系统及方法
CN112051252A (zh) 一种样品池及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant