CN112592182A - 一种具有良好稳定性的含钙双相混合导体透氧膜材料及其制备方法 - Google Patents

一种具有良好稳定性的含钙双相混合导体透氧膜材料及其制备方法 Download PDF

Info

Publication number
CN112592182A
CN112592182A CN202011068813.6A CN202011068813A CN112592182A CN 112592182 A CN112592182 A CN 112592182A CN 202011068813 A CN202011068813 A CN 202011068813A CN 112592182 A CN112592182 A CN 112592182A
Authority
CN
China
Prior art keywords
permeable membrane
powder
mixed conductor
gel
membrane material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011068813.6A
Other languages
English (en)
Inventor
罗惠霞
王晓鹏
谢沚昂
曾令勇
何溢懿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202011068813.6A priority Critical patent/CN112592182A/zh
Publication of CN112592182A publication Critical patent/CN112592182A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明设计和制备了一种含钙的双相混合导体透氧膜材料,属于无机功能陶瓷制造技术领域。该双相混合导体透氧膜材料的通式为Ce0.9Pr0.1O2‑δ‑Pr1‑xCaxFeO3‑δ(CPO‑P1‑xCxFO;0≤x≤1.0);首先通过一锅溶胶‑凝胶法制备所需的粉体,将粉体在马弗炉中950℃下煅烧12小时得到前驱体,然后将粉末压片烧结,得到最后所需的混合导体透氧膜。通过调控具有多价态的Pr元素及具有+2价且价格成本较低的Ca元素的比例从而得到稳定性良好的混合导体透氧膜材料。本发明制备的膜材料在低氧及腐蚀气氛下展示出了良好的稳定性。本发明可以作为新型氧源应用于高温复杂气氛用氧行业,例如富氧燃烧,水分解及甲烷偶联等领域。

Description

一种具有良好稳定性的含钙双相混合导体透氧膜材料及其制 备方法
技术领域
本发明属于功能陶瓷制造技术领域,具体涉及一种化学成分Ce0.9Pr0.1O2-δ-Pr1- xCaxFeO3-δ双相混合导体透氧膜材料及其制备方法。
背景技术
致密的混合离子电子导体透氧膜由于其丰富的性能及其未来在能源产业应用的巨大潜能而备受关注。例如,可将其用于氧气的分离与提纯,固体氧化物燃料电池的阴极材料,富氧燃烧,水分解及甲烷偶联等。然而这些材料的应用往往受限于其热稳定性和机械稳定性差等问题。尤其是一些含Ba和Sr等碱金属元素的体系会在二氧化碳气氛下降解,形成碳酸盐副产物。而这些碳酸盐小颗粒的产生会阻碍氧离子的传输,同时也会进一步的降低膜材料的稳定性。
研究发现,人们可以通过La等稀土元素完全替代钙钛矿结构A位中的Ba和Sr来实现对CO2的耐受性。不幸的是,由于稀土阳离子的氧化态较高,从而导致晶格常数降低,使材料的氧离子电导率急剧下降,氧迁移率大大降低,以及较低浓度的氧空位。为了增加钙钛矿晶格中的氧空位,可以将具有2+稳定价态的Ca阳离子视为潜在的掺杂剂。
Efimov等人开发出了(La1-xCax)FeO3-δ和(La1-xCax)(Co0.8Fe0.2)O3-δ(LCCFO)含钙的单相混合导体透氧膜材料,其在空气/二氧化碳气氛中,在1173K及1123K温度下,分别稳定运行超过100h 及60h,且在稳定性测试后的透氧膜保持完好,无碳酸盐的形成。研究表明上述两种材料在 CO2气氛下具有很好的耐受性,被认为是含Ba/Sr的钙钛矿单相混合导体透氧膜潜在的替代材料。另一方面,最近开发的单相CaTi0.9Fe0.1O3-δ含钙的混合导体透氧膜材料,由于系统中没有诸如Sr/Ba之类的碱土金属,因此它在腐蚀功能性气氛中比其他单相混合导体透氧膜材料更稳定,但在950℃的温度范围内仍然存在氧通量的下降。Liang等人开发了一种 60wt%Ce0.9Pr0.1O2-δ-40wt%Pr0.6Sr0.4Fe0.5Co0.5O3-δ双相混合导体透氧膜,当将膜置于800℃的纯 CO2气氛100h后其氧通量略有下降。因此,设计开发高性能的抗CO2的混合导体透氧膜仍然迫在眉睫。
据此,本专利发明了一种含Ca的双相混合导体透氧膜材料Ce0.9Pr0.1O2-δ-Pr1- xCaxFeO3-δ (CPO-P1-xCxFO;0≤x≤1.0)
发明内容
针对现有技术存在的缺陷,本发明的目的是一种良好稳定性的双相混合导体透氧膜材料及其制备方法。
为达上述目的,本发明采用如下技术方案:
一种良好稳定性的含钙双相混合导体透氧膜材料具有以下的组成:
Ce0.9Pr0.1O2-δ-Pr1-xCaxFeO3-δ(CPO-P1-xCxFO;0≤x≤1.0)
一种良好稳定性的含钙双相混合导体透氧膜材料的制备方法,具有以下的工艺过程:
(1)按照化学计量比依次称量Ce0.9Pr0.1O2-δ-Pr1-xCaxFeO3-δ对应的硝酸盐溶于水中,充分搅拌待其溶解后,向烧杯中加入EDTA和柠檬酸,并加入适量氨水pH调至7~10,溶液中的金属离子与柠檬酸的物质的量之比为1∶2;
(2)搅拌溶液直至变成澄清透明,将烧杯放在加热型磁力搅拌器上,持续蒸发直至转变成凝胶,将凝胶放入150℃烘箱中烘干24h得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物;
(3)研磨粉末后放入坩埚,在950℃下煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr1-xCaxFeO3-δ的粉末,
(4)将粉末在10MPa下压片得到饼状片体,将片体缓慢升温在1200/1400℃保温5小时得到致密的双相陶瓷膜,砂纸打磨得到一定厚度的双相混合导体透氧膜。
与现行技术相比,本技术制备的双相陶瓷膜表面非常致密,具有优良的机械性能,且膜体材料十分稳定,能在低氧,腐蚀性气氛下稳定存在30h。同时,利用本技术制备的双相混合导体透氧膜材料具有一定的透氧量。例如,0.6mm的所述混合导体透氧膜材料Ce0.9Pr0.1O2-δ- CaFeO3-δ,在空气/氦气作为吹扫气,1000℃的工作条件下,可实现0.175mLcm-2min-1的透氧速率。
附图说明
图1为本发明所述方法制备的60wt.%Ce0.9Pr0.1O2-δ-40wt.%Pr1-xCaxFeO3-δ(0≤x≤1.0)双相混合导体透氧膜材料的室温XRD图谱;
图2为本发明所述方法制备的60wt.%Ce0.9Pr0.1O2-δ-40wt.%Pr1-xCaxFeO3-δ(0≤x≤1.0)双相混合导体透氧膜材料的XRD精修结果;
图3为本发明所述方法制备的60wt.%Ce0.9Pr0.1O2-δ-40wt.%Pr1-xCaxFeO3-δ(0≤x≤1.0)双相混合导体透氧膜材料的扫描电镜图谱;
图4为本发明所述方法制备的60wt.%Ce0.9Pr0.1O2-δ-40wt.%Pr1-xCaxFeO3-δ(x=0.4,x=0.8, x=1.0)双相混合导体透氧膜材料透氧量随温度的变化。
图5为本发明所述方法制备的60wt.%Ce0.9Pr0.1O2-δ-40wt.%Pr1-xCaxFeO3-δ(0≤x≤1.0)双相混合导体透氧膜粉末在950℃下CO2气氛中煅烧24小时后的XRD图谱。
图6为本发明所述方法制备的60wt.%Ce0.9Pr0.1O2-δ-40wt.%Pr1-xCaxFeO3-δ(0≤x≤1.0)双相混合导体透氧膜粉末在950℃下CO2气氛中煅烧24小时后的XRD精修结果。
图7为本发明所述方法制备的60wt.%Ce0.9Pr0.1O2-δ-40wt.%Pr1-xCaxFeO3-δ(0≤x≤1.0)双相混合导体透氧膜粉末在950℃下Ar气氛中煅烧24小时后的XRD图谱。
图8为本发明所述方法制备的60wt.%Ce0.9Pr0.1O2-δ-40wt.%Pr1-xCaxFeO3-δ(0≤x≤1.0)双相混合导体透氧膜粉末在950℃下Ar气氛中煅烧24小时后的XRD精修结果。
图9为60CPO-40P1-xCxFO粉末在950℃下CO2气氛中煅烧24小时后的XRD精修晶胞参数。
图10为60CPO-40P1-xCxFO粉末在950℃下Ar气氛中煅烧24小时后的XRD精修晶胞参数
具体实施方式
下面通过附图和实施例对本发明做进一步阐明,但本发明所述的保护范围不限于所示内容。
实施例1:
精确称量2.3550g Ce(NO3)3·6H2O,2.8982g Pr(NO3)3·6H2O,2.4226g Fe(NO3)3·9H2O, 7.5599g柠檬酸,加入氨水pH调至7~10,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,同时并加热持续蒸发直至转变成凝胶,然后将凝胶放入150℃烘箱中烘干24h得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末研磨后放入坩埚,在950℃煅烧10小时得到Ce0.9Pr0.1O2-δ-PrFeO3-δ的粉末,将粉末在 10MPa下压片得到饼状片体,将片体缓慢升温在1400℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到良好稳定性的含钙混合导体透氧膜。
实施例2:
精确称量2.4747g Ce(NO3)3·6H2O,2.4917g Pr(NO3)3·6H2O,2.5457g Fe(NO3)3·9H2O, 0.2976Ca(NO3)2,7.9442g柠檬酸,加入氨水pH调至7~10,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,同时并加热持续蒸发直至转变成凝胶,然后将凝胶放入150℃烘箱中烘干24h得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末研磨后放入坩埚,在950℃煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.8Ca0.2FeO3-δ的粉末,将粉末在10MPa下压片得到饼状片体,将片体缓慢升温在1400℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到良好稳定性的含钙混合导体透氧膜。
实施例3:
精确称量2.6072g Ce(NO3)3·6H2O,2.0418g Pr(NO3)3·6H2O,2.6820g Fe(NO3)3·9H2O, 0.6334Ca(NO3)2,8.3696g柠檬酸,加入氨水pH调至7~10,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,同时并加热持续蒸发直至转变成凝胶,然后将凝胶放入150℃烘箱中烘干24h得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末研磨后放入坩埚,在950℃煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Ca0.4FeO3-δ的粉末,将粉末在10MPa下压片得到饼状片体,将片体缓慢升温在1400℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到良好稳定性的含钙混合导体透氧膜。
实施例4:
精确称量2.7547g Ce(NO3)3·6H2O,1.5409g Pr(NO3)3·6H2O,2.8338g Fe(NO3)3·9H2O, 0.9940Ca(NO3)2,8.8431g柠檬酸,加入氨水pH调至7~10,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,同时并加热持续蒸发直至转变成凝胶,然后将凝胶放入150℃烘箱中烘干24h得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末研磨后放入坩埚,在950℃煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.4Ca0.6FeO3-δ的粉末,将粉末在10MPa下压片得到饼状片体,将片体缓慢升温在1400℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到良好稳定性的含钙混合导体透氧膜。
实施例5:
精确称量2.9199g Ce(NO3)3·6H2O,0.9800g Pr(NO3)3·6H2O,3.0037g Fe(NO3)3·9H2O, 1.4187Ca(NO3)2,8.3696g柠檬酸,加入氨水pH调至7~10,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,同时并加热持续蒸发直至转变成凝胶,然后将凝胶放入150℃烘箱中烘干24h得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末研磨后放入坩埚,在950℃煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.2Ca0.8FeO3-δ的粉末,将粉末在10MPa下压片得到饼状片体,将片体缓慢升温在1200℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到良好稳定性的含钙混合导体透氧膜。
实施例6:
精确称量3.1062g Ce(NO3)3·6H2O,0.3475g Pr(NO3)3·6H2O,3.19535g Fe(NO3)3·9H2O, 1.8865Ca(NO3)2,9.9713g柠檬酸,加入氨水pH调至7~10,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,同时并加热持续蒸发直至转变成凝胶,然后将凝胶放入150℃烘箱中烘干24h得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末研磨后放入坩埚,在950℃煅烧10小时得到Ce0.9Pr0.1O2-δ-CaFeO3-δ的粉末,将粉末在10MPa下压片得到饼状片体,将片体缓慢升温在1200℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到良好稳定性的含钙混合导体透氧膜。
评价实验:
当空气流量为150mL min-1,吹扫气体为49mL min-1CO2+1mL min-1Ne, 60wt.%Ce0.9Pr0.1O2-δ-40wt.%CaFeO3-δ在1000℃获得了0.175mL cm-2min-1的透氧量,并能够在低氧,腐蚀的环境下稳定存在30小时,性能无明显下降。

Claims (6)

1.一种良好稳定性的含钙双相混合导体透氧膜材料,其特征在于具有以下的化学式及重量百分比:
60wt.%Ce0.9Pr0.1O2-δ-40wt.%Pr1-xCaxFeO3-δ(0≤x≤1.0) 。
2.一种良好稳定性的含钙双相混合导体透氧膜材料,其特征在于具有以下的工艺和步骤:
(a)按照化学计量比依次称量Ce0.9Pr0.1O2-δ-Pr1-xCaxFeO3-δ对应的硝酸盐溶于水中,充分搅拌待其溶解后,向烧杯中加入络合剂一水合柠檬酸和分散剂乙二醇,并加入适量氨水调节pH至7~10,其中溶液中的金属离子与柠檬酸的物质的量之比为1∶2;
(b)搅拌溶液直至变成澄清透明,将烧杯放在加热型磁力搅拌器上,持续蒸发直至转变为凝胶,将凝胶放入150℃烘箱中烘干24h得到蓬松干凝胶,并将其充分研磨后放入坩埚,并在600℃保温8小时煅烧除去有机物;
(c)研磨粉末后放入坩埚,在950℃煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr1-xCaxFeO3-δ的粉末,
(d)将粉末在10MPa下压片得到饼状片体,将片体缓慢升温在1200℃/1400℃煅烧5小时烧结得到致密的双相混合导体透氧膜,砂纸打磨得到良好稳定性的含钙混合导体透氧膜。
3.根据权利要求2所述的金属离子与柠檬酸的物质的量之比为1∶2。
4.根据权利要求2所述0.8≤x≤1烧结温度为1200℃;0≤x<0.8烧结温度为1400℃。
5.根据权利要求2所述的1200℃/1400℃煅烧程序:升温速率为2度每分钟,保温300分钟,降温速率为2度每分钟。
6.根据权利要求1-2中所述的方法制得良好稳定性的含钙双相混合导体透氧膜材料及其用于稳定性的性能分析。
CN202011068813.6A 2020-09-24 2020-09-24 一种具有良好稳定性的含钙双相混合导体透氧膜材料及其制备方法 Pending CN112592182A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011068813.6A CN112592182A (zh) 2020-09-24 2020-09-24 一种具有良好稳定性的含钙双相混合导体透氧膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011068813.6A CN112592182A (zh) 2020-09-24 2020-09-24 一种具有良好稳定性的含钙双相混合导体透氧膜材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112592182A true CN112592182A (zh) 2021-04-02

Family

ID=75180375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011068813.6A Pending CN112592182A (zh) 2020-09-24 2020-09-24 一种具有良好稳定性的含钙双相混合导体透氧膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112592182A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761594A (zh) * 2018-12-28 2019-05-17 中山大学 一种含钙无钴的耐co2的双相混合导体透氧膜材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761594A (zh) * 2018-12-28 2019-05-17 中山大学 一种含钙无钴的耐co2的双相混合导体透氧膜材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BERGER CHRISTIAN等: "Long-term stability of oxygen surface exchange kinetics of Pr0.8Ca0.2FeO3-δ", 《SOLID STATE IONICS》 *
CHRISTIAN BERGER等: "Strontium-free rare earth perovskite ferrites", 《JOURNAL OF SOLID STATE CHEMISTRY》 *
VIDAL K等: "(Ln0.5M0.5)FeO3-δ Perovskites as Cathode for Solid Oxide Fuel", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *

Similar Documents

Publication Publication Date Title
Wang et al. Low‐temperature synthesis of praseodymium‐doped ceria nanopowders
Ramasamy et al. Influence of microstructure and surface activation of dual‐phase membrane Ce0. 8Gd0. 2O2− δ–FeCo2O4 on oxygen permeation
JP2009087944A (ja) 複合体型混合導電体
Nayak et al. Recent advance on fundamental properties and synthesis of barium zirconate for proton conducting ceramic fuel cell
Wang et al. A novel cobalt-free CO2-stable perovskite-type oxygen permeable membrane
CN101948303B (zh) 一种A位Ba、Sr、Ca三离子共掺杂的SrCo0.8Fe0.2O3-δ基钙钛矿透氧膜材料
Liu et al. Stability of sulfate doped SrCoO3− δ MIEC membrane
Huang et al. High CO2 resistance of indium-doped cobalt-free 60 wt.% Ce0. 9Pr0. 1O2-δ-40 wt.% Pr0. 6Sr0. 4Fe1-xInxO3-δ oxygen transport membranes
He et al. Phase stability and oxygen permeability of Fe-based BaFe0. 9Mg0. 05X0. 05O3 (X= Zr, Ce, Ca) membranes for air separation
CN104258740B (zh) B位掺杂Ca元素的BaFeO3-δ基陶瓷透氧膜材料
CN101596414A (zh) 一种含钽钙钛矿混合导体透氧膜及其制法和应用
CN109437882B (zh) 掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备方法
CN106966728B (zh) 一种阴离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用
CN113264768A (zh) 一种高透氧量的铜基双相混合导体透氧膜材料及其制备方法
CN113121230A (zh) 一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法
CN112592182A (zh) 一种具有良好稳定性的含钙双相混合导体透氧膜材料及其制备方法
CN113121231A (zh) 一种具有良好稳定性的含铝双相混合导体透氧膜材料及其制备方法
CN101274224B (zh) 高度稳定的钼基混合导体致密透氧膜材料及其制备方法和应用
Junior et al. Enhanced LSCF oxygen deficiency through hydrothermal synthesis
CN112299835A (zh) 一种a位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法
CN114988875B (zh) 高氧通量的含铜双相混合导体透氧膜材料及其制备方法
CN100534906C (zh) 一种中低温氧离子导体材料的合成方法
Zhang et al. Excellent and CO2-resistant permeability of Ce0. 85Nd0. 1Cu0. 05O2-δ-NdxSr1-xFe1-yCuyO3-δ dual-phase oxygen transport membranes
CN111205079B (zh) 一种镧掺杂钇铝石榴石陶瓷及其制备方法
CN113600024A (zh) 一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210402