CN110734285B - 一种液相燃烧制备多主元abo3钙钛矿结构陶瓷的方法 - Google Patents
一种液相燃烧制备多主元abo3钙钛矿结构陶瓷的方法 Download PDFInfo
- Publication number
- CN110734285B CN110734285B CN201911073886.1A CN201911073886A CN110734285B CN 110734285 B CN110734285 B CN 110734285B CN 201911073886 A CN201911073886 A CN 201911073886A CN 110734285 B CN110734285 B CN 110734285B
- Authority
- CN
- China
- Prior art keywords
- solution
- principal
- ceramic
- perovskite structure
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
- C04B35/457—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/49—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/443—Nitrates or nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/449—Organic acids, e.g. EDTA, citrate, acetate, oxalate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Dispersion Chemistry (AREA)
- Composite Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明属于多主元陶瓷材料领域,具体涉及一种液相燃烧制备多主元ABO3钙钛矿结构高熵陶瓷的方法,其中,A为Sr,B为Zr0.2Sn0.2Ti0.2Nb0.2M0.2,M=Mn、Tb。通过精确调控各阳离子原料的比例,使反应物在液相溶胶状态下实现均匀混合得到均匀的溶液,升温形成凝胶;然后混合物凝胶发生燃烧反应,得到蜂窝状蓬松的前驱物。再经充分燃烧得到高熵陶瓷粉体。通过控制原料的浓度和燃烧剂的加入量获得粒度分布均匀的多主元陶瓷超微粉。
Description
技术领域
本发明属于多主元陶瓷粉体材料领域,具体涉及一种液相燃烧制备多主元 ABO3钙钛矿结构复合氧化物高熵陶瓷的方法。
背景技术
高熵的概念是我国台湾科学家叶均蔚于1995年最早提出的。他认为,四到五个甚至更多的元素以相同的比例混合,则不同的原子有大量的可能性排列,导致错乱(高熵),消除了任何形成规律性能晶体结构的可能,从而创造出非常硬的材料。高熵合金又称多主元合金,含有五种以上主要元素,没有主导元素,是多元素共同作用的结果,且每种元素介于5%-35%之间,表现出优异的强度、硬度、耐磨性、耐腐蚀等力学和物理性能。高熵陶瓷材料是近几年在高熵合金的基础上发展起来的一种新型陶瓷材料,具有高热导、高熔点、良好的耐腐蚀性和电化学性能等特点,在超高温材料和新能源材料领域具有潜在的应用价值。
至今为止,只有少数几种高熵氧化物陶瓷结构被成功合成。2015年,Rost 等(C.M.Rost,E.Sachet,T.Borman,A.Moballegh,E.C.Dickey,D.Hou,J.L.Jones,S.Curtarolo,J.-P.Maria,Nat.Commun.6(2015).)合成了熵稳定的、具有面心立方结构的(Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O氧化物。掺杂Li和Ga离子后,陶瓷具有潜在的离子电导和介电性能。2017年,Sarkar等人采用喷雾热解法制备了具有萤石结构的(CeLaPrSmY)O,(CeGdLaPrSmY)O稀土基高熵氧化物粉体。(R.Djenadic, A Sarkar,O.Clemens,etal.Multicomponent equiatomic rare earth oxides,Materials Research Letters,5(2017)102-109.)。以上几种高熵结构的报道已经实现了高熵结构材料制备上的突破,但是微观结构仍需进一步优化,而且性能研究仍未涉及。从制备方法而言,喷雾热分解法需要在高温及真空条件下将金属盐溶液以雾状喷入高温气氛中,对实验设备和操作要求高。2018年,Jian Luo等采用固相烧结结合热处理的方法首次合成了ABO3型高熵钙钛矿结构氧化物,其中B位由五种金属离子以相同的摩尔比共同占据。这类氧化物具有潜在的均匀的物理性质,可以对多种物理性能同时进行调控(Sicong Jiang,Tao Hu,Jian Luo,et al.A newclass of high-entropy perovskite oxides,Scripta Materialia 142(2018) 116–120)。该报道验证了采用固相法制备具有至少两种阳离子晶格的复杂离子晶体结构高熵材料的可行性,但是固相法所制备的陶瓷原料粉颗粒较粗,陶瓷的致密度偏低,由此导致陶瓷内部存在大量缺陷和气孔,微观结构不均匀,这将直接影响材料的结构和最终的功能特性。
发明内容
本发明的目的在于提供一种凝胶燃烧制备ABO3钙钛矿结构高熵陶瓷的方法,凝胶燃烧法是用含高化学活性组分的化合物作前驱体,在液相下将原料及燃烧剂均匀混合,并进行化学反应形成稳定的溶胶,溶胶的胶粒间聚合,形成三维空间网络结构的凝胶,凝胶在一定温度下发生燃烧反应。
具体步骤如下:
(1)称量草酸铌铵,加入到去离子水中,并过滤掉不溶物后得到草酸铌铵溶液;按照等摩尔比,准确称量B位的另外四种金属硝酸盐,溶于蒸馏水,加入硝酸,控制溶液的pH值为2-4,再与草酸铌溶液混合,均匀搅拌,得到B位金属盐混合溶液(MB);
所述的草酸铌铵溶液需经过原子光谱测试,控制最终浓度与占据B位的其余四种元素的浓度相同。
所述的硝酸铽也可以使用稀土氧化物为原料,加硝酸,在80℃加热溶解,形成稀土硝酸盐溶液;
所述的锰、铽离子进入B位后,满足钙钛矿结构的容差因子介于0.95-1.02 之间。
(2)准确称量硝酸锶,溶于蒸馏水形成硝酸锶溶液,按照Sr:MB=1:1的比例,将硝酸锶溶液与B位金属盐混合,形成混合盐溶液;按照一定比例称取燃烧剂,与混合盐溶液混合,充分搅拌形成均匀的溶液;
所述的混合盐溶液的的浓度为0.5-1.0mol/L;
所述的燃烧剂为柠檬酸或草酸,与混合盐溶液的摩尔比为(1.5-2):1;
(3)将混合溶液密封,缓慢升温至70-80℃,持续搅拌使溶液蒸发脱水,直至形成凝胶;
(4)所形成的凝胶在180-300℃达到燃烧反应温度,发生燃烧反应,反应结束后得到蜂窝状蓬松的前驱物。
(5)研磨后的前驱物以5℃/min的升温速率缓慢升温至900-1100℃,使残余的有机物充分燃烧,并保温焙烧2小时,自然冷却到室温得到高熵陶瓷粉体;
(6)向陶瓷粉中加入有机粘合剂PVA溶液造粒过筛后,在200MPa的压强下干压成型,然后在550℃下排胶后得到陶瓷胚体;
(7)在1450-1500℃空气氛中烧结2h,制备得到钙钛矿结构的高熵陶瓷。
所述的1450-1500℃空气氛中烧结,烧结炉升温速率为10℃/min;温度由烧结温度降低至1000℃的降温速率为10℃/min;然后随炉冷却降温至室温。
与现有技术相比,本发明具有以下技术效果:
本发明利用凝胶燃烧法制备了多主元Sr(Zr0.2Sn0.2Ti0.2Nb0.2M0.2)O3(M=Mn、 Tb)钙钛矿结构高熵陶瓷粉,该方法通过精确调控各阳离子原料的比例,使反应物在液相溶胶状态下实现均匀混合得到均匀的溶液,再升温形成凝胶;然后混合物凝胶发生燃烧反应,得到蜂窝状蓬松的前驱物。在经充分燃烧得到高熵陶瓷粉体。通过控制原料的浓度和燃烧剂的加入量获得粒度分布均匀的多主元陶瓷超微粉。
附图说明
图1为实施例1得到的Sr(Zr0.2Sn0.2Ti0.2Nb0.2Tb0.2)O3高熵陶瓷的XRD图谱。
图2为对比实施例2得到的Sr(Zr0.2Sn0.2Ti0.2Nb0.2Tb0.2)O3高熵陶瓷的XRD 图谱。
具体实施方式
下面结合实施例对本发明进行详细的说明。
实施例1
(1)以Sr(Zr0.2Sn0.2Ti0.2Nb0.2Tb0.2)O3为目标产物,当Zr、Sn、Ti、Nb、Tb 共同占据B位时,容差因子为0.97;
(2)称取19.3g草酸铌铵,加入200ml去离子水,磁力搅拌30分钟后,过滤掉不溶物,得到草酸铌铵溶液;通过原子光谱测试测定草酸铌铵溶液的浓度,定容,配置成0.5mol/L的草酸铌铵溶液;
(3)按照等摩尔比,分别称量Zr、Sn、Ti、Tb的金属硝酸盐,溶于蒸馏水,滴加硝酸,控制溶液的pH值为2-4,再与草酸铌铵溶液混合,均匀搅拌,得到 0.5mol/L的B位金属盐混合溶液;
(4)准确称量硝酸锶,溶于蒸馏水形成0.5mol/L硝酸锶溶液,按照Sr:MB= 1:1的比例,将硝酸锶溶液与B位金属盐混合,形成混合盐溶液;称取192g柠檬酸,加入到混合盐溶液中,搅拌混合;
(5)将混合溶液密封,缓慢升温至80℃,持续搅拌使溶液蒸发脱水,直至形成凝胶,所形成的凝胶加热220℃下进行燃烧反应,燃烧反应结束后得到蜂窝状蓬松的前驱物;
(6)研磨后的前驱物以5℃/min的升温速率缓慢升温至1100℃,并保温2小时,自然冷却到室温得到Sr(Zr0.2Sn0.2Ti0.2Nb0.2Tb0.2)O3高熵陶瓷粉。
(7)向陶瓷粉中加入有机粘合剂PVA溶液造粒过筛后,在200MPa的压强下干压成型,然后在550℃下排胶后得到陶瓷胚体;
(8)以10℃/min的升温速率将烧结炉1500℃,空气氛中保温2h,以 10℃/min的的降温速率使温度降低至1000℃,然后随炉冷却降温至室温,得到钙钛矿结构的Sr(Zr0.2Sn0.2Ti0.2Nb0.2Tb0.2)O3高熵陶瓷,如图1所示。
实施例2
(1)以Sr(Zr0.2Sn0.2Ti0.2Nb0.2Mn0.2)O3为目标产物,当Zr、Sn、Ti、Nb、 Mn共同占据B位时,容差因子为0.97;
(2)称取19.3g草酸铌铵,加入200ml去离子水,磁力搅拌30分钟后,过滤掉不溶物,得到草酸铌铵溶液;通过原子光谱测试测定草酸铌铵溶液的浓度,定容,配置成0.5mol/L的草酸铌铵溶液;
(3)按照等摩尔比,分别称量Zr、Sn、Ti、Mn的金属硝酸盐,溶于蒸馏水,滴加硝酸,控制溶液的pH值为2-4,再与草酸铌铵溶液混合,均匀搅拌,得到 0.5mol/L的B位金属盐混合溶液;
(4)准确称量硝酸锶,溶于蒸馏水形成0.5mol/L硝酸锶溶液,按照Sr:MB= 1:1的比例,将硝酸锶溶液与B位金属盐混合,形成混合盐溶液;称取192g柠檬酸,加入到混合盐溶液中,搅拌混合;
(5)将混合溶液密封,缓慢升温至80℃,持续搅拌使溶液蒸发脱水,直至形成凝胶;所形成的凝胶加热250℃下进行燃烧反应,燃烧反应结束后得到蜂窝状蓬松的前驱物;
(6)研磨后的前驱物以5℃/min的升温速率缓慢升温至1100℃,并保温2小时,自然冷却到室温得到Sr(Zr0.2Sn0.2Ti0.2Nb0.2Mn0.2)O3高熵陶瓷粉。
(7)向陶瓷粉中加入有机粘合剂PVA溶液造粒过筛后,在200MPa的压强下干压成型,然后在550℃下排胶后得到陶瓷胚体;
(8)以10℃/min的升温速率将烧结炉1480℃,空气氛中保温2h,以 10℃/min的降温速率使温度降低至1000℃,然后随炉冷却降温至室温,得到钙钛矿结构的Sr(Zr0.2Sn0.2Ti0.2Nb0.2Mn 0.2)O3高熵陶瓷。
对比实施例1
(1)以Sr(Zr0.2Sn0.2Ti0.2Nb0.2Dy0.2)O3为目标产物,当Zr、Sn、Ti、Nb、Dy 共同占据B位时,容差因子为0.92;
(2)称取19.3g草酸铌铵,加入200ml去离子水,磁力搅拌30分钟后,过滤掉不溶物,得到草酸铌铵溶液;通过原子光谱测试测定草酸铌铵溶液的浓度,定容,配置成0.5mol/L的草酸铌铵溶液;
(3)按照等摩尔比,分别称量Zr、Sn、Ti、Dy的金属硝酸盐,溶于蒸馏水,滴加硝酸,控制溶液的pH值为2-4,再与草酸铌铵溶液混合,均匀搅拌,得到 0.5mol/L的B位金属盐混合溶液;
(4)准确称量硝酸锶,溶于蒸馏水形成0.5mol/L硝酸锶溶液,按照Sr:MB= 1:1的比例,将硝酸锶溶液与B位金属盐混合,形成混合盐溶液;称取192g柠檬酸,加入到混合盐溶液中,搅拌混合;
(5)将混合溶液密封,缓慢升温至80℃,持续搅拌使溶液蒸发脱水,直至形成凝胶,所形成的凝胶加热220℃下进行燃烧反应,燃烧反应结束后得到蜂窝状蓬松的前驱物;
(6)研磨后的前驱物以5℃/min的升温速率缓慢升温至1100℃,并保温2小时,自然冷却到室温,得到陶瓷原料粉;
(7)向陶瓷粉中加入有机粘合剂PVA溶液造粒过筛后,在200MPa的压强下干压成型,然后在550℃下排胶后得到陶瓷胚体;
(8)以10℃/min的升温速率将烧结炉1500℃,空气氛中保温2h,以 10℃/min的降温速率使温度降低至1000℃,然后随炉冷却降温至室温,产物偏离化学计量比,未得到纯相的Sr(Zr0.2Sn0.2Ti0.2Nb0.2Dy0.2)O3高熵陶瓷。
对比实施例2
(1)以Sr(Zr0.2Sn0.2Ti0.2Nb0.2Tb0.2)O3为目标产物,当Zr、Sn、Ti、Nb、Tb 共同占据B位时,容差因子为0.97;
(2)称取19.3g草酸铌铵,加入200ml去离子水,磁力搅拌30分钟后,过滤掉不溶物,得到草酸铌铵溶液;通过原子光谱测试测定草酸铌铵溶液的浓度,定容,配置成0.5mol/L的草酸铌铵溶液;
(3)按照目标产物的化学计量比,分别称量Sr、Zr、Sn、Ti、Tb的金属硝酸盐和草酸铌铵溶液,溶于蒸馏水,滴加硝酸,控制溶液的pH值为2-4,均匀搅拌,得到0.5mol/L的混合盐溶液;
(4)称取192g柠檬酸,加入到混合盐溶液中,搅拌混合;
(5)将混合溶液密封,缓慢升温至80℃,持续搅拌使溶液蒸发脱水,直至形成凝胶;
(6)所形成的凝胶加热220℃下进行燃烧反应,燃烧反应结束后得到蜂窝状蓬松的前驱物;
(7)研磨后的前驱物以5℃/min的升温速率缓慢升温至1100℃,并保温2小时,自然冷却到室温得到陶瓷原料粉;
(8)向陶瓷粉中加入有机粘合剂PVA溶液造粒过筛后,在200MPa的压强下干压成型,然后在550℃下排胶后得到陶瓷胚体;
(9)以10℃/min的升温速率将烧结炉1500℃,空气氛中保温2h,以 10℃/min的降温速率使温度降低至1000℃,然后随炉冷却降温至室温,产物中 Nb流失,导致产物偏离化学计量比。如图2所示,未得到纯相的 Sr(Zr0.2Sn0.2Ti0.2Nb0.2Tb0.2)O3高熵陶瓷。
对比实施例3
(1)以Sr(Zr0.2Sn0.2Ti0.2Nb0.2Tb0.2)O3为目标产物,当Zr、Sn、Ti、Nb、Tb 共同占据B位时,容差因子为0.97;
(2)称取19.3g草酸铌铵,加入200ml去离子水,磁力搅拌30分钟后,过滤掉不溶物,得到草酸铌铵溶液;通过原子光谱测试测定草酸铌铵溶液的浓度,定容,配置成0.5mol/L的草酸铌铵溶液;
(3)按照等摩尔比,分别称量Zr、Sn、Ti、Tb的金属硝酸盐,溶于蒸馏水,再与草酸铌铵溶液混合,均匀搅拌,得到0.5mol/L的B位金属盐混合溶液;
(4)准确称量硝酸锶,溶于蒸馏水形成0.5mol/L硝酸锶溶液,按照Sr:MB= 1:1的比例,将硝酸锶溶液与B位金属盐混合,形成混合盐溶液;称取192g柠檬酸,加入到混合盐溶液中,搅拌混合;
(5)将混合溶液密封,缓慢升温至80℃,持续搅拌使溶液蒸发脱水,直至形成凝胶;所形成的凝胶加热250℃下进行燃烧反应,燃烧反应结束后得到蜂窝状蓬松的前驱物;
(6)研磨后的前驱物以5℃/min的升温速率缓慢升温至1100℃,并保温2小时,自然冷却到室温,得到陶瓷原料粉;
(7)向陶瓷粉中加入有机粘合剂PVA溶液造粒过筛后,在200MPa的压强下干压成型,然后在550℃下排胶后得到陶瓷胚体;
(8)以10℃/min的升温速率将烧结炉1500℃,空气氛中保温2h,以 10℃/min的的降温速率使温度降低至1000℃,然后随炉冷却降温至室温。由于粉体制备过程中,溶液配置时未加入硝酸抑制水解,导致Sn、Ti流失,产物偏离化学计量比,未得到纯相的Sr(Zr0.2Sn0.2Ti0.2Nb0.2Tb0.2)O3高熵陶瓷。
Claims (5)
1.一种多主元ABO3钙钛矿结构高熵陶瓷,其特征在于:所述高熵陶瓷粉为ABO3型钙钛矿结构,其中,A为 Sr,B为Zr0.2Sn0.2Ti0.2Nb0.2M0.2,M= Mn、Tb;
所述的五种金属离子占据钙钛矿结构的B位后,容差因子为0.97;
采用液相燃烧制备多主元ABO3钙钛矿结构高熵陶瓷粉,所述制备方法步骤如下:
(1)称量草酸铌铵,加入到去离子水中并过滤掉不溶物后得到草酸铌铵溶液;按照等摩尔比,准确称量B位的另外四种金属硝酸盐,溶于蒸馏水,加入硝酸,控制溶液的pH值为2-4,再与草酸铌铵溶液混合,均匀搅拌,得到B位金属盐混合溶液(MB);
(2)准确称量硝酸锶,溶于蒸馏水形成硝酸锶溶液,按照Sr:MB = 1:1的摩尔比,将硝酸锶溶液与B位金属盐混合,形成混合盐溶液;按照比例称取燃烧剂,与混合盐溶液混合,并加入去离子水,充分搅拌形成均匀的溶液;
(3)将混合溶液密封,缓慢升温至70-80℃,持续搅拌使溶液蒸发脱水,直至形成凝胶;
(4)所形成的凝胶在180-300℃时达到燃烧反应温度,发生燃烧反应,反应结束后得到蜂窝状蓬松的前驱物;
(5)研磨后的前驱物以5℃/min的升温速率缓慢升温至900-1100℃,使残余的有机物充分燃烧,并保温焙烧2小时,自然冷却到室温得到高熵陶瓷粉体;
(6)向陶瓷粉中加入有机粘合剂PVA溶液造粒过筛后,在200MPa的压强下干压成型,然后在550℃下排胶后得到陶瓷胚体;
(7)在1450-1500℃空气氛中烧结2h,制备得到钙钛矿结构的高熵陶瓷。
2.根据权利要求1所述的多主元ABO3钙钛矿结构高熵陶瓷,其特征在于,步骤(1)所述的草酸铌铵溶液需经过原子光谱测试,控制最终浓度与占据B位的其余四种元素的浓度相同。
3.根据权利要求1所述的多主元ABO3钙钛矿结构高熵陶瓷,其特征在于,步骤(2)所述的混合盐溶液的浓度为0.5-1.0mol/L。
4.根据权利要求1所述的多主元ABO3钙钛矿结构高熵陶瓷,其特征在于,步骤(2)所述的燃烧剂为柠檬酸或草酸,与混合盐溶液的摩尔比为1.5-2:1。
5.根据权利要求1所述的多主元ABO3钙钛矿结构高熵陶瓷,其特征在于,步骤(7)所述的1450-1500 ℃空气氛中烧结,烧结炉升温速率为10 ℃/min;温度由烧结温度降低至1000℃的降温速率为10 ℃/min;然后随炉冷却降温至室温。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911073886.1A CN110734285B (zh) | 2019-11-06 | 2019-11-06 | 一种液相燃烧制备多主元abo3钙钛矿结构陶瓷的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911073886.1A CN110734285B (zh) | 2019-11-06 | 2019-11-06 | 一种液相燃烧制备多主元abo3钙钛矿结构陶瓷的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110734285A CN110734285A (zh) | 2020-01-31 |
CN110734285B true CN110734285B (zh) | 2022-03-01 |
Family
ID=69272293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911073886.1A Active CN110734285B (zh) | 2019-11-06 | 2019-11-06 | 一种液相燃烧制备多主元abo3钙钛矿结构陶瓷的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110734285B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111892400A (zh) * | 2020-08-18 | 2020-11-06 | 新沂市锡沂高新材料产业技术研究院有限公司 | 一种高透过率高熵透明陶瓷及其制备方法 |
CN112159234A (zh) * | 2020-08-31 | 2021-01-01 | 广东工业大学 | 一种高熵陶瓷粉体及其制备方法和应用 |
CN112830782B (zh) * | 2021-01-25 | 2021-10-26 | 山东大学 | 一种高熵稀土铌/钽/钼酸盐陶瓷及其制备方法 |
CN113171779B (zh) * | 2021-04-28 | 2023-10-20 | 东莞理工学院 | 一种b位五元高熵钙钛矿催化剂的制备方法与应用 |
NL2028188B1 (en) * | 2021-05-11 | 2022-11-29 | Univ Inner Mongolia Technology | Novel High-entropy Ceramics with Perovskite Structure and Preparation Method Thereof |
CN116445044B (zh) * | 2023-03-17 | 2024-02-06 | 华南理工大学 | 一种复合结构柔性透明介电层及其低温制备方法与应用 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1693280A (zh) * | 2005-06-03 | 2005-11-09 | 清华大学 | 一种微波介质陶瓷及其制备方法 |
TW200914628A (en) * | 2007-09-19 | 2009-04-01 | Ind Tech Res Inst | Ultra-hard composite material and method for manufacturing the same |
CN102787266A (zh) * | 2012-09-04 | 2012-11-21 | 四川大学 | 基于高熵合金粘结相的碳氮化钛基金属陶瓷及其制备方法 |
CN107012408A (zh) * | 2017-03-24 | 2017-08-04 | 东南大学 | 一种稀土基高熵块体金属玻璃材料及其制备方法 |
WO2017148885A1 (en) * | 2016-02-29 | 2017-09-08 | Sandvik Intellectual Property Ab | Cemented carbide with alternative binder |
CN108911740A (zh) * | 2018-08-24 | 2018-11-30 | 扬州大学 | 具有多铁性能的五层层状结构的钛铁钴酸锶铋陶瓷材料及其制备方法 |
CN109019701A (zh) * | 2018-07-23 | 2018-12-18 | 安徽工业大学 | 一种岩盐型(MgCoCuNiZn)O高熵氧化物粉体材料的制备方法 |
CN109607615A (zh) * | 2019-01-25 | 2019-04-12 | 东北大学秦皇岛分校 | 一种b位高熵钙钛矿氧化物及其制备方法 |
CN109987935A (zh) * | 2019-03-20 | 2019-07-09 | 太原理工大学 | 具有萤石型结构的(ZrHfCeTiZn)O2-δ高熵氧化物陶瓷粉体及块体制备方法 |
CN110194667A (zh) * | 2019-06-24 | 2019-09-03 | 哈尔滨工业大学 | 一种超硬五组元过渡金属碳化物单相高熵陶瓷材料及其制备方法 |
CN110776310A (zh) * | 2019-11-06 | 2020-02-11 | 常州大学 | 一种离子补偿混合物共沉淀制备钙钛矿型复合氧化物高熵陶瓷粉的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102617139B (zh) * | 2012-03-06 | 2016-12-14 | 北京科技大学 | 一种钛酸锶镧基粉体材料的制备方法 |
CN104710168A (zh) * | 2015-03-24 | 2015-06-17 | 武汉理工大学 | 一种镝掺杂六方铝酸钇陶瓷粉体及其制备方法 |
-
2019
- 2019-11-06 CN CN201911073886.1A patent/CN110734285B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1693280A (zh) * | 2005-06-03 | 2005-11-09 | 清华大学 | 一种微波介质陶瓷及其制备方法 |
TW200914628A (en) * | 2007-09-19 | 2009-04-01 | Ind Tech Res Inst | Ultra-hard composite material and method for manufacturing the same |
CN102787266A (zh) * | 2012-09-04 | 2012-11-21 | 四川大学 | 基于高熵合金粘结相的碳氮化钛基金属陶瓷及其制备方法 |
WO2017148885A1 (en) * | 2016-02-29 | 2017-09-08 | Sandvik Intellectual Property Ab | Cemented carbide with alternative binder |
CN107012408A (zh) * | 2017-03-24 | 2017-08-04 | 东南大学 | 一种稀土基高熵块体金属玻璃材料及其制备方法 |
CN109019701A (zh) * | 2018-07-23 | 2018-12-18 | 安徽工业大学 | 一种岩盐型(MgCoCuNiZn)O高熵氧化物粉体材料的制备方法 |
CN108911740A (zh) * | 2018-08-24 | 2018-11-30 | 扬州大学 | 具有多铁性能的五层层状结构的钛铁钴酸锶铋陶瓷材料及其制备方法 |
CN109607615A (zh) * | 2019-01-25 | 2019-04-12 | 东北大学秦皇岛分校 | 一种b位高熵钙钛矿氧化物及其制备方法 |
CN109987935A (zh) * | 2019-03-20 | 2019-07-09 | 太原理工大学 | 具有萤石型结构的(ZrHfCeTiZn)O2-δ高熵氧化物陶瓷粉体及块体制备方法 |
CN110194667A (zh) * | 2019-06-24 | 2019-09-03 | 哈尔滨工业大学 | 一种超硬五组元过渡金属碳化物单相高熵陶瓷材料及其制备方法 |
CN110776310A (zh) * | 2019-11-06 | 2020-02-11 | 常州大学 | 一种离子补偿混合物共沉淀制备钙钛矿型复合氧化物高熵陶瓷粉的方法 |
Non-Patent Citations (4)
Title |
---|
A new class of high-entropy perovskite oxides;Jiang Sicong等;《Scripta Materialia》;20180101;第142卷;116-120 * |
high entropy Sr((Zr0.94Y0.06)(0.2)Sn0.2Ti0.2Hf0.2Mn0.2)O3-x perovskite synthesis by reactive spark plasma sintering;Biesuz Matttia等;《journal of asian ceramic societies》;20190403;第7卷(第2期);127-132 * |
Jiang Sicong等.A new class of high-entropy perovskite oxides.《Scripta Materialia》.2018,第142卷116-120. * |
柠檬酸燃烧法制备钙钛矿结构二元稀土氧化物LaYbO3粉体的研究;冯淳;《四川大学学报(自然科学版)》;20140531;第51卷(第3期);587-591 * |
Also Published As
Publication number | Publication date |
---|---|
CN110734285A (zh) | 2020-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110734285B (zh) | 一种液相燃烧制备多主元abo3钙钛矿结构陶瓷的方法 | |
Salian et al. | Entropy stabilized multicomponent oxides with diverse functionality–a review | |
CN111908922A (zh) | 一种低温合成稀土铪酸盐高熵陶瓷粉体及制备方法 | |
US9412486B2 (en) | Composite oxide powder for solid oxide fuel cell and its production method | |
CN114988496B (zh) | 一种高熵金属氧化物材料的制备方法 | |
CN113416072B (zh) | 一种熔盐法制备高熵稀土钽酸盐球形粉体的方法 | |
CN114105629B (zh) | 一种铬酸稀土基多孔导电高熵陶瓷的制备方法及应用 | |
CN114230342B (zh) | 一种稀土氧化物掺杂改性Ga-LLZO固体电解质及其制备方法 | |
JP5574881B2 (ja) | 固体酸化物型燃料電池用空気極材料粉末及びその製造方法 | |
CN107662947B (zh) | Sm-Eu-Gd三稀土离子钽酸盐及其制备方法与应用 | |
JP5543297B2 (ja) | 固体酸化物型燃料電池用空気極材料粉末及びその製造方法 | |
CN102320824A (zh) | 一种金属离子掺杂二氧化钛靶材的制备方法以及由此获得的靶材 | |
KR102016916B1 (ko) | Llzo 산화물 고체 전해질 분말의 제조방법 | |
CN1952194B (zh) | 一种电极用钨合金条的生产方法 | |
CN113121227B (zh) | 一种钆镍共掺杂镁基六铝酸镧陶瓷及制备方法 | |
CN104591292A (zh) | 一种合成铁铝尖晶石的方法 | |
CN100534906C (zh) | 一种中低温氧离子导体材料的合成方法 | |
CN114085080A (zh) | 一种稀土掺杂钽钛酸盐粉体及其制备方法 | |
CN110357628B (zh) | 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法 | |
JP2003277024A (ja) | 酸化物イオン導電体およびその製造方法 | |
KR101802067B1 (ko) | 페로브스카이트 구조를 갖는 산화물 분말의 제조 방법 및 이에 의해 제조된 산화물 분말 | |
CN107585787B (zh) | Sm-Eu-Dy三稀土离子钽酸盐及其制备方法与应用 | |
JP2021011426A (ja) | 金属複合酸化物及びその製造方法 | |
JPH0791054B2 (ja) | 複合金属酸化物の製法 | |
CN112299835A (zh) | 一种a位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |