CN112299835A - 一种a位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法 - Google Patents

一种a位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法 Download PDF

Info

Publication number
CN112299835A
CN112299835A CN202011176454.6A CN202011176454A CN112299835A CN 112299835 A CN112299835 A CN 112299835A CN 202011176454 A CN202011176454 A CN 202011176454A CN 112299835 A CN112299835 A CN 112299835A
Authority
CN
China
Prior art keywords
alkali metal
perovskite
permeable membrane
metal ion
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011176454.6A
Other languages
English (en)
Inventor
赵倚婕
李其明
李芳�
董艳梅
陈露谣
李佳
姜冬雪
李帅
谭淞瀚
于海江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Shihua University
Original Assignee
Liaoning Shihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Shihua University filed Critical Liaoning Shihua University
Priority to CN202011176454.6A priority Critical patent/CN112299835A/zh
Publication of CN112299835A publication Critical patent/CN112299835A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明属合成高性能陶瓷透氧膜研发领域,特别涉及一种在钙钛矿A位部分掺杂碱金属离子的陶瓷透氧膜制备方法,其具体步骤如下:(1)以锶离子盐、钴离子盐、铁离子盐和碱金属离子盐为原料,形成均匀混合水溶液A;(2)向混合溶液A中加入络合剂、分散剂和弱碱,磁力搅拌数小时至所有物质完全溶解,形成溶胶B;(3)对溶胶B进行加热逐步蒸发其水分获得凝胶C;(4)将凝胶C进行高温焙烧处理获得钙钛矿粉体E;(5)将E进行压片、焙烧、打磨即可以即得A位部分掺杂碱金属离子的钙钛矿陶瓷透氧膜目标产物。本发明设备简单,流程简化,投资成本低廉,目标产物为稳定性与透氧量兼具的一类钙钛矿透氧膜新材料。

Description

一种A位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法
技术领域
本发明属合成高性能陶瓷透氧膜材料领域,特别涉及一种钙钛矿A位部分掺杂碱金属离子的陶瓷透氧膜制备方法。
背景技术
混合导体陶瓷透氧膜材料以其优异的透氧性能在纯氧分离、甲烷部分氧化、富氧燃烧以及固体氧化物燃料电池领域展现出良好的应用前景。制约混合导体透氧膜材料发展有3个关键因素,一是透氧膜材料的透氧量,二是透氧膜在应用气氛中的稳定性,尤其是在还原气氛或者低氧分压状态下的结构稳定性和化学稳定性。三是透氧膜材料组件也应该具备较高的机械强度,因为透氧膜组件通常会在较大的压力差环境中使用。研究表明当前发展的诸多钙钛矿材料透氧量较高,但稳定性不足,因此发展高稳定性钙钛矿透氧膜材料成为透氧膜领域发展的关键。钙钛矿材料的离子掺杂可变性较大,元素周期表中大多数金属离子都可以掺杂到钙钛矿结构,但是氧离子传导能力与晶相结构、A-O和B-O键能等诸多因素有关,因此不同离子及同种离子不同掺杂量都会对材料透氧性能有极大影响,例如,SrCo0.8Fe0.2O3-δ具有较高的透氧量,但SCF的结构稳定性较差,尤其是在低氧分压下膜片容易粉化解体,从而限制了它的实际应用。
为了优化钙钛矿透氧膜材料的稳定性和透氧量,本发明首次将优选碱金属离子部分掺杂到钙钛矿材料A位晶格中制备了A位部分掺杂碱金属的纯相钙钛矿材料,该材料实现了钙钛矿透氧膜材料稳定性和透氧量的有效结合,具有较好的工业应用前景。
发明内容
本发明的目的在于克服现有钙钛矿透氧膜材料稳定性的不足之处,提供一种设备简单,流程简化,投资成本低廉,目标产物稳定性高,透氧量较大,能够有效平衡稳定性与透氧量的钙钛矿A位部分掺杂碱金属离子的陶瓷透氧膜制备方法。
为解决上述技术问题,本发明是这样实现的:
一种钙钛矿A位部分掺杂碱金属离子的陶瓷透氧膜制备方法,按如下步骤依次实施:
(1)以锶离子源、钴离子源、铁离子源和碱金属离子源为原料,形成均匀混合溶液A;
(2)向步骤(1)所得混合溶液A中加入络合剂、分散剂和碱溶液,磁力搅拌数小时至所有物质完全溶解,形成溶液B;
(3)将步骤(2)所得溶液B进行加热获得胶体溶液C;
(4)将步骤(3)所得胶体溶液C加热形成混合氧化物粉体D;
(5)将步骤(4)所得混合氧化物粉体D进行高温焙烧获得钙钛矿透氧膜材料E;
(6)将步骤(5)所得钙钛矿透氧膜材料E进行压片、焙烧、打磨,即得目的产物钙钛矿A位部分掺杂碱金属离子的钙钛矿陶瓷透氧膜。
作为一种优选方案,本发明所述钙钛矿A位部分掺杂碱金属离子为ABO3型钙钛矿材料的A位部分掺杂碱金属离子。
进一步地,本发明所述步骤(1)中,碱金属离子源中碱金属离子在ABO3型钙钛矿材料的A位掺杂比例为5~30%。
进一步地,本发明所述步骤(1)中,锶离子源中锶离子含量高于碱金属离子源中碱金属离子含量。
进一步地,本发明所述的碱金属离子源为碱金属的硝酸盐或碳酸盐。
进一步地,本发明所述步骤(1)中,所述锶离子源中钴离子与铁离子源中铁离子的摩尔比为1:1。
进一步地,本发明所述步骤(2)中,分散剂为PVP、EDTA酸与柠檬酸的混合物;所述碱溶液为KOH或氨水。
进一步地,本发明所述步骤(4)中,高温焙烧温度为800~1000℃。
进一步地,本发明所述步骤(5)中的焙烧温度为1000~1250℃。
本发明能够很好的应用于纯氧分离、水分解催化剂和低碳烃氧化等领域,使钙钛矿材料制备流程简化、设备减少,从而降低投资等问题。本发明基于碱金属离子具有更低的价态和稳定性,通过在钙钛矿A位的部分掺杂,可以在钙钛矿晶格中创造更多氧空位,并通过碱金属离子与晶格中氧离子较高的键能赋予钙钛矿材料更高的稳定性。所制备的A位部分掺杂的钙钛矿材料具有纳米粒子尺寸,并且高度分散,相对传统A位没有掺杂碱金属离子的钙钛矿透氧膜氧化物具有更高的稳定性。
附图说明
下面结合附图和具体实施方式对本发明作进一步说明。本发明的保护范围不仅局限于下列内容的表述。
图1:Li0.1Sr0.9Co0.5Fe0.5O3-δ的钙钛矿材料的XRD分析;
图2:Cs0.1Sr0.9Co0.5Fe0.5O3-δ的钙钛矿材料的XRD分析
图3:Cs0.1Sr0.9Co0.5Fe0.5O3-δ的钙钛矿材料透氧稳定性测试。
具体实施方式
下面结合实施例对本发明作进一步描述。本发明所涉及的材料包含并不局限于以下实施例中的表述。
本发明一种A位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法,下述的实例中所用的水均为去离子水;所用试剂除特别说明的外,均采用分析纯试剂;实施例中,采用SU8010扫描电镜对不同条件下制得的钙钛矿透氧膜材料的微观形貌进行了表征。XRD表征采用日本理学公司D8 AdvanceX射线衍射仪,其实验条件为:Cu Kα辐射(λ=0.15418nm),管压:40Kv,管流:30mA,使用连续扫描方式,步长0.02°,扫描速率6°(2θ)/min。
实施例1
称取0.2g Li2CO3粉体用稀硝酸溶解、称取Sr(NO3)27.0906g、Fe(NO3)2.9H2O5.468g、Co(NO3)2.6H2O 3.9392g溶于上述溶液,形成混合溶液A;称取15.8224g EDTA酸溶于上述混合溶液A,磁力搅拌1h,接着加入柠檬酸15.6034g,搅拌1h 后,缓慢加入氨水调节溶液pH值接近于中性,最后加入分散剂PVP(聚乙烯吡咯烷酮)6.42g,继续搅拌直到形成透明溶液B;将上述溶液B放到磁力搅拌器上加热搅拌,逐渐蒸发溶液中的水分,直至形成一个棕红色粘性胶体溶液C;将胶体溶液C转移到坩埚中用电加热炉加热到150℃逐渐形成凝胶,继续加热凝胶逐步燃烧,形成混合氧化物粉体D;然后将混合氧化物粉体D转移到马弗炉中900℃焙烧6h获得Li0.1Sr0.9Co0.5Fe0.5O3-δ钙钛矿透氧膜材料E,将钙钛矿透氧膜材料E用 40MPa压力压制成膜片,然后1150℃焙烧5h就可以得到所需透氧膜片材料,该材料在透氧过程中展现较高的稳定性与透氧量。
实施例2
称取0.23g NaNO3粉体用稀硝酸溶解、称取Sr(NO3)27.0906g、Fe(NO3)2.9H2O5.468g、Co(NO3)2.6H2O 3.9392g溶于上述溶液,形成混合溶液A;称取15.8224g EDTA酸溶于上述混合溶液A,磁力搅拌1h,接着加入柠檬酸15.6034g,搅拌1h 后,缓慢加入氨水调节溶液PH值接近于中性,最后加入分散剂PVP(聚乙烯吡咯烷酮)6.42g,继续搅拌直到形成透明溶液B;将上述溶液B放到磁力搅拌器上加热搅拌,逐渐蒸发溶液中的水分,直至形成一个棕红色粘性胶体溶液C;将胶体溶液C转移到坩埚中用电加热炉150℃加热逐渐形成凝胶,继续加热凝胶逐步燃烧,形成混合氧化物粉体D;然后将混合氧化物粉体D转移到马弗炉中850℃加热焙烧6h获得Na0.1Sr0.9Co0.5Fe0.5O3-δ钙钛矿透氧膜材料E,将钙钛矿透氧膜材料E用40MPa压力压制成膜片,然后1200℃焙烧5h就可以得到所需透氧膜片材料,该材料在透氧过程中展现较高的稳定性与透氧量。
实施例3
称取0.748g K2CO3粉体用稀硝酸溶解、称取Sr(NO3)27.0906g、Fe(NO3)2.9H2O5.468g、Co(NO3)2.6H2O 3.9392g溶于上述溶液,形成混合溶液A;称取15.8224g EDTA酸溶于上述混合溶液A,磁力搅拌1h,接着加入柠檬酸15.6034g,搅拌1h 后,缓慢加入氨水和KOH调节溶液pH值接近于中性,最后加入分散剂PVP(聚乙烯吡咯烷酮)6.42g,继续搅拌直到形成透明溶液B;将上述溶液B放到磁力搅拌器上加热搅拌,逐渐蒸发溶液中的水分,直至形成一个棕红色粘性胶体溶液C;将胶体溶液C转移到坩埚中用电加热炉150℃加热逐渐形成凝胶,继续加热凝胶逐步燃烧,形成混合氧化物粉体D;然后将混合氧化物粉体D转移到马弗炉中950℃焙烧5h获得K0.1Sr0.9Co0.5Fe0.5O3-δ钙钛矿透氧膜材料E,将该材料用 40MPa压力压制成膜片,然后1200℃被烧5h就可以得到所需透氧膜片材料,该材料在透氧过程中展现较高的稳定性与透氧量。
实施例4
称取0.882g Cs2CO3粉体用稀硝酸溶解、称取Sr(NO3)27.0906g、Fe(NO3)2.9H2O5.468g、Co(NO3)2.6H2O 3.9392g溶于上述溶液,形成混合溶液A;称取15.8224g EDTA酸溶于上述混合溶液A,磁力搅拌1h,接着加入柠檬酸15.6034g,搅拌1h 后,缓慢加入氨水调节溶液PH值接近于中性,最后加入分散剂PVP(聚乙烯吡咯烷酮)6.42g,继续搅拌直到形成透明溶液B;将上述溶液B放到磁力搅拌器上加热搅拌,逐渐蒸发溶液中的水分,直至形成一个棕红色粘性胶体溶液C;将胶体溶液C转移到坩埚中用电加热炉150℃加热逐渐形成凝胶,继续加热凝胶逐步燃烧,形成混合氧化物粉体D;然后将混合氧化物粉体D转移到马弗炉中900℃加热焙烧5h可以获得CS0.1Sr0.9Co0.5Fe0.5O3-δ钙钛矿透氧膜材料E,将钙钛矿透氧膜材料E用40MPa压力压制成膜片,然后1180℃焙烧5h就可以得到所需透氧膜片材料,该材料在透氧过程中展现较高的稳定性与透氧量。
可以理解的是,对于本领域的普通技术人员来说,可以根据本发明的技术构思做出其它各种相应的改变与变形,而所有这些改变与变形都应属于本发明权利要求的保护范围。

Claims (9)

1.一种钙钛矿A位部分掺杂碱金属离子的陶瓷透氧膜制备方法, 其特征在于,按如下步骤依次实施:
(1)以锶离子源、钴离子源、铁离子源和碱金属离子源为原料,形成均匀混合溶液A;
(2)向步骤(1)所得混合溶液A中加入络合剂、分散剂和碱,磁力搅拌数小时至所有物质完全溶解,形成溶液B;
(3)将步骤(2)所得溶液B进行加热获得胶体溶液C;
(4)将步骤(3)所得胶体溶液C加热形成混合氧化物粉体D;
(5)将步骤(4)所得混合氧化物粉体D进行高温焙烧获得钙钛矿透氧膜材料E;
(6)将步骤(5)所得钙钛矿透氧膜材料E进行压片、焙烧、打磨,即得目的产物钙钛矿A位部分掺杂碱金属离子的钙钛矿陶瓷透氧膜。
2.根据权利要求1所述的一种钙钛矿A位部分掺杂碱金属离子的陶瓷透氧膜制备方法,其特征在于:所述钙钛矿A位部分掺杂碱金属离子为ABO3型钙钛矿材料的A位部分掺杂碱金属离子。
3.根据权利要求2所述的一种钙钛矿A位部分掺杂碱金属的陶瓷透氧膜制备方法, 其特征在于:所述步骤(1)中,碱金属离子源中碱金属离子在ABO3型钙钛矿材料的A位掺杂比例为5~30%。
4.根据权利要求3所述的一种钙钛矿A位部分掺杂碱金属离子的陶瓷透氧膜制备方法,其特征在于:所述步骤(1)中,锶离子源中锶离子含量高于碱金属离子源中碱金属离子含量。
5.根据权利要求4所述的一种钙钛矿A位部分掺杂碱金属离子的陶瓷透氧膜制备方法,其特征在于:所述的碱金属离子源为碱金属的硝酸盐或碳酸盐。
6.根据权利要求5所述的一种钙钛矿A位部分掺杂碱金属离子的陶瓷透氧膜制备方法,其特征在于:所述步骤(1)中,所述锶离子源中钴离子与铁离子源中铁离子的摩尔比为1:1。
7.根据权利要求6所述的一种钙钛矿A位部分掺杂碱金属离子的陶瓷透氧膜制备方法,其特征在于:所述步骤(2)中,分散剂为PVP, 络合剂为EDTA酸与柠檬酸的混合物, 所述碱溶液为KOH或氨水。
8.根据权利要求7所述的一种钙钛矿A位部分掺杂碱金属离子的陶瓷透氧膜制备方法,其特征在于:所述步骤(4)中,高温焙烧温度为800~1000oC。
9.根据权利要求8所述的一种钙钛矿A位部分掺杂碱金属离子的陶瓷透氧膜制备方法,其特征在于:所述步骤(5)中的焙烧温度为1000~1250oC。
CN202011176454.6A 2020-10-29 2020-10-29 一种a位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法 Pending CN112299835A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011176454.6A CN112299835A (zh) 2020-10-29 2020-10-29 一种a位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011176454.6A CN112299835A (zh) 2020-10-29 2020-10-29 一种a位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法

Publications (1)

Publication Number Publication Date
CN112299835A true CN112299835A (zh) 2021-02-02

Family

ID=74330702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011176454.6A Pending CN112299835A (zh) 2020-10-29 2020-10-29 一种a位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN112299835A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113332863A (zh) * 2021-07-09 2021-09-03 辽宁石油化工大学 一种具有高表面催化活性双相透氧膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724150A (zh) * 2005-06-16 2006-01-25 南京工业大学 Co2分解催化剂及其制备方法
DE102008013292A1 (de) * 2008-03-07 2009-09-10 Borsig Process Heat Exchanger Gmbh Verfahren zum Regenerieren von Sauerstoff-leitenden keramischen Membranen sowie Reaktor
CN101948303A (zh) * 2010-09-14 2011-01-19 辽宁石油化工大学 一种A位Ba、Sr、Ca三离子共掺杂的SrCo0.8Fe0.2O3-δ基钙钛矿透氧膜材料及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724150A (zh) * 2005-06-16 2006-01-25 南京工业大学 Co2分解催化剂及其制备方法
DE102008013292A1 (de) * 2008-03-07 2009-09-10 Borsig Process Heat Exchanger Gmbh Verfahren zum Regenerieren von Sauerstoff-leitenden keramischen Membranen sowie Reaktor
CN101948303A (zh) * 2010-09-14 2011-01-19 辽宁石油化工大学 一种A位Ba、Sr、Ca三离子共掺杂的SrCo0.8Fe0.2O3-δ基钙钛矿透氧膜材料及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JAY KNIEP ET AL.: "Electrical conductivity and oxygen permeation properties of SrCoFeOx membranes", 《SOLID STATE IONICS》 *
TETSUYA KIDA ET AL.: "Oxygen Permeation Properties of Partially A-Site Substituted BaFeO3-δ Perovskites", 《THE ELECTROCHEMICAL SOCIETY》 *
刘力魁等: "K0.1Sr0.9Co0.8Fe0.2O3-δ透氧膜材料的合成及透氧性能研究", 《膜科学与技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113332863A (zh) * 2021-07-09 2021-09-03 辽宁石油化工大学 一种具有高表面催化活性双相透氧膜的制备方法

Similar Documents

Publication Publication Date Title
Jiang et al. Cobalt-free SrNbxFe1− xO3− δ (x= 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells
Tarancón et al. Synthesis of nanocrystalline materials for SOFC applications by acrylamide polymerisation
Chance et al. Crystal growth of new hexahydroxometallates using a hydroflux
CN101113010A (zh) 微波辅助制备氧化铈纳米粒子的方法
CN111333415A (zh) 一种尖晶石型铁钴铬锰镍系高熵氧化物粉体的制备方法
CN101948303B (zh) 一种A位Ba、Sr、Ca三离子共掺杂的SrCo0.8Fe0.2O3-δ基钙钛矿透氧膜材料
CN105642131B (zh) 一种纳米粒子稳定钙钛矿结构透氧膜的方法
CN101585558A (zh) 固体氧化物燃料电池阴极纳米粉体的制备方法
CN112299835A (zh) 一种a位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法
CN109734438A (zh) 一种不含钴和铁的钛基钙钛矿型陶瓷透氧膜及其制备方法和应用
CN109437882B (zh) 掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备方法
Chen et al. Synthesis and electrical properties of Ln0. 6Ca0. 4FeO3− δ (LnPr, Nd, Sm) as cathode materials for IT-SOFC
CN104258740A (zh) B位掺杂Ca元素的BaFeO3-δ基陶瓷透氧膜材料
CN106966728A (zh) 一种阴离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用
CN100482590C (zh) 一种电子-离子混合导体材料的合成方法
CN104860667B (zh) 一种双金属掺杂的混合导体透氧膜及其制备方法和应用
CN111394748B (zh) 一种用于co2电解的铁镍合金原位脱溶的层状钙钛矿阴极材料
CN113121230A (zh) 一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法
CN110950646B (zh) 一种氧化钐基的固体电解质及其制备方法
Proskurina et al. Phase equilibria and structure of solid solutions in the La–Co–Fe–O system at 1100 C
Zhang et al. Highly stable dual-phase Ce0. 9Pr0. 1O2-δ-Pr0. 6Sr0. 4Fe1-xTixO3-δ oxygen transport membranes
Agrawal et al. Stabilization of cubic phase in Y-doped (BaSr)(Fe1-xYx) O3-δ perovskites: Sol-gel synthesis, Raman and photoluminescent characteristics
Zhou et al. In situ templating synthesis of conic Ba 0· 5 Sr 0· 5 Co 0· 8 Fe 0· 2 O 3− δ perovskite at elevated temperature
CN112592182A (zh) 一种具有良好稳定性的含钙双相混合导体透氧膜材料及其制备方法
CN112624751B (zh) 热化学分解水制氢用铁基钙钛矿混合导体透氧膜材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210202