CN110735120A - NbN/MoSN/MoS2硬质自润滑纳米结构复合膜及制备方法 - Google Patents

NbN/MoSN/MoS2硬质自润滑纳米结构复合膜及制备方法 Download PDF

Info

Publication number
CN110735120A
CN110735120A CN201911051514.9A CN201911051514A CN110735120A CN 110735120 A CN110735120 A CN 110735120A CN 201911051514 A CN201911051514 A CN 201911051514A CN 110735120 A CN110735120 A CN 110735120A
Authority
CN
China
Prior art keywords
mos
nbn
mosn
composite film
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911051514.9A
Other languages
English (en)
Other versions
CN110735120B (zh
Inventor
鞠洪博
喻利花
许俊华
汪然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN201911051514.9A priority Critical patent/CN110735120B/zh
Publication of CN110735120A publication Critical patent/CN110735120A/zh
Application granted granted Critical
Publication of CN110735120B publication Critical patent/CN110735120B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种NbN/MoSN/MoS2硬质自润滑纳米结构复合膜及制备方法,薄膜材料以Nb为过渡层,采用射频磁控溅射技术,以高纯Nb靶和高纯MoS2靶共聚焦溅射制备,薄膜的厚度在1.5‑2μm之间,由面心立方NbN、密排六方NbN以及非晶MoSN和MoS2构成,其中晶态的NbN被非晶相MoSN和MoS2包裹,呈现出“非晶包裹纳米晶”的微结构特征。本发明所述NbN/MoSN/MoS2纳米结构复合膜兼具高硬度和优异的室温摩擦磨损性能;该复合膜的制备方法具有工艺流程简单,生产效率高的优点;该复合膜可用于高性能、干式切削刀具薄膜材料和工模具表面性能改良的薄膜材料。

Description

NbN/MoSN/MoS2硬质自润滑纳米结构复合膜及制备方法
技术领域
本发明涉及无机氮化物基陶瓷薄膜及制备,具体涉及一种NbN/MoSN/MoS2硬质自润滑纳米结构复合膜及制备方法。
背景技术
二元氮化铌薄膜以其较高的硬度和较为稳定的热稳定性能在刀具和工模具硬质薄膜材料领域占据着一席之地。然而随着现代加工技术的飞速发展,对高端切削刀具和工模具的服役性能提出了更为严苛的要求,这些要求包括更高的硬度、更强的减摩和耐磨性能等,传统的二元氮化铌薄膜材料已难以完全满足其性能要求。如何通过结构设计和成分优化以提升二元氮化铌硬质薄膜材料的综合性能以达到高端切削刀具和工模具的服役性能要求是当前硬质薄膜材料领域的研究热点问题之一。
发明内容
发明目的:本发明的目的是提供一种NbN/MoSN/MoS2硬质自润滑纳米结构复合膜及制备方法,解决现有的二元氮化铌薄膜材料无法满足高端切削刀具的服役性能要求的问题。
技术方案:本发明所述的NbN/MoSN/MoS2硬质自润滑纳米结构复合膜,包括Nb过渡层,所述Nb过渡层上设置有NbN/MoSN/MoS2复合膜层,所述NbN/MoSN/MoS2复合膜层包括面心立方NbN、密排六方NbN以及非晶MoSN和MoS2,其中晶态的NbN被非晶相MoSN和MoS2包裹。
其中,所述Nb过渡层的厚度为50-400nm。
所述NbN/MoSN/MoS2复合膜层中Nb、Mo、S、N元素的原子百分含量范围依次为12.7-60.4、3.7-23.4、4.5-27.8、31.4-36.1at.%。
所述NbN/MoSN/MoS2纳米结构复合膜硬度为18-25GPa,室温平均摩擦系数为0.61-0.32,室温磨损率在1.7×10-8-3.2×10-7mm3·N-1mm-1
所述NbN/MoSN/MoS2纳米结构复合膜的厚度为1.5-2μm。
所述的NbN/MoSN/MoS2硬质自润滑纳米结构复合膜的制备方法,包括以下步骤:
(1)将衬底材料依次在丙酮和酒精中超声清洗10-15分钟后,用热空气吹干置于磁控溅射腔室的夹具上。溅射腔室内的射频溅射抢上放入高纯Nb靶和MoS2靶;
(2)待溅射腔室本底真空度低于6.0×10-4Pa时,通入高纯Ar气,起弧高纯Nb靶和MoS2靶后,调节气压至0.3Pa,调节高纯Nb靶和MoS2靶射频电源功率为30W,进行15分钟预溅射以去除靶材表面污染物;
(3)关闭MoS2靶挡板,调节Nb靶功率至150W后,打开衬底挡板,在衬底上溅射Nb过渡层;
(4)通入高纯氮气,固定Nb靶功率为150W,氩气和氮气流量比为10:5,调节MoS2靶功率为30-130W,制备NbN/MoSN/MoS2复合膜。
有益效果:本发明具有良好的力学和摩擦学性能;本发明制备方法具有工艺流程简单,生产效率高的优点;本发明可用于高性能、干式切削刀具薄膜材料和工模具表面性能改良的薄膜材料。
附图说明
图1是二元NbN薄膜XRD图谱;
图2是实施例5中的复合膜高分辨透射电镜照片;
图3是各实施例中薄膜室温平均摩擦系数;
图4是各实施例中薄膜室温磨损率。
具体实施方式
下面结合附图和实施例对本发明进行进一步说明。
先制备二元NbN薄膜作为对比例,厚度在1.5-2μm之间,选取厚度为400nm的铌为过渡层。根据图1所示的NbN薄膜的XRD图谱可知,薄膜由面心立方NbN、密排六方NbN组成,其化学式可表述为NbNx。薄膜中Nb及N的相对原子百分含量分别为67.3、32.7at.%。薄膜硬度约为28GPa,室温平均摩擦系数和磨损率分别为0.68、6.7×10-7mm3·N-1mm-1
二元NbN薄膜的制备方法包括如下步骤:
(1)将如不锈钢、陶瓷及高速钢等衬底材料依次在丙酮和酒精中超声清洗15分钟后,用热空气吹干置于磁控溅射腔室的夹具上,溅射腔室内的射频溅射抢上放入高纯Nb靶和MoS2靶,两靶材直径均为75mm,厚度为20mm。
(2)待溅射腔室本底真空度优于6.0×10-4Pa时,通入高纯Ar气,起弧高纯钼靶和硫化钼靶后,调节气压至0.3Pa,调节高纯Nb靶和MoS2靶射频电源功率为30W,进行15分钟预溅射以去除靶材表面污染物。
(3)关闭硫化钼靶挡板,调节Nb靶功率至150W后,打开衬底挡板,在衬底上溅射Nb过渡层50-400nm,以提升膜基结合力。
(4)通入高纯氮气,固定Nb靶和MoS2功率分别为150和0W,氩气和氮气流量比为10:5,制备得到NbN复合膜。
下面制备不同配比的NbN/MoSN/MoS2薄膜材料,具体如下:
实施例1
基本步骤与二元NbN薄膜的制备相同,不同之处在于沉积Nb过渡层后,调节MoS2靶功率30W。该实施例中的复合膜厚度约为1.5-2μm。复合膜中Nb、Mo、S、N的原子百分含量依次为60.4、3.7、4.5、31.4at.%。复合膜由面心立方NbN、密排六方NbN以及非晶MoSN和MoS2构成,其中晶态的NbN被非晶相MoSN和MoS2包裹,呈现出“非晶包裹纳米晶”的微结构特征。复合膜硬度约为25GPa,室温平均摩擦系数和磨损率分别为0.61、3.2×10-7mm3·N-1mm-1
实施例2
基本步骤与二元NbN薄膜的制备相同,不同之处在于沉积Nb过渡层后,调节MoS2靶功率60W。该实施例中的复合膜厚度约为1.5-2μm。复合膜中Nb、Mo、S、N的原子百分含量依次为51.4、6.7、9.4、32.5at.%。复合膜由面心立方NbN、密排六方NbN以及非晶MoSN和MoS2构成,其中晶态的NbN被非晶相MoSN和MoS2包裹,呈现出“非晶包裹纳米晶”的微结构特征。复合膜硬度约为21GPa,室温平均摩擦系数和磨损率分别为0.53、8.5×10-8mm3·N-1mm-1
实施例3
基本步骤与二元NbN薄膜的制备相同,不同之处在于沉积Nb过渡层后,调节MoS2靶功率90W。该实施例中的复合膜厚度约为1.5-2μm。复合膜中Nb、Mo、S、N的原子百分含量依次为42.1、10.4、13.8、33.7at.%。复合膜由面心立方NbN、密排六方NbN以及非晶MoSN和MoS2构成,其中晶态的NbN被非晶相MoSN和MoS2包裹,呈现出“非晶包裹纳米晶”的微结构特征。复合膜硬度约为19GPa,室温平均摩擦系数和磨损率分别为0.43、5.9×10-8mm3·N-1mm-1
实施例4
基本步骤与二元NbN薄膜的制备相同,不同之处在于沉积Nb过渡层后,调节MoS2靶功率110W。该实施例中的复合膜厚度约为1.5-2μm。复合膜中Nb、Mo、S、N的原子百分含量依次为29.3、17.2、19.3、34.2at.%。复合膜由面心立方NbN、密排六方NbN以及非晶MoSN和MoS2构成,其中晶态的NbN被非晶相MoSN和MoS2包裹,呈现出“非晶包裹纳米晶”的微结构特征。复合膜硬度约为18GPa,室温平均摩擦系数和磨损率分别为0.33、1.9×10-8mm3·N-1mm-1
实施例5
基本步骤与二元NbN薄膜的制备相同,不同之处在于沉积Nb过渡层后,调节MoS2靶功率130W。该实施例中的复合膜厚度约为1.5-2μm。复合膜中Nb、Mo、S、N的原子百分含量依次为12.7、23.4、27.8、36.1at.%。复合膜由面心立方NbN、密排六方NbN以及非晶MoSN和MoS2构成,其中晶态的NbN被非晶相MoSN和MoS2包裹,呈现出“非晶包裹纳米晶”的微结构特征。复合膜硬度约为18GPa,室温平均摩擦系数和磨损率分别为0.32、1.7×10-8mm3·N-1mm-1
对实施例5制得的复合膜进行透射电镜测试,结果如图2所示,从图中可看出,复合膜由晶态的NbN和非晶的MoSN和MoS2构成,其中晶态的NbN被非晶相MoSN和MoS2包裹,呈现出“非晶包裹纳米晶”的微结构特征。
对实施例1-5指的复合膜进行摩擦系数测试和磨损率测试,结果如图3和4所示,根据结果可知:复合膜的平均摩擦系数随着MoS2原子百分含量的增加逐渐降低;复合膜的磨损率随着MoS2原子百分含量的增加逐渐下降,表明了MoS2对复合膜起到良好的减磨效果。

Claims (6)

1.一种NbN/MoSN/MoS2硬质自润滑纳米结构复合膜,其特征在于,包括Nb过渡层,所述Nb过渡层上设置有NbN/MoSN/MoS2复合膜层,所述NbN/MoSN/MoS2复合膜层包括面心立方NbN、密排六方NbN以及非晶MoSN和MoS2,其中晶态的NbN被非晶相MoSN和MoS2包裹。
2.根据权利要求1所述的NbN/MoSN/MoS2硬质自润滑纳米结构复合膜,其特征在于,所述Nb过渡层的厚度为50-400nm。
3.根据权利要求1所述的NbN/MoSN/MoS2硬质自润滑纳米结构复合膜,其特征在于,所述NbN/MoSN/MoS2复合膜层中Nb、Mo、S、N元素的原子百分含量范围依次为12.7-60.4、3.7-23.4、4.5-27.8、31.4-36.1at.%。
4.根据权利要求1所述的NbN/MoSN/MoS2硬质自润滑纳米结构复合膜,其特征在于,所述NbN/MoSN/MoS2纳米结构复合膜硬度为18-25GPa,室温平均摩擦系数为0.61-0.32,室温磨损率在1.7×10-8-3.2×10-7mm3·N-1mm-1
5.根据权利要求1所述的NbN/MoSN/MoS2硬质自润滑纳米结构复合膜,其特征在于,所述NbN/MoSN/MoS2纳米结构复合膜的厚度为1.5-2μm。
6.如权利要求1-5任一所述的NbN/MoSN/MoS2硬质自润滑纳米结构复合膜的制备方法,其特征在于,包括以下步骤:
(1)将衬底材料依次在丙酮和酒精中超声清洗10-15分钟后,用热空气吹干置于磁控溅射腔室的夹具上。溅射腔室内的射频溅射抢上放入高纯Nb靶和MoS2靶;
(2)待溅射腔室本底真空度低于6.0×10-4Pa时,通入高纯Ar气,起弧高纯Nb靶和MoS2靶后,调节气压至0.3Pa,调节高纯Nb靶和MoS2靶射频电源功率为30W,进行15分钟预溅射以去除靶材表面污染物;
(3)关闭MoS2靶挡板,调节Nb靶功率至150W后,打开衬底挡板,在衬底上溅射Nb过渡层;
(4)通入高纯氮气,固定Nb靶功率为150W,氩气和氮气流量比为10:5,调节MoS2靶功率为30-130W,制备NbN/MoSN/MoS2复合膜。
CN201911051514.9A 2019-10-31 2019-10-31 NbN/MoSN/MoS2硬质自润滑纳米结构复合膜及制备方法 Active CN110735120B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911051514.9A CN110735120B (zh) 2019-10-31 2019-10-31 NbN/MoSN/MoS2硬质自润滑纳米结构复合膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911051514.9A CN110735120B (zh) 2019-10-31 2019-10-31 NbN/MoSN/MoS2硬质自润滑纳米结构复合膜及制备方法

Publications (2)

Publication Number Publication Date
CN110735120A true CN110735120A (zh) 2020-01-31
CN110735120B CN110735120B (zh) 2021-08-13

Family

ID=69272035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911051514.9A Active CN110735120B (zh) 2019-10-31 2019-10-31 NbN/MoSN/MoS2硬质自润滑纳米结构复合膜及制备方法

Country Status (1)

Country Link
CN (1) CN110735120B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876732A (zh) * 2020-06-17 2020-11-03 西安交通大学 一种硼氮化钼/硫化钼纳米复合涂层及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1846990A (zh) * 2005-04-13 2006-10-18 日立金属株式会社 具有优异粘合力和滑动性能的多层被覆层及其制备方法
CN101787518A (zh) * 2010-03-24 2010-07-28 中国地质大学(北京) 掺杂类金刚石涂层的多离子束溅射沉积技术
CN104002516A (zh) * 2014-06-10 2014-08-27 上海理工大学 一种具有高硬度和低摩擦系数的CrAlN/MoS2多层涂层及其制备方法
CN104029435A (zh) * 2014-06-10 2014-09-10 上海理工大学 一种具有高硬度和低摩擦系数的NbN/WS2多层涂层及其制备方法
CN105779951A (zh) * 2014-12-25 2016-07-20 中国科学院兰州化学物理研究所 MoS2/NbC/DLC多元纳米复合超润滑薄膜的制备方法
WO2018087281A1 (en) * 2016-11-11 2018-05-17 Danmarks Tekniske Universitet Fabrication of large-area multi-element two-dimensional materials
CN108754416A (zh) * 2018-05-28 2018-11-06 苏州市启献智能科技有限公司 一种气动执行器应用的低磨损导向杆及其表面工艺
CN109778130A (zh) * 2019-01-21 2019-05-21 天津职业技术师范大学(中国职业培训指导教师进修中心) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1846990A (zh) * 2005-04-13 2006-10-18 日立金属株式会社 具有优异粘合力和滑动性能的多层被覆层及其制备方法
CN101787518A (zh) * 2010-03-24 2010-07-28 中国地质大学(北京) 掺杂类金刚石涂层的多离子束溅射沉积技术
CN104002516A (zh) * 2014-06-10 2014-08-27 上海理工大学 一种具有高硬度和低摩擦系数的CrAlN/MoS2多层涂层及其制备方法
CN104029435A (zh) * 2014-06-10 2014-09-10 上海理工大学 一种具有高硬度和低摩擦系数的NbN/WS2多层涂层及其制备方法
CN105779951A (zh) * 2014-12-25 2016-07-20 中国科学院兰州化学物理研究所 MoS2/NbC/DLC多元纳米复合超润滑薄膜的制备方法
WO2018087281A1 (en) * 2016-11-11 2018-05-17 Danmarks Tekniske Universitet Fabrication of large-area multi-element two-dimensional materials
CN108754416A (zh) * 2018-05-28 2018-11-06 苏州市启献智能科技有限公司 一种气动执行器应用的低磨损导向杆及其表面工艺
CN109778130A (zh) * 2019-01-21 2019-05-21 天津职业技术师范大学(中国职业培训指导教师进修中心) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876732A (zh) * 2020-06-17 2020-11-03 西安交通大学 一种硼氮化钼/硫化钼纳米复合涂层及其制备方法
CN111876732B (zh) * 2020-06-17 2023-06-06 西安交通大学 一种硼氮化钼/硫化钼纳米复合涂层及其制备方法

Also Published As

Publication number Publication date
CN110735120B (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
Wang et al. Fabrication of CrAlN nanocomposite films with high hardness and excellent anti-wear performance for gear application
CN113025953B (zh) 一种高熵合金氮化物复合涂层及其制备方法与应用
CN106521440B (zh) 一种采用磁控溅射法制备高附着力镀铝膜的方法
US11773005B2 (en) Coatings for glass molding, preparation method and application thereof and molds having coatings
CN109735804B (zh) 一种金属碳化合物涂层及其制备方法
CN110735120B (zh) NbN/MoSN/MoS2硬质自润滑纳米结构复合膜及制备方法
CN102650030A (zh) TiMoN硬质纳米结构薄膜及制备方法
KR101888557B1 (ko) ta-C 복합 코팅층, ta-C 복합 코팅층 제조 장치 및 이를 이용한 제조방법
CN115161607B (zh) 一种稀土掺杂高熵合金氮化物涂层及其制备方法
Zhao et al. The microstructure and phase evolution of cone-like VN coating in a wide temperature range
CN103898456B (zh) NbVN硬质纳米薄膜及制备方法
CN113637942B (zh) 金属W/非晶NiTiNbFe纳米多层膜及制备方法
CN109338312B (zh) 一种含银的氮化铬基硬质纳米结构复合膜及制备方法
Zhao et al. Comparison study on the oxidation behavior of WN and WCN ceramic coatings during heat treatment
CN113584446A (zh) 利用磁控溅射在硅衬底上制备的金属铪薄膜、方法和应用
CN104073770A (zh) TiWAlN硬质薄膜及制备方法
Chen et al. Influence of Ag content on the microstructure, mechanical, and tribological properties of TaVN–Ag films
JP2010202917A (ja) Ti,Cr,Alを基底とする硬質窒化物膜及びその製造方法
Lu et al. Effect of sputtering power on the properties of TaN thin films prepared by the magnetron sputtering
CN115961251B (zh) 一种具有纳米双相结构涂层的钛合金零件及其制备方法
CN115142014B (zh) 一种高强韧氮氧锆/钇掺杂三氧化二钒纳米多层结构涂层及其制备方法
CN108193178A (zh) 一种晶态wc硬质合金薄膜及其缓冲层技术室温生长方法
CN111139440B (zh) 一种含有碳化硅纳米插入层的涂层及其制备方法
CN109280885B (zh) 基于硬质合金或陶瓷基体表面制备V-B-Al-N纳米硬质薄膜的方法
CN110983255B (zh) 一种含有L12有序相的Ni基多层膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant