CN107012408A - 一种稀土基高熵块体金属玻璃材料及其制备方法 - Google Patents

一种稀土基高熵块体金属玻璃材料及其制备方法 Download PDF

Info

Publication number
CN107012408A
CN107012408A CN201710186427.9A CN201710186427A CN107012408A CN 107012408 A CN107012408 A CN 107012408A CN 201710186427 A CN201710186427 A CN 201710186427A CN 107012408 A CN107012408 A CN 107012408A
Authority
CN
China
Prior art keywords
rare
earth
alloy
metallic glass
glass materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710186427.9A
Other languages
English (en)
Inventor
沈宝龙
李俊
薛琳
范星都
江沐风
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU BAOYUE NEW MATERIAL TECHNOLOGY CO LTD
Southeast University
Original Assignee
SUZHOU BAOYUE NEW MATERIAL TECHNOLOGY CO LTD
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU BAOYUE NEW MATERIAL TECHNOLOGY CO LTD, Southeast University filed Critical SUZHOU BAOYUE NEW MATERIAL TECHNOLOGY CO LTD
Priority to CN201710186427.9A priority Critical patent/CN107012408A/zh
Publication of CN107012408A publication Critical patent/CN107012408A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种稀土基高熵块体金属玻璃材料及其制备方法,该材料分子式为EraDybCocAldMeSif,M为Gd、Tb或Tm中的一种,a、b、c、d、e、f表示元素的原子百分含量:19.2≤a≤19.8,19.2≤b≤19.8,19.2≤c≤19.8,19.2≤d≤19.8,19.2≤e≤19.8,1≤f≤4,a=b=c=d=e,a+b+c+d+e+f=100。制备方法如下:①按原子百分含量称取原料②熔炼原料得到母合金铸锭③熔融母合金铸锭成合金熔液,喷入铜模中得到所述材料。本发明的稀土基高熵块体金属玻璃材料具有大非晶形成能力、高磁热效应和高的磁熵变,在磁制冷技术领域具有良好的应用前景。

Description

一种稀土基高熵块体金属玻璃材料及其制备方法
技术领域
本发明涉及一种稀土基高熵块体金属玻璃材料及其制备方法,属于稀土基高熵块体金属玻璃制冷材料技术领域。
背景技术
在当今社会中,制冷技术与我们的生活息息相关,小到家用的空调、冰箱、冰柜等,大到工业生产、石油化工、高能物理、交通运输、航天航空等领域。目前使用最普遍的制冷技术是传统气体压缩制冷技术,使用氟利昂作为气体制冷技术的制冷剂,造成臭氧层破坏、环境污染和温室效应等问题,同时传统气体制冷技术制冷效率低\能耗较大,不适合当今世界的发展要求。
磁制冷技术是一种以磁性材料为工质的全新的、绿色环保的制冷技术,其基本原理是借助磁致冷材料的磁热效应来达到制冷目的,磁热效应是磁性材料的固有性质,磁制冷技术的原理可以从磁学和热力学两方面来解释,作为磁制冷技术的关键部分,性能优良的磁制冷材料是整个系统的核心部分,磁制冷材料的重要性能是具有高的绝热温变,或高的磁熵变。然而实际应用中,磁制冷材料的制冷能力是衡量其性能的另一个重要指标,通常由磁熵变峰值与其半高宽温区的乘积来衡量。对于典型的晶体磁制冷材料,MnFeP0.45As0.55、Gd5(Ge1-xSix)、Ni-Mn-Ga、La(Fe1-xSix)13及其氢化物等体系,由于是一级相变,在居里温度附近具有高的磁熵变,但正由于是一级相变,材料的相转变温区较窄,制冷效率较低。而对于二级相变,其磁熵变值没有一级相变高,但相变温区较宽,制冷效率较高。相对晶体材料,非晶磁制冷材料通常具有二级磁转变的特性,并且非晶的无序结构使得磁转变具有较宽的温区,这在磁制冷能力上是一大优势,因而被认为是具有应用前景的磁制冷材料。
近年来,科研工作者探索并制备了一系列稀土基合金体系,如DyCoAl、GdCoFe、GdCoAlZr等,然而大部分合金的形成能力有限,甚至只能制备成条带形状,磁熵变较低,且磁致冷能力有限,因此不利于大规模生产使用。2002年,马立群等人首先报道了临界直径为1.5mm的Ti20Zr20Hf20Cu20Ni20块体金属玻璃,从此一系列的高熵块体金属玻璃不断被研究探索出来,然而目前人们对高熵块体非晶玻璃的研究主要侧重于其力学性能方面,对其物理性能如磁性能的研究基本上没有,具有优异磁热性能的稀土基高熵块体金属玻璃材料的研究还鲜有报道。
中国专利申请CN 105734311A公开了一种磁致冷HoxTbyMz系高熵合金及其制备方法,其中M为Gd,Ce,Pr,Nd,Pm,Sm,Eu,Dy,Er,Tm,Yb,Lu和Y中的一种或多种。通过调整元素组成,合金体系磁熵变得到改善,同时合金保持单相组织的特性,具有甚至超过金属Gd的磁熵变和大的磁致冷能力,最高制冷温区可达190K。但该合金成本高,后续热处理工艺复杂。
中国专利申请CN105296893A公开了一种高熵非晶合金、其制备方法及应用。合金的化学成分为A20B20C20T20Al20,其中A、B、C彼此不相同,分别选自Gd、Tb、Dy、Ho、Er和Tm中的一种稀土元素,T选自Co、Ni、Fe中的一种元素。该高熵合金在宽的温度范围内具有大的磁热效应,同时具有良好的稳定性。但是该合金低的非晶形成能力较低,仅能制备直径1mm的非晶棒材甚至薄带。
由于以上原因,制备出兼具大非晶形成能力和高磁热效应的稀土基高熵块体金属将显得尤为重要,利用高熵块体金属玻璃的特点在一定温度范围内实现大的磁熵变和优异的磁热性能,有利于进一步拓宽磁致冷材料的研究领域,促进磁性材料的发展。
发明内容
技术问题:本发明的目的是提供一种稀土基高熵块体金属玻璃材料及其制备方法,该块体金属玻璃兼具大非晶形成能力和高磁热效应,且具有高的磁熵变;
本发明的另一个目的是提供一种稀土基高熵块体金属玻璃材料的制备方法,该制备方法简单、效率高,原料利用率高、成本低,并且可以制备出大尺寸的非晶棒材。
技术方案:本发明提供了一种稀土基高熵块体金属玻璃材料,该块体金属玻璃的分子式为EraDybCocAldMeSif,其中M为Gd、Tb或Tm中的一种,a、b、c、d、e、f分别表示对应元素的原子百分含量,并且满足以下条件:19.2≤a≤19.8,19.2≤b≤19.8,19.2≤c≤19.8,19.2≤d≤19.8,19.2≤e≤19.8,1≤f≤4,a=b=c=d=e,a+b+c+d+e+f=100。
其中:
所述块体金属玻璃的分子式为EraDybCocAldMeSifFeg,其中M为Gd、Tb或Tm中的一种,a、b、c、d、e、f、g分别表示对应元素的原子百分含量,并且满足以下条件:19.2≤a<19.8、19.2≤b<19.8、19.2≤c<19.8、19.2≤d<19.8、19.2≤e<19.8、1≤f<4、0<g≤3,a=b=c=d=e,a+b+c+d+e+f+g=100。
所述稀土基高熵块体金属玻璃材料的结构为完全非晶相,直径为0.5~6mm。
所述稀土基高熵块体金属玻璃材料的居里温度为43~51K,最大磁熵变值达到7.3~8.53Jkg-1K-1,磁制冷能力达482~572Jkg-1
本发明还提供了一种稀土基高熵块体金属玻璃材料的制备方法,该制备方法包括以下步骤:
步骤1:按原子百分含量称取原料;
步骤2:将步骤1称取的原料装入熔炼炉中熔炼,冷却后得到成分均匀的母合金铸锭;
步骤3:将步骤2得到的母合金铸锭熔融成合金熔液,喷入铜模中,得到稀土基高熵块体金属玻璃材料。
其中:
所述的原料纯度不低于99wt%。
步骤2所述的熔炼的具体方法是:将步骤1称取的原料放在电弧熔炼炉的水冷铜坩埚内,关闭腔体,首先抽腔体真空,使得腔体真空度等于或低于5×10-3Pa,然后充入惰性气体保护进行熔炼,原料熔化后持续熔炼5~10分钟后停止加热,让合金随坩埚冷却至凝固迅速将其翻转,反复熔炼3~6次,得到成分均匀的母合金铸锭。
步骤3所述的将母合金铸锭熔融成合金熔液,喷入铜模中的具体步骤如下:
1)将步骤2得到的母合金铸锭去除表面杂质并清洁后破碎为小块合金锭,将小块合金锭装入开有口径大小为1~2mm的石英管中,之后将该石英管放入铜模铸造设备的感应线圈中,关闭真空甩带机腔体,抽真空,使得腔体真空度等于或低于9×10-3Pa,之后充入惰性气体,调节腔体内外气压差为0.02~0.03MPa;
2)在惰性气体保护氛围中,开启电源并逐步增加电流强度直至小块合金锭熔化成合金熔液,利用腔体内外气压差将合金熔液喷入铜模中,得到稀土基高熵块体金属玻璃材料。
所述的惰性气体为Ar气。
所述铜模的直径为0.5~6mm。
本发明提供的稀土基高熵块体金属玻璃材料是由Er、Dy、Gd、Tb、Tm、Co、Al、Si以及Fe元素构成的稀土基高熵块体金属玻璃材料,其中,Er、Dy、Gd、Tb和Tm元素能够保证合金具有较大的磁熵变值;Co元素能提高合金的电阻率,降低合金损耗;Al元素能降低合金中的氧含量,利于合金非晶形成;Si元素能够有效提高合金的非晶形成能力,改善软磁性能;Fe元素能够增大合金的居里温度。
采用X射线衍射法(XRD)确定本发明的稀土基高熵块体金属玻璃材料的非晶结构,XRD图谱显示只有一个宽的弥散衍射峰,表明本发明的块体金属玻璃是完全的非晶结构。
利用差示扫描量热法(DSC)测量本发明稀土基高熵块体金属玻璃材料的热学性能,以40开尔文/分钟的升温速率加热本发明非晶合金材料使其晶化,记录玻璃转变温度(Tg)、初始晶化温度(Tx),得到过冷液相区宽度ΔTx(ΔTx=Tx-Tg),评价本发明的稀土基高熵块体金属玻璃材料的热稳定性。
利用磁性测量系统(MPMS)测定合金的居里温度和等温磁化曲线,并利用麦克斯韦关系式积分得到非晶合金的磁熵变曲线,进一步计算得到稀土基高熵块体金属玻璃材料的磁制冷能力。
有益效果:与现有技术相比,本发明具有以下优点:
1、具有高的热稳定性和非晶形成能力,临界尺寸达0.5~6mm;
2、通过替换不同的稀土元素,改善了合金的磁性能,提高了居里温度,特别是提高了磁致冷能力;通过调节Si元素的含量,大大提升了合金的非晶形成能力;Fe元素能够增大合金的居里温度。
3、该系列稀土基高熵块体金属玻璃材料不仅具有较高的磁熵变,其最大磁熵变能够达到8.53Jkg-1K-1,而且和磁熵变相对应的半高宽也很宽,这就决定了该合金体系具有较大的磁致冷能力,能够达到572Jkg-1
4、由于非晶态材料的长程无序结构特点,稀土基高熵块体金属玻璃材料磁制冷材料的磁滞和热滞基本为零,同时非晶材料具有较高的电阻率,有效阻止涡流产生,使该稀土基高熵块体金属玻璃磁制冷材料的能量利用效率非常高。
5、该制备方法简单、效率高,原料利用率高、成本低,并且可以制备出大尺寸的非晶棒材。
附图说明
图1是本发明实施例1中稀土基高熵块体金属玻璃材料的零场冷却磁化曲线和带场冷却磁化曲线;
图2是本发明实施例1中稀土基高熵块体金属玻璃材料的等温磁化曲线;
图3是本发明实施例1中稀土基高熵块体金属玻璃材料的Arrot曲线;
图4是本发明实施例1中稀土基高熵块体金属玻璃材料的磁熵变随温度变化的曲线。
图5是本发明实施例6中稀土基高熵块体金属玻璃材料的磁熵变随温度变化的曲线。
具体实施方式
下面结合附图与实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1:
本实施例中,稀土基高熵块体金属玻璃材料的分子式为(Er0.2Dy0.2Co0.2Al0.2Gd0.2)99Si1,直径为6mm,其具体制备方法如下:
步骤1:将纯度大于99%的Er、Dy、Co、Al、Gd、Si原料按照分子式(Er0.2Dy0.2Co0.2Al0.2Gd0.2)99Si1所示的成分原子百分比进行配料;
步骤2:将步骤1称取的原料放在电弧熔炼炉的水冷铜坩埚内,关闭腔体,首先抽腔体真空至5×10-3Pa以下,然后充入惰性气体保护进行熔炼,原料熔化后持续熔炼5分钟后停止加热,让合金随坩埚冷却至凝固迅速将其翻转,反复熔炼6次,得到成分均匀的母合金铸锭。
步骤3:将步骤2得到的母合金铸锭去除表面杂质并清洁后破碎为小块合金,将小块合金锭装入开有口径大小为1~2mm的石英管中,至后放入铜模铸造设备的感应线圈中,关闭腔体,抽腔体真空度低于9×10-3Pa,充入惰性气体Ar气,调节腔体内外气压差为0.025MPa;
步骤4:在惰性气体保护氛围中,开启电源并逐步增加电流强度直至合金块体熔化,利用压力差将熔融的合金熔液喷入直径6mm铜模中,得到稀土基高熵块体金属玻璃材料。
采用D8 Advance型多晶X射线衍射仪测试步骤4制得的金属玻璃的XRD图谱,该合金直径达6mm的块体为非晶结构。
采用NETZSCH DSC 404 F3差示扫描量热仪测量步骤4制得的金属玻璃的DSC曲线,升温速率40开尔文/分钟,测得非晶合金的玻璃转化温度Tg为624K,初始晶化温度Tx为694K,过冷液相区宽度ΔTx为70K。
采用磁性测量系统(MPMS)测试该合金的居里温度Tc和等温磁化曲线,得到如图1中所示的零场和带场磁化曲线和图2所示的等温磁化曲线,计算得到Arrot曲线如图3所示,Arrot曲线斜率均为正,表明合金显示二级相变特征,利用麦克斯韦关系式积分得到图4所示的非晶合金磁熵变曲线,得到(Er0.2Dy0.2Co0.2Al0.2Gd0.2)99Si1合金的Tc为43K,最大磁熵变为7.75Jkg-1K-1,半高宽度68K,磁制冷能力(RC)为527Jkg-1
实施例2:
本实施例中,稀土基高熵块体金属玻璃材料的分子式为(Er0.2Dy0.2Co0.2Al0.2Gd0.2)98Si2,直径为5mm,其具体制备方法如下:
步骤1:将纯度大于99%的Er、Dy、Co、Al、Gd、Si原料按照分子式(Er0.2Dy0.2Co0.2Al0.2Gd0.2)98Si2所示的成分原子百分比进行配料;
步骤2:将步骤1称取的原料放在电弧熔炼炉的水冷铜坩埚内,关闭腔体,首先抽腔体真空至5×10-3Pa以下,然后充入惰性气体保护进行熔炼,原料熔化后持续熔炼10分钟后停止加热,让合金随坩埚冷却至凝固迅速将其翻转,反复熔炼3次,得到成分均匀的母合金铸锭。
步骤3:将步骤2得到的母合金铸锭去除表面杂质并清洁后破碎为小块合金,将小块合金锭装入开有口径大小为1~2mm的石英管中,之后放入铜模铸造设备的感应线圈中,关闭腔体,抽腔体真空度低于9×10-3Pa,充入惰性气体Ar气,调节腔体内外气压差为0.03MPa;
步骤4:在惰性气体保护氛围中,开启电源并逐步增加电流强度直至合金块体熔化,利用压力差将熔融的合金熔液喷入直径5mm铜模中,得到稀土基高熵块体金属玻璃材料。
采用D8 Advance型多晶X射线衍射仪测试步骤4制得的金属玻璃的XRD图谱,该合金直径达5mm的块体为非晶结构。
采用NETZSCH DSC 404 F3差示扫描量热仪测量步骤4制得的金属玻璃的DSC曲线,升温速率40开尔文/分钟,测得非晶合金的玻璃转化温度Tg为627K,初始晶化温度Tx为693K,过冷液相区宽度ΔTx为66K。
实施例3:
本实施例中,稀土基高熵块体金属玻璃材料的分子式为(Er0.2Dy0.2Co0.2Al0.2Gd0.2)97Si3,直径为3mm,其具体制备方法如下:
步骤1:将纯度大于99%的Er、Dy、Co、Al、Gd、Si原料按照分子式(Er0.2Dy0.2Co0.2Al0.2Gd0.2)97Si3所示的成分原子百分比进行配料;
步骤2:将步骤1称取的原料放在电弧熔炼炉的水冷铜坩埚内,关闭腔体,首先抽腔体真空至5×10-3Pa以下,然后充入惰性气体保护进行熔炼,原料熔化后持续熔炼6分钟后停止加热,让合金随坩埚冷却至凝固迅速将其翻转,反复熔炼5次,得到成分均匀的母合金铸锭;
步骤3:将步骤2得到的母合金铸锭去除表面杂质并清洁后破碎为小块合金,将小块合金锭装入开有口径大小为1~2mm的石英管中,之后放入铜模铸造设备的感应线圈中,关闭腔体,抽腔体真空度低于9×10-3Pa,充入惰性气体Ar气,调节腔体内外气压差为0.02MPa;
步骤4:在惰性气体保护氛围中,开启电源并逐步增加电流强度直至合金块体熔化,利用压力差将熔融的合金熔液喷入直径3mm铜模中,得到稀土基高熵块体金属玻璃材料。
采用D8 Advance型多晶X射线衍射仪测试步骤4制得的金属玻璃的XRD图谱,该合金直径达3mm的块体为非晶结构。
采用NETZSCH DSC 404 F3差示扫描量热仪测量步骤4制得的金属玻璃的DSC曲线,升温速率40开尔文/分钟,测得非晶合金的玻璃转化温度Tg为632K,初始晶化温度Tx为691K,过冷液相区宽度ΔTx为59K。
实施例4:
本实施例中,稀土基高熵块体金属玻璃材料的分子式为(Er0.2Dy0.2Co0.2Al0.2Gd0.2)96Si4,直径为1mm,其具体制备方法如下:
步骤1:将纯度大于99%的Er、Dy、Co、Al、Gd、Si原料按照分子式(Er0.2Dy0.2Co0.2Al0.2Gd0.2)96Si4所示的成分原子百分比进行配料;
步骤2:将步骤1称取的原料放在电弧熔炼炉的水冷铜坩埚内,关闭腔体,首先抽腔体真空至5×10-3Pa以下,然后充入惰性气体保护进行熔炼,原料熔化后持续熔炼6分钟后停止加热,让合金随坩埚冷却至凝固迅速将其翻转,反复熔炼4次,得到成分均匀的母合金铸锭;
步骤3:将步骤2得到的母合金铸锭去除表面杂质并清洁后破碎为小块合金,将小块合金锭装入开有口径大小为1~2mm的石英管中,之后放入铜模铸造设备的感应线圈中,关闭腔体,抽腔体真空度低于9×10-3Pa,充入惰性气体Ar气,调节腔体内外气压差为0.03MPa;
步骤4:在惰性气体保护氛围中,开启电源并逐步增加电流强度直至合金块体熔化,利用压力差将熔融的合金熔液喷入直径1mm铜模中,得到稀土基高熵块体金属玻璃材料。
采用D8 Advance型多晶X射线衍射仪测试步骤4制得的金属玻璃的XRD图谱,该合金直径达1mm的块体为非晶结构。
采用NETZSCH DSC 404 F3差示扫描量热仪测量步骤4制得的金属玻璃的DSC曲线,升温速率40开尔文/分钟,测得非晶合金的玻璃转化温度Tg为643K,初始晶化温度Tx为691K,过冷液相区宽度ΔTx为48K。
实施例5:
本实施例中,稀土基高熵块体金属玻璃材料的分子式为(Er0.2Dy0.2Co0.2Al0.2Gd0.2)98Si1Fe1,直径为3mm,其具体制备方法如下:
步骤1:将纯度大于99%的Er、Dy、Co、Al、Gd、Si、Fe原料按照分子式(Er0.2Dy0.2Co0.2Al0.2Gd0.2)98Si1Fe1所示的成分原子百分比进行配料;
步骤2:将步骤1称取的原料放在电弧熔炼炉的水冷铜坩埚内,关闭腔体,首先抽腔体真空至5×10-3Pa以下,然后充入惰性气体保护进行熔炼,原料熔化后持续熔炼8分钟后停止加热,让合金随坩埚冷却至凝固迅速将其翻转,反复熔炼4次,得到成分均匀的母合金铸锭;
步骤3:将步骤2得到的母合金铸锭去除表面杂质并清洁后破碎为小块合金,将小块合金锭装入开有口径大小为1~2mm的石英管中,之后放入铜模铸造设备的感应线圈中,关闭腔体,抽腔体真空度低于9×10-3Pa,充入惰性气体Ar气,调节腔体内外气压差为0.03MPa;
步骤4:在惰性气体保护氛围中,开启电源并逐步增加电流强度直至合金块体熔化,利用压力差将熔融的合金熔液喷入直径3mm铜模中,得到稀土基高熵块体金属玻璃材料。
采用D8 Advance型多晶X射线衍射仪测试步骤4制得的金属玻璃的XRD图谱,该合金直径达3mm的块体为非晶结构。
采用NETZSCH DSC 404 F3差示扫描量热仪测量步骤4制得的金属玻璃的DSC曲线,升温速率40开尔文/分钟,测得非晶合金的玻璃转化温度Tg为617K,初始晶化温度Tx为681K,过冷液相区宽度ΔTx为64K。
实施例6:
本实施例中,稀土基高熵块体金属玻璃材料的分子式为(Er0.2Dy0.2Co0.2Al0.2Gd0.2)97Si1Fe2,直径为1.5mm,其具体制备方法如下:
步骤1:将纯度大于99%的Er、Dy、Co、Al、Gd、Si、Fe原料按照分子式(Er0.2Dy0.2Co0.2Al0.2Gd0.2)97Si1Fe2所示的成分原子百分比进行配料;
步骤2:将步骤1称取的原料放在电弧熔炼炉的水冷铜坩埚内,关闭腔体,首先抽腔体真空至5×10-3Pa以下,然后充入惰性气体保护进行熔炼,原料熔化后持续熔炼9分钟后停止加热,让合金随坩埚冷却至凝固迅速将其翻转,反复熔炼3次,得到成分均匀的母合金铸锭。
步骤3:将步骤2得到的母合金铸锭去除表面杂质并清洁后破碎为小块合金,将小块合金锭装入开有口径大小为1~2mm的石英管中,之后放入铜模铸造设备的感应线圈中,关闭腔体,抽腔体真空度低于9×10-3Pa,充入惰性气体Ar气,调节腔体内外气压差为0.02MPa;
步骤4:在惰性气体保护氛围中,开启电源并逐步增加电流强度直至合金块体熔化,利用压力差将熔融的合金熔液喷入直径1.5mm铜模中,得到稀土基高熵块体金属玻璃材料。
采用D8 Advance型多晶X射线衍射仪测试步骤4制得的金属玻璃的XRD图谱,该合金直径达1.5mm的块体为非晶结构。
采用NETZSCH DSC 404 F3差示扫描量热仪测量步骤4制得的金属玻璃的DSC曲线,升温速率40开尔文/分钟,测得非晶合金的玻璃转化温度Tg为618K,初始晶化温度Tx为676K,过冷液相区宽度ΔTx为58K。
采用磁性测量系统(MPMS)测试该合金的等温磁化曲线,图5所示为非晶合金磁熵变曲线,最大磁熵变为8.53Jkg-1K-1,半高宽度67K,磁制冷能力(RC)为572Jkg-1
实施例7:
本实施例中,稀土基高熵块体金属玻璃材料的分子式为(Er0.2Dy0.2Co0.2Al0.2Gd0.2)96Si1Fe3,直径为1mm,其具体制备方法如下:
步骤1:将纯度大于99%的Er、Dy、Co、Al、Gd、Si、Fe原料按照分子式(Er0.2Dy0.2Co0.2Al0.2Gd0.2)96Si1Fe3所示的成分原子百分比进行配料;
步骤2:将步骤1称取的原料放在电弧熔炼炉的水冷铜坩埚内,关闭腔体,首先抽腔体真空至5×10-3Pa以下,然后充入惰性气体保护进行熔炼,原料熔化后持续熔炼9分钟后停止加热,让合金随坩埚冷却至凝固迅速将其翻转,反复熔炼5次,得到成分均匀的母合金铸锭。
步骤3:将步骤2得到的母合金铸锭去除表面杂质并清洁后破碎为小块合金,将小块合金锭装入开有口径大小为1~2mm的石英管中,之后放入铜模铸造设备的感应线圈中,关闭腔体,抽腔体真空度低于9×10-3Pa,充入惰性气体Ar气,调节腔体内外气压差为0.025MPa;
步骤4:在惰性气体保护氛围中,开启电源并逐步增加电流强度直至合金块体熔化,利用压力差将熔融的合金熔液喷入直径1mm铜模中,得到稀土基高熵块体金属玻璃材料。
采用D8 Advance型多晶X射线衍射仪测试步骤4制得的金属玻璃的XRD图谱,该合金直径达1mm的块体为非晶结构。
采用NETZSCH DSC 404 F3差示扫描量热仪测量步骤4制得的金属玻璃的DSC曲线,升温速率40开尔文/分钟,测得非晶合金的玻璃转化温度Tg为613K,初始晶化温度Tx为651K,过冷液相区宽度ΔTx为38K。
实施例8:
本实施例中,稀土基高熵块体金属玻璃材料的分子式为[(Er0.2Dy0.2Co0.2Al0.2Gd0.2)0.96Si0.04]99.9Fe0.1,直径为0.5mm,其具体制备方法如下:
步骤1:将纯度大于99%的Er、Dy、Co、Al、Gd、Si、Fe原料按照分子式[(Er0.2Dy0.2Co0.2Al0.2Gd0.2)0.96Si0.04]99.9Fe0.1所示的成分原子百分比进行配料;
步骤2:将步骤1称取的原料放在电弧熔炼炉的水冷铜坩埚内,关闭腔体,首先抽腔体真空至5×10-3Pa以下,然后充入惰性气体保护进行熔炼,原料熔化后持续熔炼8分钟后停止加热,让合金随坩埚冷却至凝固迅速将其翻转,反复熔炼6次,得到成分均匀的母合金铸锭。
步骤3:将步骤2得到的母合金铸锭去除表面杂质并清洁后破碎为小块合金,将小块合金锭装入开有口径大小为1~2mm的石英管中,之后放入铜模铸造设备的感应线圈中,关闭腔体,抽腔体真空度低于9×10-3Pa,充入惰性气体Ar气,调节腔体内外气压差为0.03MPa;
步骤4:在惰性气体保护氛围中,开启电源并逐步增加电流强度直至合金块体熔化,利用压力差将熔融的合金熔液喷入直径0.5mm铜模中,得到稀土基高熵块体金属玻璃材料。
实施例9:
本实施例中,稀土基高熵块体金属玻璃材料的分子式为(Er0.2Dy0.2Co0.2Al0.2Gd0.2)97.9Si2Fe0.1,直径为4mm,其具体制备方法如下:
步骤1:将纯度大于99%的Er、Dy、Co、Al、Gd、Si、Fe原料按照分子式(Er0.2Dy0.2Co0.2Al0.2Gd0.2)97.9Si2Fe0.1所示的成分原子百分比进行配料;
步骤2:将步骤1称取的原料放在电弧熔炼炉的水冷铜坩埚内,关闭腔体,首先抽腔体真空至5×10-3Pa以下,然后充入惰性气体保护进行熔炼,原料熔化后持续熔炼7分钟后停止加热,让合金随坩埚冷却至凝固迅速将其翻转,反复熔炼6次,得到成分均匀的母合金铸锭。
步骤3:将步骤2得到的母合金铸锭去除表面杂质并清洁后破碎为小块合金,将小块合金锭装入开有口径大小为1~2mm的石英管中,之后放入铜模铸造设备的感应线圈中,关闭腔体,抽腔体真空度低于9×10-3Pa,充入惰性气体Ar气,调节腔体内外气压差为0.02MPa;
步骤4:在惰性气体保护氛围中,开启电源并逐步增加电流强度直至合金块体熔化,利用压力差将熔融的合金熔液喷入直径4mm铜模中,得到稀土基高熵块体金属玻璃材料。
上述实施例对本发明技术方案进行了系统详细的说明,应理解的是上所述实例仅为本发明的具体实施例,并不用于限制本发明。凡在本发明原则范围内所做的任何修改、补充或等同替换等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种稀土基高熵块体金属玻璃材料,其特征在于:该块体金属玻璃的分子式为EraDybCocAldMeSif,其中M为Gd、Tb或Tm中的一种,a、b、c、d、e、f分别表示对应元素的原子百分含量,并且满足以下条件:19.2≤a≤19.8,19.2≤b≤19.8,19.2≤c≤19.8,19.2≤d≤19.8,19.2≤e≤19.8,1≤f≤4,a=b=c=d=e,a+b+c+d+e+f=100。
2.如权利要求1所述的一种稀土基高熵块体金属玻璃材料,其特征在于:所述块体金属玻璃的分子式为EraDybCocAldMeSifFeg,其中M为Gd、Tb或Tm中的一种,a、b、c、d、e、f、g分别表示对应元素的原子百分含量,并且满足以下条件:19.2≤a<19.8、19.2≤b<19.8、19.2≤c<19.8、19.2≤d<19.8、19.2≤e<19.8、1≤f<4、0<g≤3,a=b=c=d=e,a+b+c+d+e+f+g=100。
3.如权利要求1所述的一种稀土基高熵块体金属玻璃材料,其特征在于:所述稀土基高熵块体金属玻璃材料的结构为完全非晶相,直径为0.5~6mm。
4.如权利要求1所述的一种稀土基高熵块体金属玻璃材料,其特征在于:所述稀土基高熵块体金属玻璃材料的居里温度为43~51K,最大磁熵变值达到7.3~8.53Jkg-1K-1,磁制冷能力达482~572Jkg-1
5.一种如权利要求1至4任一权利要求所述的稀土基高熵块体金属玻璃材料的制备方法,其特征是:该制备方法包括以下步骤:
步骤1:按原子百分含量称取原料;
步骤2:将步骤1称取的原料装入熔炼炉中熔炼,冷却后得到成分均匀的母合金铸锭;
步骤3:将步骤2得到的母合金铸锭熔融成合金熔液,喷入铜模中,得到稀土基高熵块体金属玻璃材料。
6.如权利要求5所述的一种稀土基高熵块体金属玻璃材料的制备方法,其特征在于:所述的原料纯度不低于99wt%。
7.如权利要求5所述的一种稀土基高熵块体金属玻璃材料的制备方法,其特征在于:步骤2所述的熔炼的具体方法是:将步骤1称取的原料放在电弧熔炼炉的水冷铜坩埚内,关闭腔体,首先抽腔体真空,使得腔体真空度等于或低于5×10-3Pa,然后充入惰性气体保护进行熔炼,原料熔化后持续熔炼5~10min后停止加热,让合金随坩埚冷却至凝固迅速将其翻转,反复熔炼3~6次,得到成分均匀的母合金铸锭。
8.如权利要求5所述的一种稀土基高熵块体金属玻璃材料的制备方法,其特征在于:步骤3所述的将母合金铸锭熔融成合金熔液,喷入铜模中的具体步骤如下:
1)将步骤2得到的母合金铸锭去除表面杂质并清洁后破碎为小块合金锭,将小块合金锭装入开有口径大小为1~2mm的石英管中,之后将该石英管放入铜模铸造设备的感应线圈中,关闭真空甩带机腔体,抽真空,使得腔体真空度等于或低于9×10-3Pa,之后充入惰性气体,调节腔体内外气压差为0.02~0.03MPa;
2)在惰性气体保护氛围中,开启电源并逐步增加电流强度直至小块合金锭熔化成合金熔液,利用腔体内外气压差将合金熔液喷入铜模中,得到稀土基高熵块体金属玻璃材料。
CN201710186427.9A 2017-03-24 2017-03-24 一种稀土基高熵块体金属玻璃材料及其制备方法 Pending CN107012408A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710186427.9A CN107012408A (zh) 2017-03-24 2017-03-24 一种稀土基高熵块体金属玻璃材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710186427.9A CN107012408A (zh) 2017-03-24 2017-03-24 一种稀土基高熵块体金属玻璃材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107012408A true CN107012408A (zh) 2017-08-04

Family

ID=59446351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710186427.9A Pending CN107012408A (zh) 2017-03-24 2017-03-24 一种稀土基高熵块体金属玻璃材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107012408A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110616386A (zh) * 2019-09-12 2019-12-27 东南大学 一种高磁热效应稀土基高熵非晶合金及其制备方法
CN110734285A (zh) * 2019-11-06 2020-01-31 常州大学 一种液相燃烧制备多主元abo3钙钛矿结构陶瓷的方法
WO2020228709A1 (zh) * 2019-05-15 2020-11-19 刘丽 一种合金粉体材料的制备方法
WO2021015038A1 (ja) 2019-07-25 2021-01-28 国立研究開発法人物質・材料研究機構 磁気冷凍モジュール、磁気冷凍システム及び冷却方法
CN112342475A (zh) * 2020-10-13 2021-02-09 东南大学 一种微合金化重稀土基非晶合金及其制备方法和应用
CN115229144A (zh) * 2022-08-05 2022-10-25 桂林电子科技大学 一种TbDyHoEr薄带及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423919A (zh) * 2008-12-11 2009-05-06 北京航空航天大学 一种含Fe稀土基非晶合金
CN101550521A (zh) * 2008-04-01 2009-10-07 中国科学院物理研究所 具有磁热效应的稀土基块体非晶合金及其复合材料
CN102691020A (zh) * 2012-05-16 2012-09-26 中国科学院宁波材料技术与工程研究所 兼具大非晶形成能力与高磁热效应的Gd基块体非晶合金及其制备方法
CN105220082A (zh) * 2015-10-20 2016-01-06 宁波工程学院 高居里温度和高制冷能力的Gd基非晶纳米晶复合材料及其制备方法
CN105296893A (zh) * 2014-07-01 2016-02-03 中国科学院宁波材料技术与工程研究所 一种高熵非晶合金、其制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550521A (zh) * 2008-04-01 2009-10-07 中国科学院物理研究所 具有磁热效应的稀土基块体非晶合金及其复合材料
CN101423919A (zh) * 2008-12-11 2009-05-06 北京航空航天大学 一种含Fe稀土基非晶合金
CN102691020A (zh) * 2012-05-16 2012-09-26 中国科学院宁波材料技术与工程研究所 兼具大非晶形成能力与高磁热效应的Gd基块体非晶合金及其制备方法
CN105296893A (zh) * 2014-07-01 2016-02-03 中国科学院宁波材料技术与工程研究所 一种高熵非晶合金、其制备方法及应用
CN105220082A (zh) * 2015-10-20 2016-01-06 宁波工程学院 高居里温度和高制冷能力的Gd基非晶纳米晶复合材料及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020228709A1 (zh) * 2019-05-15 2020-11-19 刘丽 一种合金粉体材料的制备方法
WO2021015038A1 (ja) 2019-07-25 2021-01-28 国立研究開発法人物質・材料研究機構 磁気冷凍モジュール、磁気冷凍システム及び冷却方法
CN110616386A (zh) * 2019-09-12 2019-12-27 东南大学 一种高磁热效应稀土基高熵非晶合金及其制备方法
CN110734285A (zh) * 2019-11-06 2020-01-31 常州大学 一种液相燃烧制备多主元abo3钙钛矿结构陶瓷的方法
CN110734285B (zh) * 2019-11-06 2022-03-01 常州大学 一种液相燃烧制备多主元abo3钙钛矿结构陶瓷的方法
CN112342475A (zh) * 2020-10-13 2021-02-09 东南大学 一种微合金化重稀土基非晶合金及其制备方法和应用
CN115229144A (zh) * 2022-08-05 2022-10-25 桂林电子科技大学 一种TbDyHoEr薄带及其制备方法和应用
CN115229144B (zh) * 2022-08-05 2023-12-22 桂林电子科技大学 一种TbDyHoEr薄带及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN107012408A (zh) 一种稀土基高熵块体金属玻璃材料及其制备方法
JP5855457B2 (ja) 磁気冷却用またはヒートポンプ用の金属系材料の製造方法
EP3031057B1 (en) Magnetocaloric materials containing b
JP6531098B2 (ja) Bを含む磁気熱量材料
CN104559943A (zh) 一种晶态磁制冷金属材料及其制备方法
Zhong et al. Thermal stability, magnetic properties and large refrigerant capacity of ternary Gd55Co35M10 (M= Mn, Fe and Ni) amorphous alloys
CN101503784B (zh) 高磁致伸缩铁基非晶合金及其制备方法
CN102881394B (zh) 稀土提纯中间产物制备的La(Fe,Si)13基磁性材料、制备方法和用途
CN103031478A (zh) 具有磁熵变平台的原位复相钆基磁致冷材料及其制备方法
CN110616386B (zh) 一种高磁热效应稀土基高熵非晶合金及其制备方法
CN106929775A (zh) 大非晶形成能力高磁热效应钆基块体非晶合金及制备方法
CN106978576B (zh) 一种Er基非晶低温磁制冷材料及其制备方法
Liang et al. Thermal stability and magnetocaloric properties of GdDyAlCo bulk metallic glasses
CN106702245B (zh) 一种Gd-Co基非晶纳米晶磁制冷材料及其制备方法
CN102691020B (zh) 兼具大非晶形成能力与高磁热效应的Gd基块体非晶合金及其制备方法
CN105671396B (zh) 用于室温磁制冷的铽‑锗‑锑材料及其制备方法
CN105400998A (zh) 一种Ni-Mn-Ga合金薄带及其制备方法
CN101509107B (zh) 铁基非晶合金磁性材料及其制备方法
CN107419198B (zh) 稀土钴镍基低温非晶磁制冷材料及其制备方法
CN105296894B (zh) 一种铁基非晶合金及其制备方法
CN105861860B (zh) 一种铽‑锗‑铋材料、制备方法及其应用
Gencer et al. The crystallisation kinetics, magnetic and magnetocaloric properties of Gd55Co20Fe5Al20− xSix (x= 0, 5, 10, 15) alloys
CN100489137C (zh) 具有一级磁相变特征的稀土-铁-硅基化合物及其制备方法
CN108504965A (zh) 具有明显自旋玻璃行为的铁基块体非晶合金及其制备方法
CN104096844B (zh) 一种制备磁制冷金属微球颗粒的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170804