CN109437882B - 掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备方法 - Google Patents

掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备方法 Download PDF

Info

Publication number
CN109437882B
CN109437882B CN201811419252.2A CN201811419252A CN109437882B CN 109437882 B CN109437882 B CN 109437882B CN 201811419252 A CN201811419252 A CN 201811419252A CN 109437882 B CN109437882 B CN 109437882B
Authority
CN
China
Prior art keywords
oxygen
permeable membrane
doped
bafeo
site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811419252.2A
Other languages
English (en)
Other versions
CN109437882A (zh
Inventor
赵海雷
刘子露
李魁
杜志鸿
张旸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201811419252.2A priority Critical patent/CN109437882B/zh
Publication of CN109437882A publication Critical patent/CN109437882A/zh
Application granted granted Critical
Publication of CN109437882B publication Critical patent/CN109437882B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明属无机膜材料领域,涉及一种A位掺杂La元素、B位掺杂Cu元素的BaFeO3‑δ基陶瓷透氧膜材料及其制备方法。Ba0.975La0.025FeO3‑δ的B位掺杂Cu元素,材料的化学分子式为Ba0.975La0.025Fe1‑xCuxO3‑δ,其中0.05<x<0.3。将物料溶解在去离子水中,并加入HNO3搅拌后加入柠檬酸和乙二胺四乙酸,随后将该混合溶液在60‑100℃水浴蒸发至胶体,并将该胶体在200‑400℃下加热引燃、得到粉体;将制备好的粉体在400‑900℃空气气氛中处理,待冷却至室温后研磨、干压成型。将压制成的样品在空气气氛中升温至1000‑1200℃,保温4‑15小时后,烧结制成致密的Ba0.975La0.025Fe1‑xCuxO3‑δ透氧膜产品。本发明制备出的透氧膜材料结构致密、透氧率高、稳定性好,综合性能优异,能够应用于甲烷部分氧化反应的连续供氧及其他含氧气体中氧气分离和提纯的工业过程。

Description

掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备 方法
技术领域
本发明属无机膜材料领域,具体涉及一种A位掺杂La元素、B位掺杂Cu元素的BaFeO3-δ基陶瓷透氧膜材料。
背景技术
透氧膜材料是一类能同时传导电子和氧离子的混合导体材料。高温下,当膜两侧存在氧浓度梯度时,由于此类材料具备高的电子和氧离子导电性,氧能以氧离子的形式通过氧空位传输到膜的另一端,故陶瓷透氧膜具备高的氧选择渗透能力。因而透氧膜材料可以广泛的运用于甲烷的部分氧化制合成气(H2/CO)、富氧燃烧、纯氧制备和固体氧化物燃料电池阴极等领域。
利用透氧膜材料作为甲烷部分氧化过程的膜反应器,省去了繁琐的制纯氧过程和昂贵的制纯氧成本,与传统工艺相比具有生产成本低、能源消耗少、工艺步骤简单等优点。在甲烷部分氧化过程中,透氧膜的工作条件非常恶劣,其两端存在巨大的氧浓度差异,并且一直处于高温环境中,这对透氧膜材料的结构稳定性提出了苛刻的要求。然而研究发现,透氧膜材料的氧气渗透率和结构稳定性存在矛盾特点,高的透氧率常常伴随较差的结构稳定性。因此,为促进透氧膜材料在膜反应器中的实际应用,开发透氧率高和长期稳定性好的新型透氧膜材料成为目前研究的重点。
ABO3钙钛矿结构材料因具有较高的电子和氧离子传输能力而成为混合导体透氧膜最理想的一种结构。Co基材料因其Co-O键对氧离子较弱的束缚作用,有较高的氧空位浓度,因而具备高的透氧率,而被人们广泛研究。但是Co基材料的抗还原能力差,在高温、低氧分压下易被还原,发生结构分解和变化,并且由于Co元素价态的变化同时伴随着离子半径的变化,导致Co基透氧膜材料的体积变化较大,服役过程易发生机械开裂引起的功能失效。此外,Co普遍昂贵且有毒性,使其在实际工业上应用受限,因此人们把研究重点转移到无Co材料体系。
BaFeO3-δ材料由于B位完全由抗还原能力更强的Fe占据,在低氧高温下具有优异的结构稳定性;同时A位由大离子半径的Ba占据,可以有效的扩展晶胞,增大晶胞参数,为氧离子迁移提供更大的空间,展现出非常优异的氧离子导电特性。除此之外,BaFeO3-δ基材料基体可掺杂元素的范围宽泛,这为性能的调控提供了较多的可能性。而且Fe基材料环境友好、价格低廉。但是BaFeO3-δ材料在室温下以六方结构存在,六方结构中氧空位呈有序化排列,透氧性能较低,且在 850℃发生六方相向立方相的转变,伴随体积变化,导致该材料作为透氧膜使用时在工作温度范围内结构稳定性差。人们通常采用A、B位掺杂来解决BaFeO3-δ材料相结构稳定性的问题。在B位掺杂大半径的元素如Y(Liu X,Zhao H,Yang J, etal.Lattice characteristics,structure stability and oxygen permeability ofBaFe1-xYxO3-δceramic membranes[J].Journal of membrane science,2011,383(1-2):235-240)、In(Lu Y,Zhao H,Cheng X,et al.Investigation of In-doped BaFeO3-δperovskite-type oxygen permeable membranes[J].Journal offMaterials ChemistryA, 2015,3(11):6202-6214.)、Gd(Lu Y,Zhao H,Chang X,et al.Novel cobalt-freeBaFe1-xGdxO3-δperovskite membranes for oxygen separation[J].Journal ofMaterials Chemistry A,2016,4(27):10454-10466.),虽然能使BaFeO3-δ材料稳定在立方相,但材料的透氧率较低。研究人员发现,稀土元素La具有催化活性,在A位掺杂小半径的La不仅能使材料的立方相稳定至室温,还能提高透氧率(Kida T, Takauchi D,Watanabe K,et al.Oxygen permeation properties of partially A-site substituted BaFeO3-δperovskites[J].Journal of the Electrochemical Society,2009, 156(12):E187-E191)。但La元素半径较小,过多掺杂会导致晶胞缩小,不利于氧空位传输。因此在保证BaFeO3-δ基透氧材料相结构稳定的前提下,提高材料的透氧率是该领域需要解决的重要问题。
发明内容
本发明的目的是为了克服BaFeO3-δ材料相结构稳定性与透氧率之间的矛盾问题。在A位掺杂少量具有催化活性的离子La3+,降低表面极化电阻,促进氧的表面交换过程。同时在B位掺杂半径稍大的Cu2+稳定材料的立方相结构,低价态的Cu离子掺杂,基于缺陷化学原理,可以产生更多的氧空位作为电荷补偿,从而提高氧空位浓度。此外Cu-O键强较弱,对氧离子的束缚小,掺Cu能加快氧离子迁移,有利于提高材料的透氧能力。
一种掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料,其特征在于:对钙钛矿型Ba0.975La0.025FeO3-δ基体材料,在B位掺杂具有大半径的Cu2+离子,兼具优异的结构稳定性和透氧率,分子式为Ba0.975La0.025Fe1-xCuxO3-δ,其中0.05< x<0.3。
进一步地,所述Ba0.975La0.025Fe1-xCuxO3-δ透氧膜材料用柠檬酸-硝酸盐法、溶胶-凝胶法、水热法、固相法合成。
采用柠檬酸-硝酸盐制备方法的具体步骤如下:
1、按照Ba0.975La0.025Fe1-xCuxO3-δ化学计量比,分别称取定量的La2O3,Ba(NO3)2, Fe(NO3)3·9H2O,Cu(NO3)2·3H2O,将上述物料溶解在去离子水中,并加入HNO3,搅拌2-10小时;
2、按照摩尔比为金属离子:柠檬酸:乙二胺四乙酸=1-2:1-2.5:1-2.5的比例加入柠檬酸和乙二胺四乙酸,并将溶液的pH值调至6-12,随后将该混合溶液在 60-100℃水浴蒸发至胶体,并将该胶体在200-400℃烘箱中加热,至粉体自燃得到粉体;
3、将制备好的粉体在400-900℃空气气氛中处理6-12小时,后冷却至室温,后经研磨,然后在100-300MPa的压力下干压成型。将压制成的样品在空气气氛中升温至1000-1250℃,保温4-15小时后,烧结制成致密的 Ba0.975La0.025Fe1-xCuxO3-δ产品。
Ba0.975La0.025Fe1-xCuxO3-δ(0.05<x<0.3)在空气气氛中高温烧结冷却至室温后,膜体结构致密,没有连通气孔。利用阿基米德原理对材料进行密度测试,所有材料相对密度都达到了90%以上。图1中XRD分析结果显示,Cu掺杂能使材料向立方相转变,稳定材料的立方钙钛矿结构。图2透氧率结果显示, Ba0.975La0.025Fe0.9Cu0.1O3-δ透氧率在950℃,He/Air气氛下达到了1.59mL cm-2 min-1,表现出优异的透氧性能。
本发明的优点在于,通过在BaFeO3-δ基体材料的A、B位分别掺杂少量的La 元素和Cu元素,不仅使材料具有稳定的立方相结构,还明显地提高了材料的透氧性能。说明本发明所设计和制备出的材料是一种性能优异的透氧膜材料,能够应用于甲烷部分氧化的工业过程或者其他含氧气体中氧气的分离和提纯工作。
附图说明
图1为本发明部分配比的试样Ba0.975La0.025Fe0.9Cu0.1O3-δ的室温XRD图。图中可以看出试样稳定在立方相结构。
图2为部分配比的试样Ba0.975La0.025Fe0.9Cu0.1O3-δ在800-900℃范围内,透氧率随温度变化关系图。
图3为本发明部分配比的试样Ba0.975La0.025Fe0.9Cu0.1O3-δ在900℃空气气氛下的长期稳定性图。
具体实施方式
本发明所涉及的材料包含但并不局限于以下实施例中的材料。
实施例1:Ba0.975La0.025Fe0.9Cu0.1O3-δ柠檬酸-硝酸盐法合成
a)将0.163g La2O3,10.192g Ba(NO3)2,14.544g Fe(NO3)3·9H2O,0.966g Cu(NO3)2·3H2O溶解于400mL去离子水中,并加入17mL浓度为65wt%的 HNO3,搅拌6小时;
b)之后在上述溶液中加入23.380g乙二胺四乙酸和25.217g柠檬酸,并用28wt%的氨水将溶液pH值调节到8;
c)随后将该混合溶液在80℃水浴锅中蒸发得到胶体,并将该胶体移至烘箱在 250℃下点燃得到前驱体粉;
d)将前驱体粉在800℃空气气氛中处理8小时,待冷却至室温后,转移至研钵中,加入1wt%的PVA并混合均匀,使用模具将混合前驱体在200MPa的压力下干压成型。在空气气氛中1100℃下烧结8h,最终得到致密样品。室温下XRD结构分析为立方钙钛矿结构。如图2所示,在950℃下,1mm厚的 Ba0.975La0.025Fe0.9Cu0.1O3-δ膜体材料的透氧率达到1.59mL cm-2min-1。如图3 所示,0.7mm的Ba0.975La0.025Fe0.9Cu0.1O3-δ膜体材料在900℃下进行200h的长期透氧性能测试,透氧率能稳定在1.57mL cm-2min-1,材料表现出优异的长期透氧稳定性。
实施例2:Ba0.975La0.025Fe0.925Cu0.075O3-δ柠檬酸-硝酸盐法合成
a)将0.163g La2O3,10.192g Ba(NO3)2,14.948g Fe(NO3)3·9H2O,0.725g Cu(NO3)2·3H2O溶解于400mL去离子水中,并加入20mL浓度为65wt%的 HNO3,搅拌2小时;
b)之后在上述溶液中加入46.76g乙二胺四乙酸和25.217g柠檬酸,并用28wt%的氨水将溶液pH值调节到6;
c)随后将该混合溶液在60℃水浴锅中蒸发得到胶体,并将该胶体移至烘箱在 200℃下点燃得到前驱体粉;
d)将前驱体粉在400℃空气气氛中处理12小时,待冷却至室温后,转移至研钵中,加入1wt%的PVA并混合均匀,使用模具将混合前驱体在100MPa的压力下干压成型。在空气气氛中1200℃下烧结4h,最终得到致密样品。室温下XRD结构分析为立方钙钛矿结构。
实施例3:Ba0.975La0.025Fe0.85Cu0.15O3-δ柠檬酸-硝酸盐法合成
a)将0.163g La2O3,10.192g Ba(NO3)2,13.736g Fe(NO3)3·9H2O,1.450g Cu(NO3)2·3H2O溶解于400mL去离子水中,并加入13mL浓度为65wt%的 HNO3,搅拌10小时;
b)之后在上述溶液中加入35.070g乙二胺四乙酸和33.621g柠檬酸,并用28wt%的氨水将溶液pH值调节到12;
c)随后将该混合溶液在100℃水浴锅中蒸发得到胶体,并将该胶体移至烘箱在400℃下点燃得到前驱体粉;
d)将前驱体粉在900℃空气气氛中处理6小时,待冷却至室温后,转移至研钵中,加入1wt%的PVA并混合均匀,使用模具将混合前驱体在300MPa的压力下干压成型。在空气气氛中1000℃下烧结15h,最终得到致密样品。室温下XRD结构分析为立方钙钛矿结构。

Claims (1)

1.一种掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料,其特征在于:对钙钛矿型Ba0.975La0.025FeO3-δ基体材料,在B位掺杂具有大半径的Cu2+离子,兼具优异的结构稳定性和透氧率,分子式为Ba0.975La0.025Fe1-xCuxO3-δ,其中0.05<x<0.3;
一种掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料的制备方法,采用柠檬酸-硝酸盐法的具体步骤如下:
1)、按照Ba0.975La0.025Fe1-xCuxO3-δ化学计量比,分别称取定量的La2O3,Ba(NO3)2,Fe(NO3)3·9H2O,Cu(NO3)2·3H2O,将上述物料溶解在去离子水中,并加入HNO3,搅拌2-10小时;
2)、按照摩尔比为金属离子:柠檬酸:乙二胺四乙酸=1-2:1-2.5:1-2.5的比例加入柠檬酸和乙二胺四乙酸,并将溶液的pH值调至6-12,随后将该混合溶液在60-100℃水浴蒸发至胶体,并将该胶体在200-400℃烘箱中加热,至粉体自燃得到粉体;
3)、将制备好的粉体在400-900℃空气气氛中处理6-12小时,后冷却至室温,后经研磨,然后在100-300MPa的压力下干压成型;将压制成的样品在空气气氛中升温至1000-1250℃,保温4-15小时后,烧结制成致密的Ba0.975La0.025Fe1-xCuxO3-δ产品。
CN201811419252.2A 2018-11-26 2018-11-26 掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备方法 Active CN109437882B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811419252.2A CN109437882B (zh) 2018-11-26 2018-11-26 掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811419252.2A CN109437882B (zh) 2018-11-26 2018-11-26 掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109437882A CN109437882A (zh) 2019-03-08
CN109437882B true CN109437882B (zh) 2020-11-27

Family

ID=65555440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811419252.2A Active CN109437882B (zh) 2018-11-26 2018-11-26 掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109437882B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112824326A (zh) * 2019-11-20 2021-05-21 中国科学院大连化学物理研究所 A位缺位的无碱土元素的钛基钙钛矿结构的氧化物及其制备和应用
CN115180937B (zh) * 2022-08-01 2023-09-22 上海电力大学 一种钆和铜共掺杂钡铁氧的钙钛矿结构阳极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208663A (zh) * 2011-04-20 2011-10-05 南京工业大学 过渡金属元素B位掺杂的BaFeO3-δ基的ABO3型钙钛矿燃料电池阴极材料及其用途
CN102208662A (zh) * 2011-04-20 2011-10-05 南京工业大学 稀土元素掺杂的BaFeO3-δ基的ABO3型钙钛矿燃料电池阴极材料及其用途
CN102367209A (zh) * 2011-07-11 2012-03-07 南京工业大学 氧化物掺杂的中低温混合导体透氧膜材料及其制备方法
CN103682373A (zh) * 2013-12-23 2014-03-26 上海交通大学 非钴中温固体氧化物燃料电池稳定阴极材料及其应用
CN105226294A (zh) * 2014-06-17 2016-01-06 中国科学院大连化学物理研究所 一种固体氧化物燃料电池阴极材料及其制备和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275786A (ja) * 1989-01-26 1990-11-09 Toshiba Corp 表面着色窒化アルミニウム基板およびその製造方法およびそれに用いる着色ペースト
US7151067B2 (en) * 2001-10-15 2006-12-19 Nippon Steel Corporation Porcelain composition, composite material comprising catalyst and ceramic, film reactor, method for producing synthetic gas, apparatus for producing synthetic gas and method for activating catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208663A (zh) * 2011-04-20 2011-10-05 南京工业大学 过渡金属元素B位掺杂的BaFeO3-δ基的ABO3型钙钛矿燃料电池阴极材料及其用途
CN102208662A (zh) * 2011-04-20 2011-10-05 南京工业大学 稀土元素掺杂的BaFeO3-δ基的ABO3型钙钛矿燃料电池阴极材料及其用途
CN102367209A (zh) * 2011-07-11 2012-03-07 南京工业大学 氧化物掺杂的中低温混合导体透氧膜材料及其制备方法
CN103682373A (zh) * 2013-12-23 2014-03-26 上海交通大学 非钴中温固体氧化物燃料电池稳定阴极材料及其应用
CN105226294A (zh) * 2014-06-17 2016-01-06 中国科学院大连化学物理研究所 一种固体氧化物燃料电池阴极材料及其制备和应用

Also Published As

Publication number Publication date
CN109437882A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
Liu et al. X-ray photoelectron spectroscopic studies of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ cathode for solid oxide fuel cells
CN114349508B (zh) 一种具有氧化物薄层的多层陶瓷膜制备方法和应用
CN107198973B (zh) 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法
CN109437882B (zh) 掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备方法
Nayak et al. Recent advance on fundamental properties and synthesis of barium zirconate for proton conducting ceramic fuel cell
CN101585558A (zh) 固体氧化物燃料电池阴极纳米粉体的制备方法
CN109734438B (zh) 一种不含钴和铁的钛基钙钛矿型陶瓷透氧膜及其制备方法和应用
CN105642131A (zh) 一种纳米粒子稳定钙钛矿结构透氧膜的方法
CN113332863B (zh) 一种具有高表面催化活性双相透氧膜的制备方法
CN112457012B (zh) 热化学分解水制氢用萤石-钙钛矿型双相混合导体膜材料及其制备方法
CN104258740B (zh) B位掺杂Ca元素的BaFeO3-δ基陶瓷透氧膜材料
CN106966728B (zh) 一种阴离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用
CN101422705A (zh) 耐co2气氛的多相混合导体致密透氧膜材料及其制备方法和用途
CN101274224B (zh) 高度稳定的钼基混合导体致密透氧膜材料及其制备方法和应用
CN101575210B (zh) 一种提高BaCo0.7Fe0.2Nb0.1O3-δ透氧膜材料结构稳定性的方法
CN112299835A (zh) 一种a位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法
CN113264768A (zh) 一种高透氧量的铜基双相混合导体透氧膜材料及其制备方法
CN108123156B (zh) 一种燃料电池的复合膜电极的制备方法
CN113121230A (zh) 一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法
CN101265080B (zh) 含锌系列钙钛矿混合导体透氧膜及其制备方法和应用
CN112624751B (zh) 热化学分解水制氢用铁基钙钛矿混合导体透氧膜材料及其制备方法
Huang et al. Structure and mixed electronic-ionic conducting properties of La 0.6 Sr 0.4 Co 1− y Fe y O 3 (y= 0− 1.0) ceramics made by a citrate method
KR101342923B1 (ko) 수열합성법을 이용한 고체산화물 연료전지 접속자용 LaCrO₃ 나노분말의 제조방법
KR101342922B1 (ko) 수열합성법을 이용한 고체산화물 연료전지 접속자용 LaCrO₃ 나노분말의 제조방법
KR101342921B1 (ko) 수열합성법을 이용한 고체산화물 연료전지 접속자용 LaCrO₃ 나노분말의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant