CN110718691B - 采用半结晶粘合剂的高性能电极 - Google Patents

采用半结晶粘合剂的高性能电极 Download PDF

Info

Publication number
CN110718691B
CN110718691B CN201910427584.3A CN201910427584A CN110718691B CN 110718691 B CN110718691 B CN 110718691B CN 201910427584 A CN201910427584 A CN 201910427584A CN 110718691 B CN110718691 B CN 110718691B
Authority
CN
China
Prior art keywords
crystalline
semi
electrode
aramid
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910427584.3A
Other languages
English (en)
Other versions
CN110718691A (zh
Inventor
黄晓松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN110718691A publication Critical patent/CN110718691A/zh
Application granted granted Critical
Publication of CN110718691B publication Critical patent/CN110718691B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

公开了用于具有半结晶粘合剂的电化学设备的高性能电极。形成电极的方法包括形成电极浆料,将电极浆料涂敷到集电器以形成电极,以及固化电极,从而形成半结晶粘合剂。电极浆料包括溶剂、半结晶粘合剂前体溶液、电活性材料、以及导电性填料。半结晶粘合剂包括电活性材料和通过其分散的导电性填料。半结晶粘合剂包括多个聚合物链。多个聚合物链的每个都包括与多个无定形位点一起散布的多个结晶位点。半结晶粘合剂能够形成氢键。

Description

采用半结晶粘合剂的高性能电极
引言
本公开涉及用于锂离子电化学设备的高性能电极,并且更具体地涉及用于优化锂离子电化学设备中的电极性能的半结晶粘合剂。
诸如锂离子蓄电池之类的高能量密度电化学电池可以用于各种消费产品,诸如包括膝上型电脑、平板电脑和蜂窝电话的移动设备和诸如混合动力电动车(“HEV”)和电动车(“EV”)的车辆等。
用于电化学电池的高性能电极具有明显的缺点。例如,具有含硅电活性材料的电极在充电-放电循环期间会经历大量的库仑衰减。充电-放电循环期间的体积变化可能会限制蓄电池的性能和/或寿命。
发明内容
虽然不受理论束缚,但是据信蓄电池的缩减性能和/或寿命通常是由于具有电活性材料的导电填料和集电器的物理接触的破坏,这是由电活性颗粒在充电-放电循环期间经历的体积变化引起的。虽然不受理论束缚,但是据信蓄电池的缩减性能和/或寿命也是由于在充电-放电循环期间体积变化期间电活性颗粒上的固体电解质中间相的破裂和重新形成。
根据本公开的系统和方法通过使用稳定的半结晶粘合剂提供了蓄电池的优化性能和/或寿命。半结晶粘合剂包括结晶相和无定形相。有利地,结晶相提供粘合剂的刚性和抵抗电活性颗粒膨胀的弹性,并且无定形相允许粘合剂在其收缩期间保持与电活性颗粒的物理接触。参考详细的描述将认识到由半结晶粘合剂提供的进一步益处。
根据本公开的方面,形成用于电化学电池的电极的方法包括形成电极浆料,将电极浆料涂敷到集电器,并且固化电极浆料,从而形成具有半结晶粘合剂的电极。电极浆料包括半结晶粘合剂前体溶液、电活性材料和导电性填料。半结晶粘合剂包括电活性材料和通过其分散的导电性填料。半结晶粘合剂包括多个聚合物链。多个聚合物链的每个都包括与多个无定形位点一起散布的多个结晶位点。多个结晶位点的每个通过重复聚合物链的链段之间的相互作用来限定。
根据本公开的进一步方面,半结晶粘合剂前体溶液包括第一单体和第二单体,对该第一单体和该第二单体进行选择以产生聚合物链,该聚合物链具有基于聚合物链中原子的至少25原子%的芳香性和配置成与每个重复单元中的相邻聚合物链形成氢键的至少一个位点。
根据本公开的进一步方面,半结晶粘合剂前体溶液是通过结晶芳族聚酰胺处理所获得的无定形芳族聚酰胺。该处理包括将结晶芳族聚酰胺溶解在含盐有机溶液中从而形成溶液,用水处理该溶液从而形成无定形芳族聚酰胺,并且将无定形芳族聚酰胺溶解在纯有机溶液中以产生无定形芳族聚酰胺溶液。
根据本公开的进一步方面,结晶芳族聚酰胺通过将第一单体与第二单体混合并使该第一单体和该第二单体聚合来形成以形成结晶芳族聚酰胺。对第一单体和第二单体进行选择以产生聚合物链,该聚合物链具有基于聚合物链中原子的至少25原子%的芳香性和配置成与相邻聚合物链形成氢键的至少一个位点。
根据本公开的进一步方面,多个聚合物链的每个都包括基于相应聚合物链内原子的大于约25原子%的芳香性和提供物理交联并与活性材料表面形成良好粘附性的多个氢键。
根据本公开的进一步方面,每个聚合物链包括基于相应聚合物链内原子的大于约15原子%的量的氢。
根据本公开的进一步方面,半结晶前体由为二胺的第一单体和为酰氯的第二单体来形成。
根据本公开的进一步方面,二胺是间苯二胺,其中酰氯是间苯二甲酰二氯。
根据本公开的进一步方面,半结晶粘合剂是芳族聚酰胺。
根据本公开的进一步方面,芳族聚酰胺是聚(间苯二甲酰间苯二胺)。
根据本公开的进一步方面,固化半结晶粘合剂包括干燥电极,将干电极暴露于液体电解质,并且在环境温度下将液体电解质达预定时间。
根据本公开的进一步方面,预定时间是至少一周。
根据本公开的进一步方面,固化包括干燥电极并将干电极暴露于升高的温度达第一预定时间。
根据本公开的进一步方面,升高的温度在半结晶粘合剂的玻璃化转变温度与半结晶粘合剂的分解温度之间。
根据本公开的方面,电极包括电活性材料、导电性填料和半结晶粘合剂,该半结晶粘合剂具有电活性材料和通过其分散的导电性填料。电活性材料在蓄电池单元的充电和放电期间经历了体积变化。导电性填料配置成输送来自电活性材料的电能。半结晶粘合剂包括多个聚合物链。多个聚合物链的每个都包括与多个无定形位点一起散布的多个结晶位点。多个结晶位点的每个通过重复聚合物链的链段之间的相互作用来限定。
根据本公开的进一步方面,电活性材料包括硅、二氧化硅、或硅合金。
根据本公开的进一步方面,半结晶粘合剂是芳族聚酰胺。
根据本公开的进一步方面,半结晶粘合剂是聚(间苯二甲酰间苯二胺)。
根据本公开的进一步方面,多个聚合物链的每个都包括基于相应聚合物链内原子的大于约25原子%的芳香性和提供物理交联并与活性材料表面形成良好粘附性的多个氢键。
根据本公开的进一步方面,多个聚合物链的每个都包括基于相应聚合物链内原子的大于约37原子%的芳香性。
当结合附图考虑时,从用于执行本公开的最佳模式的以下详细描述中,本公开的上述特点和优点以及其它特点和优点将是显而易见的。
附图说明
这些附图是说明性的并非旨在限制由权利要求所限定的主题。示例性方面在以下详细描述中来讨论并在附图中来示出,其中:
图1示出了根据本公开的方面的包括半结晶粘合剂的示例性电化学蓄电池单元的示意图。
图2示出了图1的电极的示意图。
图3示出了图2的电极的半结晶粘合剂的示意图。
图4示出了形成图2的电极的方法。
图5示出了将示例性半结晶粘合剂与其它粘合剂进行比较的容量与循环数的曲线图。
具体实施方式
本公开涉及电化学电池,并且更具体地涉及具有优化电极的高性能锂离子电化学电池(例如,锂离子蓄电池)。
诸如硅的用于形成电极的某些电活性材料可以提供较高的比容量,但在充电-放电循环期间经历了较大的体积变化。例如,据信含硅电活性材料在标准充电-放电循环期间使体积膨胀300%或更多。虽然不受理论束缚,但是据信使用这些电极的蓄电池单元的降低性能(例如,库仑衰减)是由于在充电-放电循环期间较大的体积变化而发生的。而且,这些电极所经历的每个充电-放电循环通常会降低电极的库仑充电容量。虽然不受理论束缚,但是据信电活性材料与电极的其它组分(例如,导电性填料和粘合剂)之间的物理接触在电活性材料的膨胀与收缩期间的破坏有助于库仑衰减。除了库仑衰减和降低的性能之外,高性能电活性材料的较大体积变化可能会通过干燥电解质和使电极组件破裂而导致有限的可操作寿命。
令人惊奇地,在不需要化学交联和/或与电活性材料的化学附着的情况下,使用如本文中所述的半结晶粘合剂优化了电极性能和使用寿命。虽然不受理论束缚,但是据信根据本公开的半结晶粘合剂优化了电极的机械强度、电极的电解质亲和力、电极内的离子转移、半结晶粘合剂和导电性填料与电活性材料和集电器两者表面的接触、和/或固体电极界面的保持。进一步地,虽然不受理论束缚,但是据信根据本公开的半结晶粘合剂抑制了电解质烧干并抑制了固体电极界面的过度形成。
例如,据信根据本公开的半结晶粘合剂抵抗了电极内的粘合剂蠕变。进一步地,据信根据本公开的半结晶粘合剂平衡了粘合剂刚性和粘合剂弹性。例如,据信半结晶粘合剂的刚性减轻了电活性材料的膨胀,而半结晶粘合剂的弹性可以在电活性材料膨胀期间抵抗电极开裂。再进一步地,根据本公开的半结晶粘合剂允许半结晶粘合剂和导电性填料两者在电活性材料的膨胀与收缩期间与电活性材料和集电器两者的继续接触。虽然不受理论束缚,但是据信继续接触至少部分地由于在例如粘合剂与电活性材料之间形成较强的氢键来提供。更进一步地,根据本公开的半结晶粘合剂用电解质亲和性和通过电极的离子传导性平衡了电极的机械特性。此外,根据本公开的半结晶粘合剂通过抑制固体电解质中间相的过度裂化和随后生长而延长了电解质的使用寿命。
现在参照图1,蓄电池单元10根据本公开的方面来示出。蓄电池单元10包括设置在第一电极14与第二电极16之间的隔板12。隔板12允许离子转移并抑制通过其的电子转移。
第一电极14配置成在蓄电池单元10正在充电时嵌入阳离子,并且在蓄电池单元10正在放电时去嵌入离子。如下面将关于图2进行进一步解释,第一电极14包括第一电活性材料202、导电性填料204、和半结晶粘合剂206。
第一电极14设置在第一集电器18上。第一集电器18配置成经由外部电路22在第一电极14与第二电极16之间收集并移动自由电子。外部电路22可以包括外部设备24,外部设备24可以是消耗来自蓄电池单元10的电力的负载和/或将电力提供到蓄电池单元10的电源。
第二电极16配置成当蓄电池单元10正在放电时嵌入从第一电极14接收的阳离子,并且在蓄电池单元10正在充电时去嵌入阳离子以传输到第一电极14。第二电极16包括第二电活性材料(未示出)并设置在第二集电器20上。第二电活性材料由与第一电活性材料202配合的材料形成,以促进第一电极14与第二电极16之间的离子流动和电子流动。第二集电器20配置成经由外部电路22在第一电极14与第二电极16之间收集并移动自由电子。
第一电极14、第二电极16、和隔板12中的每个都可以进一步包括电解质26。电解质26配置成在锂离子电池10的充电和放电期间促进离子在第一电极14与第二电极16之间的移动。电解质可以是液体、凝胶、或固体电解质。
图2是第一电极14的示意图,第一电极14包括第一电活性材料202、导电性填料204、和设置在第一集电器18上的半结晶粘合剂206。半结晶粘合剂206使第一电活性材料202和导电性填料204悬浮。
第一电活性材料202配置成在蓄电池单元10充电期间接收并嵌入阳离子。第一电活性材料202进一步配置成在蓄电池单元10放电期间去嵌入并释放阳离子。在一些方面中,阳离子是锂,并且第一电活性材料202包括锂-石墨插层化合物、锂-硅插层化合物、锂-锡插层化合物、锂合金、其组合等。
如本文中所用,第一电活性材料202是电活性材料,该电活性材料在蓄电池单元10的设计参数内的充电-放电循环期间经历了至少50%的较大体积变化。在一些方面中,第一电活性材料202包括硅、二氧化硅、和/或硅合金。有利地,具体地与石墨相比,含硅电活性材料为锂离子蓄电池提供了最高的理论充电容量。
导电性填料204配置成在第一电活性材料202与第一集电器18之间输送电荷。导电性填料204以等于或高于渗透阈值的浓度分散在第一电极14内。导电性填料204可以是合适的材料,诸如含碳材料。在一些方面中,导电性填料204选自下组,该组是炭黑、碳纤维、石墨、其组合等。
图3是半结晶粘合剂206的示意图。半结晶粘合剂206包括多个聚合物链302。多个聚合物链302的每个都包括多个无定形位点304和多个结晶位点306。多个无定形位点304的每个都与多个结晶位点306的每个一起来散布。多个结晶位点306的每个通过重复聚合物链302的链段之间的相互作用来限定。有利地,多个聚合物链302的每个都包括第一结晶位点306a和第二结晶位点306b,第一结晶位点306a包括第一组聚合物链302,第二结晶部位306b包括第二组聚合物链302。
聚合物链302包括较高的芳香性以提供所需的刚性,并且多个氢键形成在聚合物链302与第一电活性材料202的表面之间以提供改进的界面粘附性。
在一些方面中,每个聚合物链302都具有基于相应聚合物链中原子的高于25原子%的芳香性。在一些方面中,每个聚合物链302都具有基于相应聚合物链302中原子的高于37原子%的芳香性。
在一些方面中,每个聚合物链302都包括每个重复单元至少一个能够形成氢键的位点。在一些方面中,每个聚合物链302都包括每个重复单元至少两个能够形成氢键的位点。
在一些方面中,每个聚合物链302都包括基于相应聚合物链302内原子的大于约15原子%的量的氢。在一些方面中,聚合物链302是芳族聚酰胺。在一些方面中,聚合物链302是聚(间苯二甲酰间苯二胺)。
图4示出了形成诸如第一电极14的电极的方法400。方法400包括形成402电极浆料,将电极浆料涂敷404到诸如第一集电器18的集电器,并且固化406电极浆料,从而形成电极。
电极浆料以合适的比例包括溶剂、半结晶粘合剂前体溶液、第一电活性材料202、以及导电性填料204。在一些方面中,基于电极浆料中固体的重量,第一电活性材料202是在约30重量%与约95重量%之间,导电性填料204是在约3重量%与约50重量%之间,并且半结晶粘合剂前体溶液是在约2重量%至约40重量%之间。
半结晶粘合剂前体溶液在固化时配置成形成半结晶粘合剂206。在一些方面中,半结晶粘合剂前体溶液是通过处理结晶芳族聚酰胺所获得的无定形芳族聚酰胺溶液。例如,结晶芳族聚酰胺的处理可以包括将结晶芳族聚酰胺溶解在含盐有机溶液中,用水处理含盐有机溶液从而形成无定形芳族聚酰胺,并且将无定形芳族聚酰胺溶解在纯有机溶液中以产生无定形芳族聚酰胺溶液。例如,含盐有机溶液可以是合适的有机溶剂内的含氯化物的盐。在一些方面中,含盐有机溶液是氯化钙或氯化锂在N-甲基-2-吡咯烷酮(“NMP”)中的混合物。在一些方面中,纯有机溶剂是NMP。
在一些方面中,结晶芳族聚酰胺通过将第一单体与第二单体混合并使该第一单体和该第二单体聚合来形成以形成结晶芳族聚酰胺。对第一单体和第二单体进行选择以产生聚合物链,该聚合物链具有基于聚合物链中原子的至少50原子%的芳香性和配置成形成氢键的至少一个位点。
在一些方面中,半结晶粘合剂前体溶液是通过使第一单体和第二单体聚合所获得的无定形芳族聚酰胺溶液。对第一单体和第二单体进行选择以产生聚合物链,该聚合物链具有基于聚合物链中原子的至少约50原子%的芳香性和配置成形成氢键的至少一个位点。在一些方面中,第一单体是二胺且第二单体是酰氯。例如,二胺可以是间苯二胺且酰氯可以是间苯二甲酰二氯。
在一些方面中,固化406电极浆料包括在环境温度下将电极浆料暴露于液体电解质达第一预定时间。预定时间段是延长的时间段,诸如至少一周。有利地,除在生产设施处之外,延长的时间段还可以发生在供应链中的点处。例如,如果至少一周将不使用锂离子电池10,则锂离子电池10可以在固化406之前来构造并运输。在一些方面中,固化406包括干燥电极并将干电极暴露于升高的温度达第一预定时间。升高的温度可以在半结晶粘合剂的玻璃化转变温度与半结晶粘合剂的分解温度之间。
如本文中所用,术语“结晶的”应解释为基本上结晶的而不是完全结晶的。虽然本领域普通技术人员容易理解术语“基本上”的边界和界限,但是在一些方面中,术语“基本上结晶的”表明该化合物是至少95%结晶的。
如本文中所用,术语“无定形的”应解释为基本上无定形的而不是完全无定形的。虽然本领域普通技术人员容易理解术语“基本上”的边界和界限,但是在一些方面中,术语“基本上结晶的”表明该化合物是至少95%结晶的。
虽然已经详细描述了用于执行本公开的最佳模式,但是熟悉本公开所涉及领域的技术人员将会在所附权利要求的范围内认识到实践本公开的各种替代设计和实施例。
示例1
电极浆料通过基于电极浆料的重量混合81重量%的NMP、11.4重量%的硅、3.8重量%的导电性碳、以及3.8重量%的芳族聚酰胺来形成。芳族聚酰胺以在NMP中8wt%溶液的形式来添加。将浆料混合直至基本上均匀。然后将电极浆料浇铸在集电器上并在80℃下进行真空干燥过夜以除去NMP溶剂而形成干电极。将干电极加热至275℃并在该温度下保持达2小时以诱导半结晶结构的形成。
图5是比较包括示例半结晶粘合剂至其它粘合剂的纽扣电池的容量与循环数的曲线图。线502示出了具有半结晶粘合剂206的所制备纽扣电池的容量。线504示出了用羧甲基纤维素粘合剂所制备的电池的容量。线506示出了用聚偏二氟乙烯所制备的电池的容量。如可以看到,包括半结晶粘合剂的示例电池随着循环数增大展现出更大的容量保持和减小的容量衰减。例如,所有三个电池都以大约0.0024安培-小时的容量开始。在150个循环后,示例电池提供了0.0015安培-小时的容量,而此相同的容量对于羧甲基纤维素粘合剂而言在大约20个循环后达到,并且对于聚偏二氟乙烯粘合剂而言大约2个循环。
示例2
电极浆料通过基于电极浆料的重量混合81重量%的NMP、11.4重量%的硅、3.8重量%的导电性碳、以及3.8重量%的芳族聚酰胺来形成。芳族聚酰胺以在NMP中8wt%溶液的形式来添加。将浆料混合直至基本上均匀。然后将电极浆料浇铸在集电器上并在80℃下进行真空干燥过夜以除去NMP溶剂而形成干电极。将干电极组装到蓄电池单元中,并且当使这些电池休息两周的时间段以形成具有结合到纽扣电池中的半结晶芳族聚酰胺粘合剂的电极时,这些电池中电解质的存在也可以诱导半结晶结构形成。

Claims (13)

1.一种形成用于电化学电池的电极的方法,所述方法包括:
形成电极浆料,所述电极浆料包含半结晶粘合剂前体溶液、电活性材料、和导电性填料;
将所述电极浆料涂敷到集电器上;并且
固化所述电极浆料,从而形成具有半结晶粘合剂的所述电极,所述半结晶粘合剂具有所述电活性材料和分散在其中的所述导电性填料,所述半结晶粘合剂包含多个聚合物链,所述多个聚合物链的每个都包含与多个无定形位点一起散布的多个结晶位点,所述多个聚合物链的每个配置成形成氢键,
其中所述半结晶粘合剂前体溶液是通过结晶芳族聚酰胺的处理所获得的无定形芳族聚酰胺,所述处理包括:
将所述结晶芳族聚酰胺溶解在含盐有机溶液中,从而形成溶液;
用水处理所述溶液,从而形成无定形芳族聚酰胺;并且
将所述无定形芳族聚酰胺溶解在纯有机溶液中以产生无定形芳族聚酰胺溶液。
2.根据权利要求1所述的方法,其中所述半结晶粘合剂前体溶液包含第一单体和第二单体,对所述第一单体和所述第二单体进行选择以产生聚合物链,所述聚合物链具有基于所述聚合物链中原子的至少25原子%的芳香性和配置成形成氢键的至少一个位点。
3.根据权利要求1所述的方法,其中所述结晶芳族聚酰胺通过以下步骤来形成:
混合所选择的第一单体和第二单体以产生聚合物链,所述聚合物链具有基于所述聚合物链中原子的至少25原子%的芳香性和配置成形成所述氢键的至少一个位点;并且
使所述第一单体和所述第二单体聚合以形成所述结晶芳族聚酰胺。
4.根据权利要求1所述的方法,其中所述多个聚合物链的每个都包括基于所述相应聚合物链内原子的大于25原子%的芳香性和多个氢键。
5.根据权利要求4所述的方法,其中每个聚合物都包含基于所述相应聚合物链内原子的大于15原子%的量的氢。
6.根据权利要求1所述的方法,其中所述半结晶前体由为二胺的第一单体和为酰氯的第二单体来形成。
7.根据权利要求6所述的方法,其中所述二胺是间苯二胺,并且其中所述酰氯是间苯二甲酰二氯。
8.根据权利要求1所述的方法,其中所述半结晶粘合剂是芳族聚酰胺。
9.根据权利要求8所述的方法,其中所述芳族聚酰胺是聚(间苯二甲酰间苯二胺)。
10.根据权利要求1所述的方法,其中固化所述半结晶粘合剂包括干燥所述电极,将干电极暴露于液体电解质,并且在环境温度下将所述液体电解质保持达预定时间。
11.根据权利要求10所述的方法,其中所述预定时间是至少一周。
12.根据权利要求1所述的方法,其中所述固化包括干燥电极并将干电极暴露于升高的温度达第一预定时间。
13.根据权利要求12所述的方法,其中所述升高的温度在半结晶粘合剂的玻璃化转变温度与半结晶粘合剂的分解温度之间。
CN201910427584.3A 2018-07-12 2019-05-22 采用半结晶粘合剂的高性能电极 Active CN110718691B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/034067 2018-07-12
US16/034,067 US10868307B2 (en) 2018-07-12 2018-07-12 High-performance electrodes employing semi-crystalline binders

Publications (2)

Publication Number Publication Date
CN110718691A CN110718691A (zh) 2020-01-21
CN110718691B true CN110718691B (zh) 2022-11-15

Family

ID=69139915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910427584.3A Active CN110718691B (zh) 2018-07-12 2019-05-22 采用半结晶粘合剂的高性能电极

Country Status (3)

Country Link
US (1) US10868307B2 (zh)
CN (1) CN110718691B (zh)
DE (1) DE102019113705A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950846B2 (en) 2019-01-03 2021-03-16 GM Global Technology Operations LLC Method for in situ growth of axial geometry carbon structures in electrodes
US10985363B2 (en) 2019-01-03 2021-04-20 GM Global Technology Operations LLC Electrodes and methods of fabricating electrodes for electrochemical cells by continuous localized pyrolysis
US11527745B2 (en) 2019-09-03 2022-12-13 GM Global Technology Operations LLC Methods of pre-lithiating electrodes
US11843110B2 (en) 2019-10-30 2023-12-12 GM Global Technology Operations LLC Methods for controlling formation of multilayer carbon coatings on silicon-containing electroactive materials for lithium-ion batteries
US11749832B2 (en) 2019-11-20 2023-09-05 GM Global Technology Operations LLC Methods for pre-lithiating lithium ion batteries
US11876213B2 (en) 2020-01-24 2024-01-16 GM Global Technology Operations LLC Manufacturing process of making negative electrodes for batteries
US11588145B2 (en) 2020-03-20 2023-02-21 GM Global Technology Operations LLC Methods of briquetting precursor materials for prelithiated silicon active materials
US11626591B2 (en) 2020-09-30 2023-04-11 GM Global Technology Operations LLC Silicon-containing electrochemical cells and methods of making the same
US11735724B2 (en) 2020-10-30 2023-08-22 GM Global Technology Operations LLC Silicon-containing negative electrodes, electrochemical cells, and methods of making the same
US11769872B2 (en) 2021-03-17 2023-09-26 GM Global Technology Operations LLC Pre-lithiated silicon particles and methods of forming the same
US11848440B2 (en) 2021-04-01 2023-12-19 GM Global Technology Operations LLC Prelithiated negative electrodes including composite Li—Si alloy particles and methods of manufacturing the same
US11824186B2 (en) 2021-04-02 2023-11-21 GM Global Technology Operations LLC Prelithiated negative electrodes including Li—Si alloy particles and methods of manufacturing the same
US11753305B2 (en) 2021-09-13 2023-09-12 GM Global Technology Operations LLC Methods of producing pre-lithiated silicon oxide electroactive materials comprising silicides and silicates

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819569A (en) * 1973-06-28 1974-06-25 Du Pont Aromatic polyamides stabilized with nickelous carbonate
CN101432830A (zh) * 2006-04-27 2009-05-13 杜邦帝人先进纸有限公司 电极片材的制造方法
CN101679563A (zh) * 2007-04-24 2010-03-24 索维索莱克西斯公开有限公司 偏二氟乙烯共聚物
CN104520349A (zh) * 2012-06-21 2015-04-15 布尔戈斯大学 交联芳族聚酰胺
US9034517B1 (en) * 2013-11-06 2015-05-19 Retriev Technologies Incorporated Capacitors having conditioned carbon for electrodes
CN105001816A (zh) * 2014-04-16 2015-10-28 德莎欧洲公司 胶粘剂、uv-可交联psa和具有uv-交联的psa的粘合剂

Family Cites Families (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642878A1 (de) 1995-10-31 1997-05-07 Basf Magnetics Holding Gmbh Für elektrochemische Zellen geeignete Elektrodenmaterialien
CA2268316C (fr) 1999-04-07 2003-09-23 Hydro-Quebec Composite enduction lipo3
DE60113195T2 (de) 2000-06-27 2006-07-06 Asahi Glass Co., Ltd. Aktivkohlematerial, Verfahren zu dessen Herstellung und elektrischer Doppelschichtkondensator, welcher dieses verwendet
CA2320661A1 (fr) 2000-09-26 2002-03-26 Hydro-Quebec Nouveau procede de synthese de materiaux limpo4 a structure olivine
US7491467B2 (en) 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US7018607B2 (en) 2003-06-25 2006-03-28 General Motors Corporation Cathode material for lithium battery
JP4159954B2 (ja) 2003-09-24 2008-10-01 株式会社東芝 非水電解質電池
MY145156A (en) 2003-12-09 2011-12-30 Teijin Aramid Bv Para-aramid fibrid film
WO2005067081A1 (en) 2004-01-05 2005-07-21 Showa Denko K.K. Negative electrode material for lithium battery, and lithium battery
TWI263702B (en) 2004-12-31 2006-10-11 Ind Tech Res Inst Anode materials of secondary lithium-ion battery
JP3985849B2 (ja) 2005-01-26 2007-10-03 松下電器産業株式会社 リチウム二次電池用負極とそれを用いたリチウム二次電池およびそれらの製造方法
US7495862B2 (en) 2005-02-08 2009-02-24 Seagate Technology Llc Formed parts for adhesive height setting
JP2006339092A (ja) 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd 非水電解液二次電池およびその負極
EP1994584B1 (en) 2006-02-17 2014-08-13 LG Chem, Ltd. Lithium manganese secondary battery
US7820327B2 (en) 2006-04-11 2010-10-26 Enerdel, Inc. Lithium titanate and lithium cells and batteries including the same
US7541016B2 (en) 2006-04-11 2009-06-02 Enerdel, Inc. Lithium titanate and method of forming the same
US7820137B2 (en) 2006-08-04 2010-10-26 Enerdel, Inc. Lithium titanate and method of forming the same
US20080025876A1 (en) 2006-07-26 2008-01-31 Ramamurthy Praveen C Vapor sensor materials having polymer-grafted conductive particles
EP2058882A4 (en) 2006-08-29 2013-03-06 Unitika Ltd BINDER FOR MANUFACTURING ELECTRODE, MELT FOR ELECTRODE MANUFACTURING USING THE BINDER, ELECTRODE USING THE SLUDGE, SECONDARY BATTERY USING THE ELECTRODE AND CAPACITOR USING THE ELECTRODE
JP4743052B2 (ja) 2006-09-06 2011-08-10 日産自動車株式会社 車両の制動制御装置
KR100927246B1 (ko) 2006-09-11 2009-11-16 주식회사 엘지화학 점토 광물을 포함하고 있는 전극 합제 및 이를 사용한전기화학 셀
US7722994B2 (en) 2007-03-28 2010-05-25 Gm Global Technology Operations, Inc. Lithium-ion battery non-aqueous electrolytes
US8828481B2 (en) 2007-04-23 2014-09-09 Applied Sciences, Inc. Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
KR101009993B1 (ko) 2007-05-07 2011-01-21 주식회사 에너세라믹 리튬 이차 전지용 양극 활물질의 제조방법, 이 방법으로제조된 리튬 이차 전지용 양극 활물질 및 이를 포함하는리튬 이차 전지
US7736805B2 (en) 2007-05-16 2010-06-15 Gm Global Technology Operations, Inc. Lithium hydride negative electrode for rechargeable lithium batteries
US7651732B2 (en) 2007-09-07 2010-01-26 Gm Global Technology Operations, Inc. Magnesium-titanium solid solution alloys
JP5315665B2 (ja) 2007-10-31 2013-10-16 ソニー株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池
US20100203392A1 (en) 2007-11-12 2010-08-12 Masayuki Yamada Electrode for nonaqueous secondary battery, nonaqueous secondary battery using the same, and method for producing electrode
JP4462334B2 (ja) 2007-11-16 2010-05-12 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び情報共有システム
US7928690B2 (en) 2007-11-29 2011-04-19 GM Global Technology Operations LLC Method and system for determining a state of charge of a battery
KR101211127B1 (ko) 2007-12-14 2012-12-11 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
JP4433329B2 (ja) 2008-04-02 2010-03-17 トヨタ自動車株式会社 リチウム二次電池の正極およびその製造方法
US8187746B2 (en) 2008-05-16 2012-05-29 Uchicago Argonne, Llc Surface modification agents for lithium batteries
US9356281B2 (en) 2008-05-20 2016-05-31 GM Global Technology Operations LLC Intercalation electrode based on ordered graphene planes
US8034485B2 (en) 2008-05-29 2011-10-11 3M Innovative Properties Company Metal oxide negative electrodes for lithium-ion electrochemical cells and batteries
US8872519B2 (en) 2008-09-26 2014-10-28 GM Global Technology Operations LLC System and method to determine the state of charge of a battery using magnetostriction to detect magnetic response of battery material
JP2010093027A (ja) 2008-10-07 2010-04-22 Teijin Techno Products Ltd 電極部材−集電極部材積層体
JP5319312B2 (ja) 2009-01-21 2013-10-16 株式会社東芝 電池用負極活物質、非水電解質電池および電池パック
US20140370380A9 (en) 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
DE102009032050A1 (de) 2009-07-07 2011-01-27 Li-Tec Battery Gmbh Sekundärbatterie mit Schnellladefähigkeit
US10056644B2 (en) 2009-07-24 2018-08-21 Zenlabs Energy, Inc. Lithium ion batteries with long cycling performance
US9806606B2 (en) 2009-08-11 2017-10-31 Lenovo (Singapore) Pte. Ltd. Multi-modal battery pack
JP5493617B2 (ja) 2009-09-14 2014-05-14 信越化学工業株式会社 非水電解質二次電池用負極及びリチウムイオン二次電池
US8399138B2 (en) 2009-10-14 2013-03-19 GM Global Technology Operations LLC Liquid rechargeable lithium ion battery
US8420259B2 (en) 2009-10-14 2013-04-16 GM Global Technology Operations LLC Electrodes including an embedded compressible or shape changing component
US9190694B2 (en) 2009-11-03 2015-11-17 Envia Systems, Inc. High capacity anode materials for lithium ion batteries
US8802301B2 (en) 2009-11-06 2014-08-12 GM Global Technology Operations LLC Lithium ion battery electrolyte including a vitreous eutectic mixture
KR101419572B1 (ko) 2009-11-18 2014-07-16 주식회사 엘지화학 바이폴라 전극쌍/분리막 어셈블리, 이를 포함하는 바이폴라 전지, 및 이들의 제조방법
CN101728517A (zh) 2009-11-20 2010-06-09 中南大学 一种表面自生长氮化钛导电膜修饰钛酸锂的制备方法
US8148455B2 (en) 2009-11-20 2012-04-03 GM Global Technology Operations LLC Hybrid two- and three-component host-guest nanocomposites and method for manufacturing the same
US8753543B2 (en) 2009-12-07 2014-06-17 Nanotek Instruments, Inc. Chemically functionalized submicron graphitic fibrils, methods for producing same and compositions containing same
US8568930B2 (en) 2009-12-18 2013-10-29 GM Global Technology Operations LLC Lithium ion battery
US8785054B2 (en) 2009-12-18 2014-07-22 GM Global Technology Operations LLC Lithium ion battery
WO2011078263A1 (ja) 2009-12-24 2011-06-30 日本ゼオン株式会社 二次電池用電極及び二次電池
CN101764209A (zh) 2010-01-04 2010-06-30 苏州星恒电源有限公司 具有表面包覆层的钛酸锂复合电极材料
US8470468B2 (en) 2010-02-12 2013-06-25 GM Global Technology Operations LLC Lithium-ion batteries with coated separators
US8627928B2 (en) 2010-02-16 2014-01-14 GM Global Technology Operations LLC Fluid displacing transmission filler
US8170818B2 (en) 2010-03-10 2012-05-01 GM Global Technology Operations LLC Battery state estimator using multiple sampling rates
US8460591B2 (en) 2010-03-23 2013-06-11 GM Global Technology Operations LLC Porous membranes and methods of making the same
US8586222B2 (en) 2010-04-08 2013-11-19 GM Global Technology Operations LLC Lithium-ion cell with an array of reference electrodes
JPWO2011145301A1 (ja) 2010-05-18 2013-07-22 パナソニック株式会社 リチウム二次電池
CN101986442A (zh) 2010-05-25 2011-03-16 耿世达 一种内部含有三维导电结构的锂离子电池负极材料及其制备方法
JP5370289B2 (ja) 2010-06-30 2013-12-18 日本ゼオン株式会社 非水系電池用セパレーター及びそれを用いた非水系電池
US8101152B1 (en) 2010-08-18 2012-01-24 GM Global Technology Operations LLC Sonochemical synthesis of titanium-containing oxides
US8163193B2 (en) 2010-08-27 2012-04-24 Tsinghua University Modifier of lithium ion battery and method for making the same
FR2965408A1 (fr) 2010-09-23 2012-03-30 Arkema France Materiau composite et utilisation pour la fabrication d'une electrode
US9176194B2 (en) 2010-10-08 2015-11-03 GM Global Technology Operations LLC Temperature compensation for magnetic determination method for the state of charge of a battery
US9091735B2 (en) 2010-10-26 2015-07-28 GM Global Technology Operations LLC Method for determining a state of a rechargeable battery device in real time
US20120100403A1 (en) 2010-10-26 2012-04-26 Gm Global Technology Operations, Inc. Electrolytic cell and method of estimating a state of charge thereof
US20120109503A1 (en) 2010-10-29 2012-05-03 Gm Global Technology Operations, Inc. Li-ION BATTERY FOR VEHICLES WITH ENGINE START-STOP OPERATIONS
US8680815B2 (en) 2010-11-01 2014-03-25 GM Global Technology Operations LLC Method and apparatus for assessing battery state of health
US8531158B2 (en) 2010-11-01 2013-09-10 GM Global Technology Operations LLC Method and apparatus for assessing battery state of health
US8835058B2 (en) 2010-12-21 2014-09-16 GM Global Technology Operations LLC Battery separators with variable porosity
US9172075B2 (en) 2010-12-21 2015-10-27 GM Global Technology Operations LLC Battery separators with variable porosity
US9023520B2 (en) 2011-01-12 2015-05-05 GM Global Technology Operations LLC Lithium ion battery
US9077038B2 (en) 2011-01-12 2015-07-07 GM Global Technology Operations LLC Lithium ion batteries
CN103403109B (zh) 2011-02-23 2015-12-23 大日精化工业株式会社 水性液态组合物、水性涂布液、功能性涂布膜、及复合材料
US9153819B2 (en) 2011-02-27 2015-10-06 GM Global Technology Operations LLC Negative electrode for a lithium ion battery
US9362560B2 (en) 2011-03-08 2016-06-07 GM Global Technology Operations LLC Silicate cathode for use in lithium ion batteries
US20120229096A1 (en) 2011-03-08 2012-09-13 GM Global Technology Operations LLC Method of depositing silicon on carbon nanomaterials and forming an anode for use in lithium ion batteries
US9281515B2 (en) 2011-03-08 2016-03-08 Gholam-Abbas Nazri Lithium battery with silicon-based anode and silicate-based cathode
US20120231321A1 (en) 2011-03-11 2012-09-13 GM Global Technology Operations LLC Integral bi-layer separator-electrode construction for lithium-ion batteries
US8642201B2 (en) 2011-03-25 2014-02-04 GM Global Technology Operations LLC Liquid-metal negative electrode for lithium-ion batteries
CN103429640B (zh) 2011-03-25 2016-03-02 株式会社I.S.T. 聚酰亚胺前体溶液、聚酰亚胺前体、单体型聚酰亚胺前体溶液、活性物质层形成用粘合剂、聚酰亚胺树脂、合剂浆料、电极、合剂浆料制造方法以及电极形成方法
US8658295B2 (en) 2011-03-25 2014-02-25 GM Global Technology Operations LLC Self healing lithium-ion battery negative electrodes, product including same, and methods of making and using same
US8663840B2 (en) 2011-04-12 2014-03-04 GM Global Technology Operations LLC Encapsulated sulfur cathode for lithium ion battery
KR101201804B1 (ko) 2011-04-21 2012-11-15 삼성에스디아이 주식회사 리튬 이차 전지용 음극, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US8835056B2 (en) 2011-05-24 2014-09-16 GM Global Technology Operations LLC Lithium ion secondary battery electrode and method of forming same
US8470898B2 (en) 2011-05-31 2013-06-25 GM Global Technology Operations LLC Methods of making lithium ion battery separators
US9287540B2 (en) 2011-05-31 2016-03-15 GM Global Technology Operations LLC Separators for a lithium ion battery
US8679680B2 (en) 2011-06-03 2014-03-25 GM Global Technology Operations LLC Mitigation of mechanical degradation in lithium battery materials using biconcave electrode particles
US20120328927A1 (en) 2011-06-24 2012-12-27 GM Global Technology Operations LLC Electrochemical devices and rechargeable lithium ion batteries
CN102306748A (zh) 2011-08-04 2012-01-04 东莞新能源科技有限公司 一种锂离子电池负极极片及其制备方法
US8309644B1 (en) 2011-08-29 2012-11-13 GM Global Technology Operations LLC Methods of treating carbon fibers, fiber-reinforced resins, and methods of making the fiber-reinforced resins
US9142830B2 (en) 2011-09-16 2015-09-22 GM Global Technology Operations LLC Phase separated silicon-tin composite as negative electrode material for lithium-ion batteries
US20130099159A1 (en) 2011-10-25 2013-04-25 GM Global Technology Operations LLC Production of metal or metalloid nanoparticles
US8440350B1 (en) 2011-11-10 2013-05-14 GM Global Technology Operations LLC Lithium-ion battery electrodes with shape-memory-alloy current collecting substrates
US8993646B2 (en) 2011-11-18 2015-03-31 GM Global Technology Operations LLC Making a lithium ion battery separator
US9312702B2 (en) 2011-12-08 2016-04-12 GM Global Technology Operations LLC System and methods for controlled depowering of automobile batteries
US9362551B2 (en) 2011-12-20 2016-06-07 GM Global Technology Operations LLC Reinforced battery electrodes
US9583767B2 (en) 2012-01-05 2017-02-28 GM Global Technology Operations LLC Methods for making battery electrode systems
TWI473320B (zh) 2012-01-06 2015-02-11 Univ Nat Taiwan Science Tech 鋰離子電池其陽極保護層之結構及製造方法
US9012075B2 (en) 2012-01-23 2015-04-21 GM Global Technology Operations LLC Fade-resistant high capacity electrodes for a lithium-ion battery
US9138932B2 (en) 2012-02-29 2015-09-22 GM Global Technology Operations LLC Electrode-separator integral segment for a lithium ion battery
US20130284338A1 (en) 2012-04-26 2013-10-31 Gm Global Technology Operations Llc. Self assembly of graphene materials
US8460829B1 (en) 2012-05-17 2013-06-11 GM Global Technology Operations LLC Porous polymer separator layer having a non-uniform cross-sectional thickness for use in a secondary liquid-electrolyte battery
US8455140B1 (en) 2012-05-17 2013-06-04 GM Global Technology Operations LLC Porous polymer separator layer having a non-uniform cross sectional thickness for use in a secondary liquid electrolyte battery
US9362552B2 (en) 2012-06-01 2016-06-07 GM Global Technology Operations LLC Lithium ion battery electrode materials and methods of making the same
US9346066B2 (en) 2012-06-05 2016-05-24 GM Global Technology Operations LLC Non-woven polymer fiber mat for use in a lithium ion battery electrochemical cell
US9350046B2 (en) 2012-07-18 2016-05-24 GM Global Technology Operations LLC Physically cross-linked gel electrolyte
US9028565B2 (en) 2012-07-31 2015-05-12 GM Global Technology Operations LLC Composite separator for use in a lithium ion battery electrochemical cell
DE112012006684B4 (de) 2012-08-08 2023-03-09 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Kompositkathodenmatrialien mit gesteuertem irreversiblem Kapazitätsverlust für Lithiumionenbatterien
US9059451B2 (en) 2012-10-18 2015-06-16 GM Global Technology Operations LLC Coatings for lithium titanate to suppress gas generation in lithium-ion batteries and methods for making and use thereof
US9034519B2 (en) 2013-01-18 2015-05-19 GM Global Technology Operations LLC Ultrathin surface coating on negative electrodes to prevent transition metal deposition and methods for making and use thereof
US20140272558A1 (en) 2013-03-14 2014-09-18 GM Global Technology Operations LLC Electrode for a lithium-based secondary electrochemical device and method of forming same
US9123939B2 (en) 2013-03-14 2015-09-01 GM Global Technology Operations LLC Anodes including mesoporous hollow silicon particles and a method for synthesizing mesoporous hollow silicon particles
US20140272526A1 (en) 2013-03-14 2014-09-18 GM Global Technology Operations LLC Porous separator for a lithium ion battery and a method of making the same
US8999584B2 (en) 2013-03-15 2015-04-07 GM Global Technology Operations LLC Method for pre-lithiation of the negative electrode in lithium ion batteries
US8974946B2 (en) 2013-03-15 2015-03-10 Gm Global Technology Operations Coating for separator or cathode of lithium—sulfur or silicon—sulfur battery
US9537144B2 (en) 2013-03-15 2017-01-03 GM Global Technology Operations LLC Single lithium ion conductor as binder in lithium-sulfur or silicon-sulfur battery
US9093705B2 (en) 2013-03-15 2015-07-28 GM Global Technology Operations LLC Porous, amorphous lithium storage materials and a method for making the same
US9160036B2 (en) 2013-03-15 2015-10-13 GM Global Technology Operations LLC Electrolyte additives for lithium sulfur rechargeable batteries
US20160111721A1 (en) 2013-05-07 2016-04-21 The Regents Of The University Of California Voltage-responsive coating for lithium-sulfur battery
US10033040B2 (en) 2013-07-08 2018-07-24 The Board Of Trustees Of The Leland Standford Junior University Stable cycling of lithium sulfide cathodes through strong affinity with multifunctional binders
US10062898B2 (en) 2013-07-10 2018-08-28 GM Global Technology Operations LLC Surface coating method and method for improving electrochemical performance of an electrode for a lithium based battery
US9412986B2 (en) 2013-07-31 2016-08-09 GM Global Technology Operations LLC Porous composite structures for lithium-ion battery separators
US20150162602A1 (en) 2013-12-10 2015-06-11 GM Global Technology Operations LLC Nanocomposite coatings to obtain high performing silicon anodes
US9531004B2 (en) 2013-12-23 2016-12-27 GM Global Technology Operations LLC Multifunctional hybrid coatings for electrodes made by atomic layer deposition techniques
US9564639B2 (en) 2014-02-12 2017-02-07 GM Global Technology Operations LLC High performance silicon electrodes having improved interfacial adhesion between binder and silicon
US20170098817A1 (en) 2014-05-21 2017-04-06 GM Global Technology Operations LLC Distributing conductive carbon black on active material in lithium battery electrodes
US9379374B2 (en) 2014-07-15 2016-06-28 GM Global Technology Operations LLC Methods for forming negative electrode active materials for lithium-based batteries
WO2016063835A1 (ja) 2014-10-21 2016-04-28 日本電気株式会社 二次電池およびその製造方法
US20180287146A1 (en) 2017-03-31 2018-10-04 Tdk Corporation Lithium powder, lithium ion secondary battery negative electrode using the same, and lithium ion secondary battery using the lithium ion secondary battery negative electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819569A (en) * 1973-06-28 1974-06-25 Du Pont Aromatic polyamides stabilized with nickelous carbonate
CN101432830A (zh) * 2006-04-27 2009-05-13 杜邦帝人先进纸有限公司 电极片材的制造方法
CN101679563A (zh) * 2007-04-24 2010-03-24 索维索莱克西斯公开有限公司 偏二氟乙烯共聚物
CN104520349A (zh) * 2012-06-21 2015-04-15 布尔戈斯大学 交联芳族聚酰胺
US9034517B1 (en) * 2013-11-06 2015-05-19 Retriev Technologies Incorporated Capacitors having conditioned carbon for electrodes
CN105001816A (zh) * 2014-04-16 2015-10-28 德莎欧洲公司 胶粘剂、uv-可交联psa和具有uv-交联的psa的粘合剂

Also Published As

Publication number Publication date
DE102019113705A1 (de) 2020-01-16
US20200020949A1 (en) 2020-01-16
US10868307B2 (en) 2020-12-15
CN110718691A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
CN110718691B (zh) 采用半结晶粘合剂的高性能电极
CN110718677B (zh) 带有具有化学附着至其的电活性材料的聚合物网络的高性能电极
US10326136B2 (en) Porous carbonized composite material for high-performing silicon anodes
US10199643B2 (en) Negative electrode for lithium-based batteries
US9570752B2 (en) Negative electrode material for lithium-based batteries
JP5860834B2 (ja) リチウムイオン再充電可能電池セル
KR101311494B1 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
CN111048747A (zh) 制造用于锂基电池的含硅复合电极的方法
WO2018156330A1 (en) Lithium battery cathode and method of manufacturing
KR20140106292A (ko) 리튬 이차전지용 음극 및 이를 채용한 리튬 이차전지
CN102598388A (zh) 锂二次电池
WO2016080128A1 (ja) リチウムイオン電池
EP2808300A1 (en) Method for producing hardly-graphitizable carbon material, hardly-graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP4088755B2 (ja) 非水電解質二次電池
JP2008066128A (ja) リチウムイオン電池用負極活物質及びその製造方法、リチウムイオン電池用負極、並びにリチウムイオン電池
JP2022521946A (ja) 全固体電池用負極の製造方法
KR101142533B1 (ko) 금속계 아연 음극 활물질 및 이를 이용한 리튬이차전지
KR20170135425A (ko) 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
CN114600279A (zh) 在硅占主导的阳极电池中使用具有杂质的硅
KR102085301B1 (ko) 납산전지용 다층구조상 전극 및 이를 포함하는 납산 기반 축전지 시스템
JP4054925B2 (ja) リチウム電池
KR102415775B1 (ko) 전류 콜렉터 및 인터페이스 층의 세트, 관련된 축전지 및 배터리
US11563253B1 (en) Method and system for formation of cylindrical and prismatic can cells
US20220336871A1 (en) Method and System for Periodic Deep Discharge To Extract Lithium In Silicon-Dominant Anodes
CN114868279A (zh) 将碳组合物作为致密且导电的阴极的导电添加剂的方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant