CN113121230A - 一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法 - Google Patents

一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法 Download PDF

Info

Publication number
CN113121230A
CN113121230A CN202110538373.4A CN202110538373A CN113121230A CN 113121230 A CN113121230 A CN 113121230A CN 202110538373 A CN202110538373 A CN 202110538373A CN 113121230 A CN113121230 A CN 113121230A
Authority
CN
China
Prior art keywords
oxygen
permeable membrane
indium
stability
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110538373.4A
Other languages
English (en)
Inventor
罗惠霞
黄彦昊
王晓鹏
曾令勇
何溢懿
李东乘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202110538373.4A priority Critical patent/CN113121230A/zh
Publication of CN113121230A publication Critical patent/CN113121230A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明设计和制备了一种高稳定性的含铟双相混合导体透氧膜材料,属于无机功能陶瓷制造技术领域。该含铟双相混合导体透氧膜材料的通式为Ce0.9Pr0.1O2‑δ‑Pr0.6Sr0.4Fe1‑xInxO3‑δ(CPO‑PSF1‑xInxO;x=0.025,0.05,0.075,0.1);首先通过溶胶‑凝胶一锅法制备所需的粉体,将粉体在马弗炉中950℃下煅烧12小时得到前驱体,然后将粉末压片烧结,得到最后所需的混合导体透氧膜。通过调控In元素与Fe元素的比例,从而得到高稳定性的混合导体透氧膜材料。本发明制备的透氧膜材料在氦气/二氧化碳等气体吹扫下具有良好稳定性,且保持了较高透氧量。本发明可以作为新型氧分离材料应用于高温复杂气氛用氧行业,例如富氧燃烧,水分解及甲烷偶联等领域。

Description

一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法
技术领域
本发明属于功能陶瓷制造技术领域,具体涉及一种化学成分Ce0.9Pr0 1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ双相混合导体透氧膜材料及其制备方法。
背景技术
混合导体透氧膜(OTMs)作为一种具有氧离子和电子导电性的无机致密陶瓷材料,不仪可以有效地分离氧气,而且还有一定的催化活性,在中高温条件下可以清洁、高效、经济地从空气或者其它含氧气氛中高选择性地分离氧气,连续生产高纯度氧气,降低生产成本。因此混合导体透氧膜在富氧燃烧、甲烷部分氧化(POM)和水分解产氢耦合等方面的应用有巨大潜力。其中对应用于富氧燃烧的透氧膜来说,耐CO2稳定性是至关重要的。
目前,阻碍混合导体透氧膜材料发展的主要原因是较差的稳定性和较低的透氧性能。这其中的根本原因在于大多数含有碱金属元素(如Ba元素)的双相混合导体透氧膜材料在高温CO2气氛中很容易形成碳酸盐杂质相,降低了膜体材料的稳定性以及透氧性能。另外,常见的含Co元素的透氧膜在高温下有较大的膨胀系数,会影响材料的机械性能,从而降低双相混合透氧膜的稳定性
为了在保持高透氧量的前提下,尽可能提高双相混合导体透氧膜材料的稳定性,研究人员做出了许多努力,其中铁基透氧膜备受瞩目。Babakhan等人制备了SrCo0.8Fe0.2O3-δ单相透氧膜,研究发现该材料有较好的透氧性能,但是在高温下容易发生相变,导致其稳定性较差。Caro等人开发了Fe基双相混合导体透氧膜如Ce0.9Pr0.1O2-δ-Pr0 6Sr0.4FeO3-δ,结果表明,无钴体系在还原性气氛下能保持一定的稳定性,但透氧量较低。为了平衡材料的稳定性和透氧性能,Luo等人研发了掺杂Al的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xAlxO3-δ双相混合导体透氧膜材料,在二氧化碳气氛吹扫下,能够稳定保持0.45mL cm-2min-1的透氧量,并持续工作100小时。In元素与Al元素位于相同主族,有相似的电子结构,能有效维持材料的高稳定性。此外,铟的氧化物有聚集电子的n型行为倾向,从而容易形成氧空位,有利于氧气在透氧膜中的扩散传输,在保持材料稳定性的同时,能有效提高材料的透氧性能。据此,本专利发明了一种高稳定性的含铟双相混合导体透氧膜材料Ce0.9Pr0 1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(CPO-PSF1-xInxO,x=0.025,0.05,0.075,0.1)。
发明内容
针对现有技术存在的缺陷,本发明的目的是一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法。
为达上述目的,本发明采用如下技术方案:
一种高稳定性的含铟双相混合导体透氧膜材料具有以下的组成:
Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)
一种高稳定性的含铟双相混合导体透氧膜材料的制备方法,具有以下的工艺过程:
(1)按照化学计量比依次称量Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ对应的硝酸盐溶于去离子水中,充分搅拌待其溶解后,向烧杯中加入一水合柠檬酸作为螯合剂和乙二醇作为分散剂,其中溶液中的金属离子、柠檬酸、乙二醇的物质的量之比为1∶2∶2;
(2)搅拌溶液直至变成澄清透明,将烧杯放在加热型磁力搅拌器上,持续加热蒸发直至转变成凝胶,将凝胶放入150℃烘箱中烘干24h得到干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物;
(3)研磨粉末后放入坩埚,在950℃煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1- xInxO3-δ的粉末;
(4)将粉末在9.5MPa下压片得到饼状片体,将片体以1.5℃/min缓慢升温到1475℃煅烧5h,烧结得到致密的双相混合导体透氧膜,砂纸打磨得到高稳定性的含铟混合导体透氧膜。
与现行技术相比,本技术制备的含铟双相混合导体透氧膜材料表面致密,无明显裂纹、缺陷及通孔,具备优秀的机械性能,且其能够在He/CO2等低氧、还原性气氛中稳定存在80小时。同时,通过本技术制备的含铟的双相混合导体透氧膜材料具备良好的透氧性能。例如,0.6mm的所述的混合导体透氧膜材料Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.975In0.025O3-δ,在氦气作为吹扫气,1000℃的工作条件下,可获得1mL cm-2min-1的透氧速率,并保持100小时稳定不变。
附图说明
图1为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)含铟双相混合导体透氧膜粉末的室温XRD图谱;
图2为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)含铟双相混合导体透氧膜粉末的XRD精修结果;
图3为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)含铟双相混合导体透氧膜材料的SEM照片;
图4为本发明所述方法制备的Ce0.9Pr0 1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)含铟双相混合导体透氧膜材料的BSEM照片
图5为本发明所述方法制备的Ce0 9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)含铟双相混合导体透氧膜材料以He作为吹扫气时透氧量随温度的变化。
图6为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.075,0.1)含铟双相混合导体透氧膜材料以CO2作为吹扫气时透氧量随温度的变化。
图7为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)含铟双相混合导体透氧膜粉末在800℃下Ar气氛中煅烧24h后的XRD结果。
图8为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)含铟双相混合导体透氧膜粉末在900℃下Ar气氛中煅烧24h后的XRD结果。
图9为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)含铟双相混合导体透氧膜粉末在1000℃下Ar气氛中煅烧24h后的XRD结果。
图10为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)含铟双相混合导体透氧膜粉末在800℃下CO2气氛中煅烧24小时后的XRD结果。
图11为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)含铟双相混合导体透氧膜粉末在900℃下CO2气氛中煅烧24h后的XRD结果。
图12为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)含铟双相混合导体透氧膜粉末在1000℃下CO2气氛中煅烧24h后的XRD结果。
图13为本发明所述方法制备的Ce0.9Pr0 1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)含铟双相混合导体透氧膜材料的EDS照片
图14为本发明所述方法制备的Ce0.9Pr0 1O2-δ-Pr0.6Sr0.4Fe0.975In0.025O3-δ含铟双相混合导体透氧膜在1000℃下透氧量随时间稳定性曲线。
具体实施方式
下面通过附图和实施例对本发明做进一步阐明,但本发明所述的保护范围不限于所示内容。
实施例1:
精确称量4.0872g Ce(NO3)3·6H2O,1.8660g Pr(NO3)3·6H2O,2.1018g Fe(NO3)3·9H2O,0.4539g Sr(NO3)2,0.0402g In(NO3)2,8.9227g一水合柠檬酸,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,持续加热蒸发直至转变成凝胶,然后将凝胶放入150℃烘箱中烘干24小时得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末充分研磨后放入坩埚,在950℃条件下煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.975In0.025O3-δ的粉末,将粉末在9.5MPa下压片得到饼状片体,将片体缓慢升温在1475℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到高稳定性的含铟双相混合导体透氧膜。
实施例2:
精确称量4.0872g Ce(NO3)3·6H2O,1.8568g Pr(NO3)3·6H2O,2.0346g Fe(NO3)3·9H2O,0.4510g Sr(NO3)2,0.0798g In(NO3)2,8.8934g一水合柠檬酸,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,持续加热蒸发直至转变成凝胶,然后将凝胶放入150℃烘箱中烘干24小时得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末充分研磨后放入坩埚,在950℃条件下煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.95In0.05O3-δ的粉末,将粉末在9.5MPa下压片得到饼状片体,将片体缓慢升温在1475℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到高稳定性的含铟双相混合导体透氧膜。
实施例3:
精确称量4.0872g Ce(NO3)3·6H2O,1.8478g Pr(NO3)3·6H2O,1.9682g Fe(NO3)3·9H2O,0.4481g Sr(NO3)2,0.1189g In(NO3)2,8.8644g一水合柠檬酸,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,持续加热蒸发直至转变成凝胶,然后将凝胶放入150℃烘箱中烘干24小时得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末充分研磨后放入坩埚,在950℃条件下煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.925In0.075O3-δ的粉末,将粉末在9.5MPa下压片得到饼状片体,将片体缓慢升温在1475℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到高稳定性的含铟双相混合导体透氧膜。
实施例4:
精确称量4.0872g Ce(NO3)3·6H2O,1.8388g Pr(NO3)3·6H2O,1.9027g Fe(NO3)3·9H2O,0.4452g Sr(NO3)2,0.1576g In(NO3)2,8.8358g一水合柠檬酸,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,持续加热蒸发直至转变成凝胶,然后将凝胶放入150℃烘箱中烘干24小时得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末充分研磨后放入坩埚,在950℃条件下煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.9In0.1O3-δ的粉末,将粉末在9.5MPa下压片得到饼状片体,将片体缓慢升温在1475℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到高稳定性的含铟双相混合导体透氧膜。
评价实验:
当空气流量为150mL min-1,吹扫气体为49mL min-1He+1mL min-1Ne,60wt.%Ce0.9Pr0 1O2-δ-40wt.%Pr0.6Sr0.4Fe0.975In0.025O3-δ在1000℃获得了1mL cm-2min-1的透氧量,而且整个体系均能够在复杂工作环境氛围中稳定存在超过100小时,性能无下降。

Claims (6)

1.一种高稳定性的含铟双相混合导体透氧膜材料,其特征在于具有以下的化学式及重量百分比:
60wt.%Ce0.9Pr0.1O2-δ-40wt.%Pr0.6Sr0.4Fe1-xInxO3-δ(x=0.025,0.05,0.075,0.1)。
2.一种高稳定性的含铟双相混合导体透氧膜材料,其特征在于具有以下的工艺和步骤:
(a)按照化学计量比依次称量Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ对应的硝酸盐溶于去离子水中,充分搅拌待其溶解后,向烧杯中加入一水合柠檬酸作为螯合剂和乙二醇作为分散剂,其中溶液中的金属离子、柠檬酸、乙二醇的物质的量之比为1∶2∶2;
(b)搅拌溶液直至变成澄清透明,将烧杯放在加热型磁力搅拌器上,持续加热蒸发直至溶液转变为凝胶,将凝胶放入150℃烘箱中烘干24小时得到干凝胶,并将其充分研磨后放入坩埚,并在600℃保温8h煅烧除去有机物;
(c)得到粉末研磨后放入坩埚,在950℃煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0 4Fe1- xInxO3-δ的粉末;
(d)将粉末在9.5MPa下压片得到饼状片体,将片体以1.5℃/min缓慢升温到1475℃煅烧5h,烧结得到致密的双相混合导体透氧膜,砂纸打磨得到高稳定性的含铟混合导体透氧膜。
3.根据权利要求2所述的溶液中的金属离子、柠檬酸、乙二醇的物质的量之比为1∶2∶2。
4.根据权利要求2所述Ce0.9Pr0 1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ烧结温度为1475℃。
5.根据权利要求2所述的1475℃煅烧程序:升温速率为1.5摄氏度每分钟,保温300分钟,降温速率为1.5摄氏度每分钟。
6.根据权利要求1-2中所述的方法制得高稳定性的含铟双相混合导体透氧膜材料及其用于稳定性的性能分析。
CN202110538373.4A 2021-05-10 2021-05-10 一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法 Pending CN113121230A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110538373.4A CN113121230A (zh) 2021-05-10 2021-05-10 一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110538373.4A CN113121230A (zh) 2021-05-10 2021-05-10 一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113121230A true CN113121230A (zh) 2021-07-16

Family

ID=76782138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110538373.4A Pending CN113121230A (zh) 2021-05-10 2021-05-10 一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113121230A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600024A (zh) * 2021-08-04 2021-11-05 中山大学 一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101269955A (zh) * 2008-04-30 2008-09-24 北京科技大学 一种具有大晶粒特征的钙钛矿型陶瓷透氧膜材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101269955A (zh) * 2008-04-30 2008-09-24 北京科技大学 一种具有大晶粒特征的钙钛矿型陶瓷透氧膜材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI, L ET AL.: "High CO2-tolerance oxygen permeation dual-phase membranes Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.8Al0.2O3-δ", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600024A (zh) * 2021-08-04 2021-11-05 中山大学 一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料及其制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Low‐temperature synthesis of praseodymium‐doped ceria nanopowders
Haworth et al. Yttrium doped BSCF membranes for oxygen separation
Wang et al. Experimental study on the high performance of Zr doped LaCoO3 for solar thermochemical CO production
Li et al. Systematic investigation on structure stability and oxygen permeability of Sr-doped BaCo0. 7Fe0. 2Nb0. 1O3− δ ceramic membranes
CN107198973B (zh) 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法
CN113121230A (zh) 一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法
CN109734438B (zh) 一种不含钴和铁的钛基钙钛矿型陶瓷透氧膜及其制备方法和应用
He et al. Phase stability and oxygen permeability of Fe-based BaFe0. 9Mg0. 05X0. 05O3 (X= Zr, Ce, Ca) membranes for air separation
CN104258740B (zh) B位掺杂Ca元素的BaFeO3-δ基陶瓷透氧膜材料
CN106966728B (zh) 一种阴离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用
CN113264768A (zh) 一种高透氧量的铜基双相混合导体透氧膜材料及其制备方法
CN109437882B (zh) 掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备方法
CN113121231A (zh) 一种具有良好稳定性的含铝双相混合导体透氧膜材料及其制备方法
CN109589910B (zh) 钡钴基钙钛矿复合金属氧化物载氧体的制备方法及应用
CN101575210B (zh) 一种提高BaCo0.7Fe0.2Nb0.1O3-δ透氧膜材料结构稳定性的方法
WO2012116506A1 (zh) 一种复合金属氧化物粉体的制备方法
Junior et al. Enhanced LSCF oxygen deficiency through hydrothermal synthesis
Jiang et al. B-site cobalt-doped perovskite oxide BaNiO 3 oxygen sorbents for performance improvement of oxygen enriched gas production
CN112299835A (zh) 一种a位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法
CN113600024A (zh) 一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料及其制备方法
CN112592182A (zh) 一种具有良好稳定性的含钙双相混合导体透氧膜材料及其制备方法
Shao et al. Modified cellulose adsorption method for the synthesis of conducting perovskite powders for membrane application
CN114988875B (zh) 高氧通量的含铜双相混合导体透氧膜材料及其制备方法
CN101279842B (zh) 一种用于甲烷部分氧化反应的钙钛矿型陶瓷透氧膜材料
JP4320531B2 (ja) 酸素分離用混合伝導性複合酸化物およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210716

WD01 Invention patent application deemed withdrawn after publication