CN110862567A - 一种超柔韧高导电导热性柔性基材及其制备方法 - Google Patents

一种超柔韧高导电导热性柔性基材及其制备方法 Download PDF

Info

Publication number
CN110862567A
CN110862567A CN201911059818.XA CN201911059818A CN110862567A CN 110862567 A CN110862567 A CN 110862567A CN 201911059818 A CN201911059818 A CN 201911059818A CN 110862567 A CN110862567 A CN 110862567A
Authority
CN
China
Prior art keywords
conductivity
flexible
super
vapor deposition
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911059818.XA
Other languages
English (en)
Inventor
刘萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN DANBOND TECHNOLOGY CO LTD
Original Assignee
SHENZHEN DANBOND TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN DANBOND TECHNOLOGY CO LTD filed Critical SHENZHEN DANBOND TECHNOLOGY CO LTD
Priority to CN201911059818.XA priority Critical patent/CN110862567A/zh
Publication of CN110862567A publication Critical patent/CN110862567A/zh
Priority to US17/083,309 priority patent/US20210130173A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • H05K3/146By vapour deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/20Aqueous dispersion or solution
    • B05D2401/21Mixture of organic solvent and water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2503/00Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2701/00Coatings being able to withstand changes in the shape of the substrate or to withstand welding
    • B05D2701/10Coatings being able to withstand changes in the shape of the substrate or to withstand welding withstanding draw and redraw process, punching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0209Multistage baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0272After-treatment with ovens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/09Treatments involving charged particles
    • H05K2203/095Plasma, e.g. for treating a substrate to improve adhesion with a conductor or for cleaning holes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种超柔韧高导电导热性柔性基材及其制备方法,该方法包括以下步骤:S1、对聚酰亚胺薄膜碳化黑铅化处理,并对所述聚酰亚胺薄膜掺杂纳米金属,进行离子注入和离子交换;S2、在经步骤S1后得到的材料表面进行等离子照射改性处理,形成异形表面层;S3、通过物理气相沉积(PVD)或化学气相沉积(CVD)在所述异形表面层上形成金属导体层,得到超柔韧高延展性高导电导热性柔性基材。本方法能够得到具有超柔韧、高延展性、高导电性、高导热率、高频性能的C‑C‑FPC、C‑C‑COF或C‑C‑FCCL柔性电路基材。

Description

一种超柔韧高导电导热性柔性基材及其制备方法
技术领域
本发明涉及电子线路板材料领域,特别是涉及一种超柔韧高导电导热性柔性基材及其制备方法。
背景技术
随着5G时代的到来,伴随着手机柔性屏应用,柔性电子技术是未来热门的集成技术。柔性印制电路应用的柔性电子基材FCCL正面临着新的挑战。5G应用的发展颠覆性改变传统通讯器件,促使新型柔性电子材料出现,以满足高温、高压、高频、高速、高密度、低功耗的要求。传统柔性电子材料正在面临变革。
柔性电子材料包括柔性印制电路FPC、COF,基体材料FCCL,广泛来讲,包括电子元器件连接、器件集成基板、半导体封装基板领域。由于其突出的耐热性、耐化学品性、弯曲抗疲劳性,电子物理性优良,尺寸稳定,促使电子工业飞速发展。智能手机机芯与线路连接,芯片封装在柔性基板上,器件与开关连接,处处皆有其用武之地,柔性FCCL承担着所有电子产品、笔记本电脑等挠性电路领域的工作,是在导电连接、机械强度弯曲、器件绝缘上起承前启后作用的关键性材料。
柔性电子材料FCCL是柔性印制电路板(FPC/COF)电路加工基板,有无胶粘剂,FCCL称为二层法柔性覆铜板(2L-FCCL),主要用于高端FPC及COF封装基板(英文为Chip OnFlex/Chip On Film),三层法涂布在聚酰亚胺薄膜上,用粘胶剂与铜箔复合成基板,称为覆合铜板,还有一种溅射法,在聚酰亚胺薄膜上电镀镀铜层,但其存在工艺复杂、成本高、容易短路、环保问题严重等缺点。
发明内容
本发明的主要目的在于克服现有技术的上述缺陷,提供一种超柔韧高导电导热性柔性基材及其制备方法。
为实现上述目的,本发明采用以下技术方案:
一种超柔韧高导电导热性柔性基材的制备方法,包括以下步骤:
S1、对聚酰亚胺薄膜碳化黑铅化处理,并对所述聚酰亚胺薄膜掺杂纳米金属,进行离子注入和离子交换;
S2、在经步骤S1后得到的材料表面进行等离子照射改性处理,形成异形表面层;
S3、通过物理气相沉积(PVD)或化学气相沉积(CVD)在所述异形表面层上形成金属导体层,得到超柔韧高延展性高导电导热性柔性基材。
进一步地:
步骤S1中,掺杂过渡纳米金属,优选自第VIII族钴、镍、钌、镧,优选地,所述纳米为2000纳米和400纳米混合;优选地,形成材料表面上层的纳米金属为钴,表面下层的纳米金属为镍,更优选地,表面下层厚度为500nm。
步骤S1中,在碳化黑铅化处理时混合使用三种保护气体N、Ar、Ne中的两种以上,优选在碳化时混合使用N、Ar各50%,优选在黑铅化时混合使用Ar、Ne各50%;优选地,在50Kpa气压下随保护气体掺入纳米金属。
在步骤S1前,还包括制作所述聚酰亚胺薄膜的如下步骤:
S01、将含有苯基的酐与二胺杂化得到热塑性聚酰亚胺树脂前驱体;
S02、使用所述热塑性聚酰亚胺树脂前驱体制备聚酰亚胺薄膜;
步骤S01中,将2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)体积份30~60份、4,4’-二氨基二苯基醚(4,4’-ODA)体积份30~60份和二氨基二蒽醚体积份7~14份溶解于N,N-二甲基甲酰胺(DMF)中,再添加3,3’,4,4’-二苯甲酮四酸二酐(BTDA)体积份30~60份,然后添加均苯四甲酸二酸二酐(PMDA)体积份20~40份,反应一段时间后再补充加入3,3’,4,4’-二苯甲酮四酸二酐(BTDA)和/或均苯四甲酸二酸二酐(PMDA),得到具有热塑性、耐热性与自由度的聚酰亚胺树脂前驱体;优选地,使3,3’,4,4’-二苯甲酮四酸二酐(BTDA)和均苯四甲酸二酸二酐(PMDA)的总摩尔数大致等于2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)、4,4’-二氨基二苯基醚(4,4’-ODA)和二氨基二蒽醚的总摩尔数。
步骤S02中,使用二氨基二蒽醚与所述热塑性聚酰亚胺树脂前驱体进行凝胶合成,并采用井喷式喷涂法均匀成膜,得到异形体杂化聚酰亚胺薄膜;优选地,在-100℃以上进行凝胶合成,优选地,二氨基二蒽醚经过杂化分子量超过100万以上;优选地,杂化时间为5小时以上,优选6.5小时。
步骤S3中,通过磁控溅射技术进行物理气相沉积(PVD);优选的,导体靶源纯度为99.999%,选自Al、Ni、Cu、Si、Au、Ag、微晶银粉,优选自镍、铜、银铜粉、微晶银粉;优选的,溅射厚度2000nm、1000nm或500nm,更优选500nm。
步骤S3中,通过蒸镀进行物理气相沉积(PVD)或化学气相沉积(CVD)。
所述制备方法还包括以下步骤:
S4、对步骤S3得到的材料进行退火处理,优选通过激光退火技术处理。
步骤S4中,采用不低于3200℃温度进行退火处理,使基膜材料膨胀,脱氧置换,转化晶体相变,达到超晶格高定向要求。
一种超柔韧高导电导热性柔性基材,是使用所述的制备方法得到的超柔韧高导电导热性柔性基材。
本发明具有如下有益效果:
本发明提出一种超柔韧高导电导热性柔性基材及其制备方法,先对聚酰亚胺薄膜碳化黑铅化处理,并对所述聚酰亚胺薄膜掺杂纳米金属,进行离子注入和离子交换;在材料表面进行等离子照射改性处理,形成异形表面层;再通过物理气相沉积(PVD)或化学气相沉积(CVD)在所述异形表面层上形成金属导体层,最终可得到超柔韧、高延展性、高导电导热性、高频性的柔性基材。
本发明优选方案中,采用喷涂法工艺得到100万以上分子量的聚酰亚胺薄膜,该膜拉伸强度高、高膜量密度,制备得到高强度、高密度、高导热性量子碳基膜;在制备量子碳基膜的碳化、黑铅化工艺中,通过离子注入、离子交换,在量子碳基膜载体中注入纳米金属,提高膜量,并通过等离子改性处理在量子碳基膜表面形成异形表面层,再通过PVD(优选磁控溅射技术)或CVD在异形表面层形成嵌入金属导体层,优选再通过激光退火处理,得到具有超柔韧、高延展性、高导电性、高导热率(1500W/mk以上)、高频性能(HF 3-30兆赫Mhz)的C-C-FPC、C-C-COF或C-C-FCCL柔性电路基材。
本发明能够有效满足5G时代对柔性电子基材的高要求,如:更高导电性、高导热、耐更高温度、高电压、高密度、低热膨胀系数等,来满足5G世界高度互联,快速、低功耗的要求。本发明提出方法中在量子碳基膜中沉积嵌入导电金属,制备出了高导电、超柔韧、高导热、高频率的C-C-FPC、C-C-COF、柔性电路基板材料C-C-FCCL,克服了传统二层法FCCL基板材料的缺点。
本发明的优选方案中,在异形表面层进行PVD(如磁控溅射)或CVD蒸镀沉积金属导体层,优选采用PVD,以磁控溅射方式实现,工艺简单,制作出的柔性基材如C-C-FCCL,提高了致密性、高延展性、高导电性、超柔韧、高导热率和高频性。
具体实施方式
以下对本发明的实施方式作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
在一种实施例中,一种超柔韧高导电导热性柔性基材的制备方法,包括以下步骤:
S1、对聚酰亚胺薄膜碳化黑铅化处理,并对所述聚酰亚胺薄膜掺杂纳米金属,进行离子注入和离子交换;碳化黑铅化处理,可使膜中的纳米单斜晶体相变为四方晶体,并由单晶变为超晶格;
S2、在经步骤S1后得到的材料量子碳基膜表面进行等离子照射改性处理,形成异形表面层;
S3、通过物理气相沉积(PVD)或化学气相沉积(CVD)在所述异形表面层上形成金属导体层,得到超柔韧高延展性高导电导热性柔性基材。
在优选的实施例中,步骤S1中掺杂过渡纳米金属优选自第VIII族钴、镍、钌、镧;优选地,所述纳米为2000纳米和400纳米混合;优选地,形成材料表面上层的纳米金属为钴,表面下层的纳米金属为镍,更优选地,表面下层厚度为500nm。通过优选掺杂过渡纳米金属镍、钴,可有效改善异形表面和延展性。
在优选的实施例中,步骤S1中,在碳化黑铅化处理时混合使用三种保护气体N、Ar、Ne中的两种以上,优选在碳化时混合使用N、Ar各50%,优选在黑铅化时混合使用Ar、Ne各50%。该设计对抗氧化很有帮助。
在碳化黑铅化时,混合的保护气有效保护表面不受氧化、气压影响。黑铅化时,也可选高纯度氖气。
在优选的实施例中,在50Kpa气压下随保护气体掺入纳米金属。可以设置在真空系统中经过加速处理。
在优选的实施例中,在步骤S1前,还包括制作所述聚酰亚胺薄膜的如下步骤:
S01、将含有苯基的酐与二胺杂化得到热塑性聚酰亚胺树脂前驱体;
S02、使用所述热塑性聚酰亚胺树脂前驱体制备聚酰亚胺薄膜;
步骤S01中,将2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)体积份30~60份、4,4’-二氨基二苯基醚(4,4’-ODA)体积份30~60份和二氨基二蒽醚体积份7~14份溶解于N,N-二甲基甲酰胺(DMF)中,再添加3,3’,4,4’-二苯甲酮四酸二酐(BTDA)体积份30~60份,然后添加均苯四甲酸二酸二酐(PMDA)体积份20~40份,反应一段时间后再补充加入3,3’,4,4’-二苯甲酮四酸二酐(BTDA)和/或均苯四甲酸二酸二酐(PMDA),得到具有热塑性、耐热性与自由度的聚酰亚胺树脂前驱体;优选地,使3,3’,4,4’-二苯甲酮四酸二酐(BTDA)和均苯四甲酸二酸二酐(PMDA)的总摩尔数大致等于2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)、4,4’-二氨基二苯基醚(4,4’-ODA)和二氨基二蒽醚的总摩尔数。
在优选的实施例中,步骤S02中,使用二氨基二蒽醚与所述热塑性聚酰亚胺树脂前驱体进行凝胶合成,并采用井喷式喷涂法均匀成膜,得到异形体杂化聚酰亚胺薄膜;优选地,在-100℃以上进行凝胶合成,优选地,二氨基二蒽醚经过杂化分子量超过100万以上;优选地,杂化时间为数小时,优选为5小时以上,最优选6.5小时。
在优选的实施例中,步骤S3中,通过磁控溅射技术进行物理气相沉积(PVD);优选的,导体靶源纯度为99.999%,选自Al、Ni、Cu、Si、Au、Ag、微晶银粉,优选自镍、铜、银铜粉、微晶银粉;优选的,溅射厚度2000nm、1000nm或500nm,更优选500nm。
PVD磁控溅射中优选铜和银铜粉,有利于提高制作的C-C-FCCL柔性基材的致密性、高延展性、高导电性、超柔韧、高导热率和高频性。
在另一些实施例中,步骤S3中,还可以通过蒸镀进行物理气相沉积(PVD)或化学气相沉积(CVD)。
在优选的实施例中,所述制备方法还包括以下步骤:
S4、对步骤S3得到的材料进行退火处理,优选通过激光退火技术处理。
在优选的实施例中,步骤S4中,采用不低于3200℃温度进行退火处理,使基膜材料膨胀,脱氧置换,转化晶体相变,达到超晶格高定向要求。
在另一种实施例中,一种超柔韧高导电导热性柔性基材,是使用前述任一实施例的制备方法得到的超柔韧高导电导热性柔性基材。
以下进一步描述具体实施例的制作方法。
制作量子碳基膜的具体方法也可以参考本申请人的在先专利申请CN109776826A中公开的方法。
在优选的实施例中,制作所述聚酰亚胺薄膜首先包括如下步骤:
S01、将含有苯基的酐与二胺杂化得到热塑性聚酰亚胺树脂前驱体;
S02、使用所述热塑性聚酰亚胺树脂前驱体制备聚酰亚胺薄膜;
步骤S01中,将含有苯基的酐与二胺杂化得到热塑性聚酰亚胺树脂前驱体。
优选的,步骤S01包括:
将2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)体积份30~60份、4,4’-二氨基二苯基醚(4,4’-ODA)体积份30~60份和二氨基二蒽醚(也称为异形二元胺,结构式为
Figure BDA0002257616140000061
)体积份7~14份溶解于N,N-二甲基甲酰胺(DMF)中,再添加3,3’,4,4’-二苯甲酮四酸二酐(BTDA)体积份30~60份,然后添加均苯四甲酸二酸二酐(PMDA)体积份20~40份,反应一段时间后再补充加入3,3’,4,4’-二苯甲酮四酸二酐(BTDA)和/或均苯四甲酸二酸二酐(PMDA),得到具有热塑性、耐热性与自由度的聚酰亚胺树脂前驱体。
在更优选的实施例中,步骤S01中,使3,3’,4,4’-二苯甲酮四酸二酐(BTDA)和均苯四甲酸二酸二酐(PMDA)的总摩尔数大致等于2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)、4,4’-二氨基二苯基醚(4,4’-ODA)和二氨基二蒽醚的总摩尔数。
在优选的实施例中,步骤S02中,使用二氨基二蒽醚与所述热塑性聚酰亚胺树脂前驱体进行凝胶合成,并采用井喷式喷涂法均匀成膜,得到异形体杂化聚酰亚胺薄膜。
在更优选的实施例中,步骤S02中,在-100℃以上进行凝胶合成。优选地,二氨基二蒽醚经过杂化分子量超过100万以上。
步骤S02中,使用二氨基二蒽醚与所述热塑性聚酰亚胺树脂前驱体进行凝胶合成,并采用井喷式喷涂法均匀成膜。其中,所述异形二元胺(二氨基二蒽醚)经过杂化分子量超过100万以上,在-100℃以上温度下进行凝胶合成,通过井喷式喷涂法均匀成膜。其中,通过井喷装置挥发溶剂,和水份隔离,制备出高密度聚酰亚胺厚膜。具体方法可以参考本申请人的在先专利申请CN109776826A中公开的方法。得到聚酰亚胺薄膜在100万分子量以上,其是指相对分子质量(Relative molecular mass),是原子质量的1/12,分子质量在数值上等于摩尔质量。
另外,制作所述聚酰亚胺薄膜的方法,还可以是相对于CN109776826A中第【0032】段记载的具体方法,总体上将异性二元胺的体积份扩大30~60份,同时将含有苯基的酐的体积份扩大30~60份,来制得聚酰亚胺薄膜。
接下来,在优选的实施例中,步骤S1在对膜材黑碳化铅化过程中脱氢、脱氮时,在50Kpa气压下,纳米金属随保护气体掺入。对聚酰亚胺薄膜碳化黑铅化并对聚酰亚胺薄膜掺杂纳米金属,进行离子注入和离子交换,其中,使膜中的纳米单斜晶体相变为四方晶体,并由单晶变为超晶格。
对于掺杂纳米金属,具体是在黑铅化过程中脱氢、脱氮时,在气压50Kpa时使纳米金属随保护气体掺入。黑铅化时,基膜在2800℃时开始膨胀周期,单晶体、单斜晶体相变,碳元晶格完全,脱氧时注入上述纳米金属,该纳米金属元素由过渡元素相变四方晶格,同时由单晶变为超晶格。
在优选的实施例中,步骤S3中,通过磁控溅射技术,在量子碳基膜经等离子照射改性处理形成的异形表面层上进行物理气相沉积,使其在低气压下实现高速低温无损伤溅射。使用导体靶源纯度为99.999%,可选自Al、Ni、Cu、Si、Au、Ag、微晶银粉等,优选镍、铜、银铜粉、微晶银粉,具体可根据C-C-FPC,C-C-COF的要求进行选择。如果选择混料,优选先进行预处理,经过机械混合达到均匀分散,提高纯度,激发材料的反应活性,降低材料烧结湿度。本发明溅射可控制形成厚度2000nm、1000nm或500nm,优选500nm,纳米相互键联,可形成致密的超柔性电路基材C-C-FCCL。
在优选的实施例中,步骤S4中,采用不低于3200℃温度进行退火工艺,使基膜材料膨胀,脱氧置换,转化晶体相变,达到超晶格高定向要求。为了减少缺陷晶界,从一轴过渡到二轴,优选采用极高温度3200℃进行退火工艺,通过循环膨胀,脱氧置换,转化晶体相变,使层状平面方向对齐垂直方向排列,从而达到高定向要求,超晶格达到87%以上取向,从而优化范德华力(van der waals force),使柔性碳基膜达到1900±100W/m-1k-1的K值,无褶皱,超弹性,在延伸率10%极限折叠超过8000次,180℃弯曲超过10万次循环。柔性碳基膜的半导体载流子浓度达到1.6×1020,具有高导热率,至少部分归因于高浓度,晶格中粒子的核心振动,晶畴尺寸的缩放,形成界面边界孔洞,其具有高度结晶性,且其减少了缺陷晶界,在30μm厚热导率K值达1488W/m-1k-1,应变非常有限,0.2%~0.4%范畴内,实现了超柔韧性能。
通过优选使用极高温不低于3200℃的退火工艺,有效消除了缺陷晶界。所述缺陷是指在化合物半导体C-C-X基膜中表面的含氧官能团,纳米空腔和SP3碳键中无缺陷。超弹性碳-碳-杂化烯片中晶体能够被折叠,适应外部张力下的大的延伸率,能够提供足够弯曲变形自由度,同时,高温退火减少了声子散射中心,以及晶格结构中缺陷和碳-碳-X基膜官能团中的缺陷。
上述优选的实施例中,通过将含有苯基的酐与二胺杂化得到热塑性聚酰亚胺树脂前驱体,由前驱体制备高密度聚酰亚胺膜,优选地采用化学法喷涂,使用双重倾斜的异形体杂化聚酰亚胺,具有高耐热性与自由度,制备得到高密度厚膜;对所得聚酰亚胺薄膜采用碳化、黑铅化高温处理,还通过掺杂纳米金属材料,进行离子注入和离子交换,将纳米单斜晶体相变为四方晶体;并优化使用高温退火工艺,基膜材料膨胀,脱氧置换,金属纳米元素液晶性相变,还减少了缺陷晶界,确保了层状平面方向对齐垂直方向,具有更高的定向性,能使超晶格达到87%以上取向,从而优化基材范德华力(van der waals force)。经实验测试,能够得到禁带宽度为2.3EV,载流子浓度为1.6×1020cm-3,电阻率为2.310E-04(Ω·m/cm),具备高温、高压、高频性能、大宽幅920~1200mm、超柔韧、超薄层微结构的化合物半导体材料C-C-X。
由此,本发明提供了一种超柔韧高导电导热性柔性基材及其制备方法,先对聚酰亚胺薄膜碳化黑铅化处理,并对所述聚酰亚胺薄膜掺杂纳米金属,进行离子注入和离子交换;在材料表面进行等离子照射改性处理,形成异形表面层;再通过物理气相沉积(PVD)或化学气相沉积(CVD)在所述异形表面层上形成金属导体层,最终可得到超柔韧、高延展性、高导电导热性、高频性的柔性基材。
本发明优选方案中,采用喷涂法工艺得到100万以上分子量的聚酰亚胺薄膜,该膜拉伸强度高、高膜量密度,制备得到高强度、高密度、高导热性量子碳基膜;在制备量子碳基膜的碳化、黑铅化工艺中,通过离子注入、离子交换,在量子碳基膜载体中注入纳米金属,提高膜量,并通过等离子改性处理在量子碳基膜表面形成异形表面层,再通过PVD(优选磁控溅射技术)或CVD在异形表面层形成嵌入金属导体层,优选再通过激光退火处理,得到具有超柔韧、高延展性、高导电性、高导热率(1500W/mk以上)、高频性能(HF 3-30兆赫Mhz)的C-C-FPC、C-C-COF或C-C-FCCL柔性电路基材。
本发明能够有效满足5G时代对柔性电子基材的高要求,如:更高导电性、高导热、耐更高温度、高电压、高密度、低热膨胀系数等,来满足5G世界高度互联,快速、低功耗的要求。本发明提出方法中在量子碳基膜中沉积嵌入导电金属,制备出了高导电、超柔韧、高导热、高频率的C-C-FPC、C-C-COF、柔性电路基板材料C-C-FCCL,克服了传统二层法FCCL基板材料的缺点。
本发明的优选方案中,在异形表面层进行PVD(如磁控溅射)或CVD蒸镀沉积金属导体层,优选采用PVD,以磁控溅射方式实现,工艺简单,制作出的柔性基材如C-C-FCCL,提高了致密性、高延展性、高导电性、超柔韧、高导热率和高频性。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。在本说明书的描述中,参考术语“一种实施例”、“一些实施例”、“优选实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

Claims (10)

1.一种超柔韧高导电导热性柔性基材的制备方法,其特征在于,包括以下步骤:
S1、对聚酰亚胺薄膜碳化黑铅化处理,并对所述聚酰亚胺薄膜掺杂纳米金属,进行离子注入和离子交换;
S2、在经步骤S1后得到的材料表面进行等离子照射改性处理,形成异形表面层;
S3、通过物理气相沉积(PVD)或化学气相沉积(CVD)在所述异形表面层上形成金属导体层,得到超柔韧高延展性高导电导热性柔性基材。
2.如权利要求1或2所述的制备方法,其特征在于,步骤S1中,掺杂过渡纳米金属,优选自第VIII族钴、镍、钌、镧;优选地,所述纳米为2000纳米和400纳米混合;优选地,形成材料表面上层的纳米金属为钴,表面下层的纳米金属为镍,更优选地,表面下层厚度为500nm。
3.如权利要求1至3所述的制备方法,其特征在于,步骤S1中,在碳化黑铅化处理时混合使用三种保护气体N、Ar、Ne中的两种以上,优选在碳化时混合使用N、Ar各50%,优选在黑铅化时混合使用Ar、Ne各50%;优选地,在50Kpa气压下随保护气体掺入纳米金属。
4.如权利要求1至4所述的制备方法,其特征在于,在步骤S1前,还包括制作所述聚酰亚胺薄膜的如下步骤:
S01、将含有苯基的酐与二胺杂化得到热塑性聚酰亚胺树脂前驱体;
S02、使用所述热塑性聚酰亚胺树脂前驱体制备聚酰亚胺薄膜;
步骤S01中,将2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)体积份30~60份、4,4’-二氨基二苯基醚(4,4’-ODA)体积份30~60份和二氨基二蒽醚体积份7~14份溶解于N,N-二甲基甲酰胺(DMF)中,再添加3,3’,4,4’-二苯甲酮四酸二酐(BTDA)体积份30~60份,然后添加均苯四甲酸二酸二酐(PMDA)体积份20~40份,反应一段时间后再补充加入3,3’,4,4’-二苯甲酮四酸二酐(BTDA)和/或均苯四甲酸二酸二酐(PMDA),得到具有热塑性、耐热性与自由度的聚酰亚胺树脂前驱体;优选地,使3,3’,4,4’-二苯甲酮四酸二酐(BTDA)和均苯四甲酸二酸二酐(PMDA)的总摩尔数大致等于2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)、4,4’-二氨基二苯基醚(4,4’-ODA)和二氨基二蒽醚的总摩尔数。
5.如权利要求4所述的制备方法,其特征在于,步骤S02中,使用二氨基二蒽醚与所述热塑性聚酰亚胺树脂前驱体进行凝胶合成,并采用井喷式喷涂法均匀成膜,得到异形体杂化聚酰亚胺薄膜;优选地,在-100℃以上进行凝胶合成,优选地,二氨基二蒽醚经过杂化分子量超过100万以上;优选地,杂化时间为5小时以上,优选6.5小时。
6.如权利要求1至6所述的制备方法,其特征在于,步骤S3中,通过磁控溅射技术进行物理气相沉积(PVD);优选的,导体靶源纯度为99.999%,选自Al、Ni、Cu、Si、Au、Ag、微晶银粉,优选自镍、铜、银铜粉、微晶银粉;优选的,溅射厚度2000nm、1000nm或500nm,更优选500nm。
7.如权利要求1至6所述的制备方法,其特征在于,步骤S3中,通过蒸镀进行物理气相沉积(PVD)或化学气相沉积(CVD)。
8.如权利要求1至7任一项所述的制备方法,其特征在于,还包括以下步骤:
S4、对步骤S3得到的材料进行退火处理,优选通过激光退火技术处理。
9.如权利要求8所述的制备方法,其特征在于,步骤S4中,采用不低于3200℃温度进行退火处理,使基膜材料膨胀,脱氧置换,转化晶体相变,达到超晶格高定向要求。
10.一种超柔韧高导电导热性柔性基材,其特征在于,是使用如权利要求1至9任一项所述的制备方法得到的超柔韧高导电导热性柔性基材。
CN201911059818.XA 2019-10-30 2019-10-30 一种超柔韧高导电导热性柔性基材及其制备方法 Pending CN110862567A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911059818.XA CN110862567A (zh) 2019-10-30 2019-10-30 一种超柔韧高导电导热性柔性基材及其制备方法
US17/083,309 US20210130173A1 (en) 2019-10-30 2020-10-29 Super-flexible high electrical and thermal conductivity flexible base material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911059818.XA CN110862567A (zh) 2019-10-30 2019-10-30 一种超柔韧高导电导热性柔性基材及其制备方法

Publications (1)

Publication Number Publication Date
CN110862567A true CN110862567A (zh) 2020-03-06

Family

ID=69653393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911059818.XA Pending CN110862567A (zh) 2019-10-30 2019-10-30 一种超柔韧高导电导热性柔性基材及其制备方法

Country Status (2)

Country Link
US (1) US20210130173A1 (zh)
CN (1) CN110862567A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652675A (zh) * 2021-08-20 2021-11-16 电子科技大学 等离子改性聚酰亚胺薄膜原位催化化学镀的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054708A (en) * 1970-06-04 1977-10-18 Pfizer Inc. Film of pyrolytic graphite having bi-directional reinforcing properties
US5112462A (en) * 1990-09-13 1992-05-12 Sheldahl Inc. Method of making metal-film laminate resistant to delamination
US5137791A (en) * 1990-09-13 1992-08-11 Sheldahl Inc. Metal-film laminate resistant to delamination
US20050064230A1 (en) * 2003-09-19 2005-03-24 General Electric Company Bulk high thermal conductivity feedstock and method of making thereof
CN104029461A (zh) * 2014-06-13 2014-09-10 江苏悦达新材料科技有限公司 一种石墨烯/碳纳米管/石墨膜复合材料及其制备方法
CN104476847A (zh) * 2014-12-02 2015-04-01 广州方邦电子有限公司 一种高剥离强度挠性覆铜板及其制作方法
CN105358482A (zh) * 2013-05-08 2016-02-24 马克斯·普朗克科学促进学会 具有超高载流子迁移率的石墨烯及其制备方法
CN105895262A (zh) * 2016-03-30 2016-08-24 武汉光谷创元电子有限公司 透明导电薄膜及其制造方法
CN106206682A (zh) * 2016-08-22 2016-12-07 深圳丹邦科技股份有限公司 Pi膜制备的多层石墨烯量子碳基半导体材料及其制备方法
CN107620051A (zh) * 2017-09-04 2018-01-23 武汉光谷创元电子有限公司 覆铜板及其制造方法
CN109234691A (zh) * 2018-08-09 2019-01-18 江苏墨泰新材料有限公司 一种高导热石墨膜-金属复合材料及其制备方法
CN109776826A (zh) * 2019-01-21 2019-05-21 深圳丹邦科技股份有限公司 一种聚酰亚胺厚膜和量子碳基膜、及其制备方法
CN106829930B (zh) * 2017-02-27 2019-09-13 深圳丹邦科技股份有限公司 一种卷状连续石墨烯薄膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10676362B2 (en) * 2017-02-27 2020-06-09 Shenzhen Danbond Technology Co., Ltd Roll-shaped and continuous graphene film and manufacturing method therefor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054708A (en) * 1970-06-04 1977-10-18 Pfizer Inc. Film of pyrolytic graphite having bi-directional reinforcing properties
US5112462A (en) * 1990-09-13 1992-05-12 Sheldahl Inc. Method of making metal-film laminate resistant to delamination
US5137791A (en) * 1990-09-13 1992-08-11 Sheldahl Inc. Metal-film laminate resistant to delamination
US20050064230A1 (en) * 2003-09-19 2005-03-24 General Electric Company Bulk high thermal conductivity feedstock and method of making thereof
CN105358482A (zh) * 2013-05-08 2016-02-24 马克斯·普朗克科学促进学会 具有超高载流子迁移率的石墨烯及其制备方法
CN104029461A (zh) * 2014-06-13 2014-09-10 江苏悦达新材料科技有限公司 一种石墨烯/碳纳米管/石墨膜复合材料及其制备方法
CN104476847A (zh) * 2014-12-02 2015-04-01 广州方邦电子有限公司 一种高剥离强度挠性覆铜板及其制作方法
CN105895262A (zh) * 2016-03-30 2016-08-24 武汉光谷创元电子有限公司 透明导电薄膜及其制造方法
CN106206682A (zh) * 2016-08-22 2016-12-07 深圳丹邦科技股份有限公司 Pi膜制备的多层石墨烯量子碳基半导体材料及其制备方法
CN106829930B (zh) * 2017-02-27 2019-09-13 深圳丹邦科技股份有限公司 一种卷状连续石墨烯薄膜及其制备方法
CN107620051A (zh) * 2017-09-04 2018-01-23 武汉光谷创元电子有限公司 覆铜板及其制造方法
CN109234691A (zh) * 2018-08-09 2019-01-18 江苏墨泰新材料有限公司 一种高导热石墨膜-金属复合材料及其制备方法
CN109776826A (zh) * 2019-01-21 2019-05-21 深圳丹邦科技股份有限公司 一种聚酰亚胺厚膜和量子碳基膜、及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
罗庆等: "《传热学》", 31 January 2019, 重庆大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652675A (zh) * 2021-08-20 2021-11-16 电子科技大学 等离子改性聚酰亚胺薄膜原位催化化学镀的方法
CN113652675B (zh) * 2021-08-20 2022-09-09 电子科技大学 等离子改性聚酰亚胺薄膜原位催化化学镀的方法

Also Published As

Publication number Publication date
US20210130173A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
TWI488280B (zh) 電磁波屏蔽結構及其製造方法
KR101305072B1 (ko) 탄소 섬유상 금속 복합체 및 그 제조방법
US20090277680A1 (en) Insulating film, printed circuit board substrate and printed circuit board including same
Yang et al. Fibers-induced segregated-like structure for polymer composites achieving excellent thermal conductivity and electromagnetic interference shielding efficiency
CN106977771B (zh) 氮化硼-银/纤维素复合材料及其制备方法
CN110229361B (zh) 一种高填充柔性氮化硼复合薄膜材料、高填充柔性氮化硼覆铜板及其制备方法
CN107354752B (zh) 一种表面覆银f-12导电纤维及其制备方法
JP2011031603A (ja) 金属化ポリイミドフィルム、フレキシブル配線板及びそれらの製造方法
CN113638239A (zh) 一种具有电磁屏蔽功能的聚酰亚胺/银复合膜及其制备方法
KR101874150B1 (ko) 고배향성 판상흑연 시트
CN110862567A (zh) 一种超柔韧高导电导热性柔性基材及其制备方法
JP5567243B2 (ja) 多層プリント回路基板およびその製造方法
CN109384942B (zh) 一种柔性高导热石墨烯复合聚酰亚胺膜及其制备方法
Liang et al. Porous Ti3C2Tx MXene nanosheets sandwiched between polyimide fiber mats for electromagnetic interference shielding
CN111901977A (zh) 液晶聚合物扰性覆铜板的制备方法
CN115558292B (zh) 一种高导热聚酰亚胺薄膜及其应用
KR101606990B1 (ko) 적층체 및 이를 포함하는 박막형 태양전지
CN113077986B (zh) 一种金属化改性聚酰胺薄膜电容器及其制备方法
CN112063998B (zh) 一种超薄铜/石墨烯复合箔的制备方法
CN111405750B (zh) 一种聚酰亚胺埋容印刷电路
CN110862076B (zh) 化合物半导体柔性碳基膜及其制备方法
CN113150547A (zh) 具有电磁屏蔽功能的聚酰亚胺复合薄膜及其制备方法和应用
CN110856342B (zh) 基于超薄无胶柔性碳基材料的超微线路板及其制备方法
KR102280892B1 (ko) 폴리이미드 적층체와 그 제조방법 및 태양전지
TW202007722A (zh) 電路板結構以及用於形成絕緣基板的組成物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200306