CN110874112A - 恒流电路 - Google Patents

恒流电路 Download PDF

Info

Publication number
CN110874112A
CN110874112A CN201910794631.8A CN201910794631A CN110874112A CN 110874112 A CN110874112 A CN 110874112A CN 201910794631 A CN201910794631 A CN 201910794631A CN 110874112 A CN110874112 A CN 110874112A
Authority
CN
China
Prior art keywords
nmos transistor
depletion type
voltage
constant current
current circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910794631.8A
Other languages
English (en)
Other versions
CN110874112B (zh
Inventor
松田贵志
前谷文彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Ablic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablic Inc filed Critical Ablic Inc
Publication of CN110874112A publication Critical patent/CN110874112A/zh
Application granted granted Critical
Publication of CN110874112B publication Critical patent/CN110874112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Electrical Variables (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

提供恒流电路,该恒流电路是制造成本较低且在高电压电路中具有良好的电流特性的恒流电路。构成为具备串联连接在第一端子与第二端子之间的高耐压的耗尽型NMOS晶体管和低耐压的耗尽型NMOS晶体管,低耐压的耗尽型NMOS晶体管具备串联连接的第一耗尽型NMOS晶体管和第二耗尽型NMOS晶体管,高耐压的耗尽型NMOS晶体管的栅极连接于第一耗尽型NMOS晶体管与第二耗尽型NMOS晶体管的连接点。

Description

恒流电路
技术领域
本发明涉及恒流电路。
背景技术
要求恒流电路在高电压电路中也具有良好的电流特性。
图3所示的现有的恒流电路300由低耐压的耗尽型NMOS晶体管30和高耐压的耗尽型NMOS晶体管31构成。
NMOS晶体管30的源极和栅极与端子N2连接,漏极与NMOS晶体管31的源极连接。NMOS晶体管31的栅极与端子N2连接,漏极与端子N1连接。
恒流电路300的NMOS晶体管30的漏极-源极间电压被限制在NMOS晶体管31的阈值电压的绝对值以下,因此,能够降低因NMOS晶体管30的沟道长度调制效应引起的电流的变动,能够得到稳定的恒定电流(例如,参照专利文献1)。
现有技术文献
专利文献
专利文献1:日本特开2005-222301号公报
然而,现有的恒流电路300为了作为恒流电路进行动作,需要高耐压的NMOS晶体管31的阈值电压的绝对值大于低耐压的NMOS晶体管30的阈值电压的绝对值。即,由于高耐压的NMOS晶体管31的阈值电压受到限制,因此,在是与同样的高耐压的NMOS晶体管不同的阈值电压的情况下,需要用于设置阈值电压不同的高耐压的NMOS晶体管的工艺。因此,现有的恒流电路300存在制造成本变高的课题。
发明内容
本发明是为了解决上述课题而完成的,其目的在于提供一种制造成本较低且在高电压电路中具有良好的电流特性的恒流电路。
本发明的恒流电路具备:
高耐压的耗尽型NMOS晶体管,其漏极与第一端子连接;和
低耐压的耗尽型NMOS晶体管,其漏极与所述高耐压的耗尽型NMOS晶体管的源极连接,源极与第二端子连接,该恒流电路的特征在于,
所述低耐压的耗尽型NMOS晶体管具有串联连接的第一耗尽型NMOS晶体管和第二耗尽型NMOS晶体管,
所述高耐压的耗尽型NMOS晶体管的栅极连接于所述第一耗尽型NMOS晶体管与所述第二耗尽型NMOS晶体管的连接点。
发明效果
本发明的恒流电路通过将高耐压的耗尽型NMOS晶体管的栅极连接于低耐压的第一耗尽型NMOS晶体管与低耐压的第二耗尽型NMOS晶体管的连接点,能够提高高耐压的耗尽型NMOS晶体管的栅极电压。因此,能够大幅度地降低用于使低耐压的耗尽型NMOS晶体管进行饱和动作的高耐压的耗尽型NMOS晶体管的阈值电压的限定条件,从而能够降低制造成本。
附图说明
图1是示出本发明的实施方式的恒流电路的电路图。
图2是示出本实施方式的恒流电路的另一例的电路图。
图3是示出现有的恒流电路的电路图。
标号说明
10、11:低耐压的耗尽型NMOS晶体管;
12:高耐压的耗尽型NMOS晶体管。
具体实施方式
以下,参照附图对本发明的实施方式进行说明。
图1是示出作为本发明的实施方式的恒流电路的一例的恒流电路100的电路图。恒流电路100具备低耐压的耗尽型NMOS晶体管10、11和高耐压的耗尽型NMOS晶体管12。
NMOS晶体管10的源极和栅极与端子N2连接,漏极与NMOS晶体管11的源极连接。NMOS晶体管11的栅极与端子N2连接,漏极与NMOS晶体管12的源极连接。NMOS晶体管12的栅极连接于NMOS晶体管10的漏极以及NMOS晶体管11的源极、即NMOS晶体管10与NMOS晶体管11的连接点,漏极与端子N1连接。这样,在恒流电路100中,低耐压的耗尽型NMOS晶体管具有NMOS晶体管10、11,通过串联连接NMOS晶体管10、11而构成。
在恒流电路100中,为了使NMOS晶体管11进行饱和动作,需要满足式(1)。
VD11-VN2>VG11-VN2-VTH10_11…(1)
这里,VD11是NMOS晶体管11的漏极电压,VN2是端子N2的电压,VG11是NMOS晶体管11的栅极电压,VTH10_11是将NMOS晶体管10和NMOS晶体管11作为一个NMOS晶体管时的阈值电压。
此外,NMOS晶体管11的漏极电压VD11由式(2)表示。
VD11-VN2=VG12-VN2-VTH12…(2)
这里,VG12是NMOS晶体管12的栅极电压,VTH12是NMOS晶体管12的阈值电压。
由于NMOS晶体管11的栅极与端子N2连接,因此,根据式(1)和式(2)得到式(3)。
VG12-VN2>VTH12-VTH10_11…(3)
由于恒流电路100构成为从NMOS晶体管10的漏极取得NMOS晶体管12的栅极电压VG12,因此,即使例如阈值电压VTH12高于阈值电压VTH10_11,也能够满足式(3)。因此,由于满足式(1),因此能够使NMOS晶体管11进行饱和动作。
如以上进行了说明的,恒流电路100构成为,将低耐压的NMOS晶体管分割为NMOS晶体管10和NMOS晶体管11,从其连接点取得高耐压的NMOS晶体管12的栅极电压。包含上述结构的恒流电路100通过调整NMOS晶体管10的漏极电压,能够调整NMOS晶体管12的栅极电压VG12,因此,无需用于设置阈值电压不同的高耐压的NMOS晶体管的工艺,就能够调整为满足用于使NMOS晶体管11进行饱和动作的NMOS晶体管12的阈值电压的限定条件。因此,在恒流电路100中,大幅度地缓和了用于NMOS晶体管11进行饱和动作的NMOS晶体管12的阈值电压的限定条件。此外,在恒流电路100中,由于无需用于设置阈值电压不同的高耐压的NMOS晶体管的工艺,因此能够降低恒流电路100的制造成本。
另外,在由于阈值电压VTH12和阈值电压VTH10_11的关系而难以进行NMOS晶体管11的饱和动作的情况下,也可以通过增加低耐压的NMOS晶体管的分割数而从更高的电压取得NMOS晶体管12的栅极电压。此外,关于低耐压的NMOS晶体管的L长度,也可以相对于NMOS晶体管11增大NMOS晶体管10之比。
图2是示出作为本实施方式的恒流电路的另一例的恒流电路200的电路图。恒流电路200相对于恒流电路100,在将低耐压的NMOS晶体管的栅极与端子N3连接这方面有所不同,但是其它方面实质上相同。即,恒流电路200向低耐压的NMOS晶体管的栅极施加与源极不同的电压。
本实施方式的恒流电路200根据式(1)和式(2)得到式(4)。
VG12>VG11+VTH12-VTH10_11…(4)
该情况下,与恒流电路100相比,只有电压VG11的条件变得严格,但是,通过从更高的电压取得NMOS晶体管12的栅极电压,能够进行应对。即,能够在不变更高耐压的NMOS晶体管的阈值电压的情况下,使低耐压的NMOS晶体管进行饱和动作。
以上,对本发明的实施方式进行了说明,但是,本发明不限于上述实施方式,能够在不脱离本发明的主旨的范围内进行各种变更。

Claims (3)

1.一种恒流电路,所述恒流电路具备:
高耐压的耗尽型NMOS晶体管,其漏极与第一端子连接;和
低耐压的耗尽型NMOS晶体管,其漏极与所述高耐压的耗尽型NMOS晶体管的源极连接,源极与第二端子连接,
所述恒流电路的特征在于,
所述低耐压的耗尽型NMOS晶体管具有串联连接的第一耗尽型NMOS晶体管和第二耗尽型NMOS晶体管,
所述高耐压的耗尽型NMOS晶体管的栅极连接于所述第一耗尽型NMOS晶体管与所述第二耗尽型NMOS晶体管的连接点。
2.根据权利要求1所述的恒流电路,其特征在于,
所述第一耗尽型NMOS晶体管及所述第二耗尽型NMOS晶体管的栅极连接于所述第二端子。
3.根据权利要求1所述的恒流电路,其特征在于,
所述第一耗尽型NMOS晶体管及所述第二耗尽型NMOS晶体管的栅极连接于第三端子。
CN201910794631.8A 2018-08-31 2019-08-27 恒流电路 Active CN110874112B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-162908 2018-08-31
JP2018162908A JP2020035307A (ja) 2018-08-31 2018-08-31 定電流回路

Publications (2)

Publication Number Publication Date
CN110874112A true CN110874112A (zh) 2020-03-10
CN110874112B CN110874112B (zh) 2022-06-14

Family

ID=69639845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910794631.8A Active CN110874112B (zh) 2018-08-31 2019-08-27 恒流电路

Country Status (5)

Country Link
US (1) US10663996B2 (zh)
JP (1) JP2020035307A (zh)
KR (1) KR20200026117A (zh)
CN (1) CN110874112B (zh)
TW (1) TWI828738B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760284A (en) * 1987-01-12 1988-07-26 Triquint Semiconductor, Inc. Pinchoff voltage generator
US5422563A (en) * 1993-07-22 1995-06-06 Massachusetts Institute Of Technology Bootstrapped current and voltage reference circuits utilizing an N-type negative resistance device
CN1614779A (zh) * 2003-11-05 2005-05-11 三洋电机株式会社 静电破坏保护装置
US20050174165A1 (en) * 2004-02-05 2005-08-11 Nec Electronics Corporation Constant current source apparatus including two series depletion-type MOS transistors
CN101257284A (zh) * 2002-01-17 2008-09-03 株式会社半导体能源研究所 半导体器件
CN101615049A (zh) * 2008-06-24 2009-12-30 联发科技股份有限公司 参考缓冲电路
CN101667050A (zh) * 2009-08-14 2010-03-10 西安龙腾微电子科技发展有限公司 高精度电压基准电路
CN101807790A (zh) * 2009-02-13 2010-08-18 精工电子有限公司 电池保护电路装置
US20100207686A1 (en) * 2009-02-17 2010-08-19 United Microelectronics Corp. Voltage generating apparatus
CN101963819A (zh) * 2009-07-24 2011-02-02 精工电子有限公司 基准电压电路和电子设备
CN103777673A (zh) * 2012-10-22 2014-05-07 拉碧斯半导体株式会社 基准电压生成电路
CN104571244A (zh) * 2013-10-25 2015-04-29 精工电子有限公司 基准电压产生装置
CN104808731A (zh) * 2014-01-27 2015-07-29 精工电子有限公司 基准电压电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488533U (zh) * 1977-12-06 1979-06-22
JPS62208704A (ja) * 1986-03-08 1987-09-14 Fujitsu Ltd 定電流回路
JP5706653B2 (ja) * 2010-09-14 2015-04-22 セイコーインスツル株式会社 定電流回路
JP6442322B2 (ja) * 2015-02-26 2018-12-19 エイブリック株式会社 基準電圧回路および電子機器
JP7000187B2 (ja) * 2018-02-08 2022-01-19 エイブリック株式会社 基準電圧回路及び半導体装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760284A (en) * 1987-01-12 1988-07-26 Triquint Semiconductor, Inc. Pinchoff voltage generator
US5422563A (en) * 1993-07-22 1995-06-06 Massachusetts Institute Of Technology Bootstrapped current and voltage reference circuits utilizing an N-type negative resistance device
CN101257284A (zh) * 2002-01-17 2008-09-03 株式会社半导体能源研究所 半导体器件
CN1614779A (zh) * 2003-11-05 2005-05-11 三洋电机株式会社 静电破坏保护装置
US20050174165A1 (en) * 2004-02-05 2005-08-11 Nec Electronics Corporation Constant current source apparatus including two series depletion-type MOS transistors
JP2005222301A (ja) * 2004-02-05 2005-08-18 Nec Electronics Corp 定電流回路
CN101615049A (zh) * 2008-06-24 2009-12-30 联发科技股份有限公司 参考缓冲电路
CN101807790A (zh) * 2009-02-13 2010-08-18 精工电子有限公司 电池保护电路装置
US20100207686A1 (en) * 2009-02-17 2010-08-19 United Microelectronics Corp. Voltage generating apparatus
CN101963819A (zh) * 2009-07-24 2011-02-02 精工电子有限公司 基准电压电路和电子设备
CN101667050A (zh) * 2009-08-14 2010-03-10 西安龙腾微电子科技发展有限公司 高精度电压基准电路
CN103777673A (zh) * 2012-10-22 2014-05-07 拉碧斯半导体株式会社 基准电压生成电路
CN104571244A (zh) * 2013-10-25 2015-04-29 精工电子有限公司 基准电压产生装置
CN104808731A (zh) * 2014-01-27 2015-07-29 精工电子有限公司 基准电压电路

Also Published As

Publication number Publication date
KR20200026117A (ko) 2020-03-10
CN110874112B (zh) 2022-06-14
US20200073422A1 (en) 2020-03-05
JP2020035307A (ja) 2020-03-05
TW202011136A (zh) 2020-03-16
TWI828738B (zh) 2024-01-11
US10663996B2 (en) 2020-05-26

Similar Documents

Publication Publication Date Title
KR101355684B1 (ko) 기준 전압 회로 및 전자 기기
KR101099406B1 (ko) 캐스코드 회로 및 반도체 장치
US8710541B2 (en) Bi-directional switch using series connected N-type MOS devices in parallel with series connected P-type MOS devices
KR20110093661A (ko) 트랜스미션 게이트 및 반도체 장치
US8829964B1 (en) Compensated hysteresis circuit
KR20180004268A (ko) 기준 전압들
KR102208799B1 (ko) 기준 전압 회로
CN105094206A (zh) 偏置电路
US10128848B2 (en) Level shifter
CN110874112B (zh) 恒流电路
US8604870B2 (en) Constant-voltage circuit and semiconductor device thereof
US9543905B2 (en) Amplifier circuit
CN108388300B (zh) 参考电压产生器电路
US20230135542A1 (en) Constant voltage generation circuit
JP2007257104A (ja) シリーズレギュレータ
CN110798156B (zh) 阻抗电路及偏压电路
JP5938357B2 (ja) 半導体スイッチ回路
KR101525796B1 (ko) 아날로그 집적회로용 복합 mosfet
US10250245B2 (en) Input device which outputs a signal having a level corresponding to a state in which a voltage value of an input signal is higher or lower than a threshold value
CN108696270B (zh) 一种模拟开关电路
CN108259012B (zh) 一种宽带电力线的功率放大器
CN113258892A (zh) 差动放大器
US20060267675A1 (en) PMOS current mirror with cascaded PMOS transistors and zero voltage gate threshold transistor
CN114362742A (zh) 一种高速接收电路及其运行方法
US20180278159A1 (en) Semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: Nagano

Patentee after: ABLIC Inc.

Address before: Chiba County, Japan

Patentee before: ABLIC Inc.